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A first step in determining all the global projective unitary representations describing free particle systems 
in imaginary Lobachevsky space is made. Essentially we determine explicitly the global form of any 
representation describing a free particle of spin j on the group generated by rotations and translations of 
space-time at time t and time translations. We also discuss whether or not positional observables should 
be preserved under physical equivalence and determine the effects this has on the representation theory of 
free particle systems. 

In this paper free particle systems in imaginary 
Lobachevsky space with symmetry group SOo(1, 4) are 
considered. We start by describing imaginary Loba­
chevsky space and its interpretation as space-time and 
its symmetry group. Space-time at time t is shown to 
be Euclidean space, and Euclidean motions, that is 
translations and rotations, form a subgroup of SOo(1, 4). 
Their products with time translations form a subgroup 
P of SOo(1, 4); P is a minimal parabolic subgroup of 
SOo(1,4). 

Next we discuss free particles, physical equivalence, 
and equivalence. The difference between physical 
equivalence and equivalence is the latter insures pres­
ervation of the positional observables while the former 
does not. If one does not insist on the preservation of 
the positional observables, it will be shown that any 
representation describing any particle of spin j has the 
same explicit form on P. Since P contains time trans­
lations, the Hamiltonians of all free particles of spin 
j are identical. This leads to some confusion in re­
gards to their masses. There has already been some 
confusion in this regard as the Hamiltonians for sys­
tems using 80 0 (1,4) fail to have a minimum eigenvalue. 
If one insists the positional observables be preserved, 
then we show it is possible to find all particles of spin 
j once at least one is known from each physical equiva­
lence class. In this case, however, there are many 
more free particles, and one can question their signi­
ficance. 

Our eventual goal will be to list the representations 
describing free particle systems having symmetries 
80 0 (1,4). We have reduced it to finding the extensions 
of certain representations of P to the whole group 
80 0 (1,4). We decided to use SOo(1, 4) rather than 
SOo(3, 2) for the former's global theory is better under­
stood. Eventually we hope to look at similar problems 
for 80 0 (3,2). 

There are several papers dealing with elementary 
particles in spaces of constant curvature. We mention 
those of Hannabus and Fronsdal. Hannabus has looked 
at the same problem we have and has claimed to have 
obtained all the real mass representations; see Ref. 1. 
The results here show there may be some question as 
to the meaning of real mass representations. Fronsdal 
has worked extensively in both positively and negatively 
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curved Minkowski space, using 80(3,2) as the invari­
ance group. He however has studied elementary parti­
cles by analysing the differential operators of the 
group. For more details see Ref. 2. 

We have included an appendix defining projective rep­
resentations, induced representations, projection val­
ued measures, and central projections for those who 
may be unfamiliar with these concepts. 

1. IMAGINARY lOBACHEVSKY SPACE, ITS 
INTERPRETATION AS SPACE-TIME, AND THE 
SYMMETRY GROUP SOo (1,4) 

Imaginary Lobachevsky space is the four-dimensional 
manifold M obtained by identifying antipodal pOints in 
the submanifold x~ -x; -x~ -x~ -x~= -1 of R5. The 
pseudometric ](2(dxg - dx; - dx~ - dx~ - dx~) turns Minto 
a pseudo-Riemannian manifold with positive curvature 
](2. This manifold is a space-time model for an infi­
nite, expanding universe in general relativity; it is one 
of a collection of models known as De Sitter spaces. 
80 0 (1, 4), the component of the identity of the real 5 by 
5 matrices preserving the quadratic form x~ -x; -x~ 
-x; -x~, acts isometrically and transitively on the 
manifold M. It will be used as the symmetry group for 
quantum mechanical systems in M. 

Absolute time in M is defined by t (x) = In 1 x ° + xli 
where x=±(XO,Xl1X2,X3,X4)EM. For t> _00, M(t)={x 
E M:t(x) = t}={(sinht+iet Ip 1

2, cosht - iet Ip 1
2, etp ):p E R3} 

is 3-space at time t. This coordinatization of M(t) de­
fines a diffeomorphism of R 3 onto M t' It suggests de­
fining for each element p+R of the Euclidean group E3 
the linear transformation p + R of R 5 by 

(p+R)(xo,xl1 q)=«(1+i Ip 1
2 )xo+i Ip 12Xl 

+P'Rq, -ilpI2xo+(1-ilpI2)xl 

- p' Rq, (xo+x1)P+Rq). 

That each element p + R belongs to 80 0 (1, 4) is easily 
shown. Hence p+R is an isometry of M. It leaves each 
time-slice M(t) invariant, and the diffeomorphism be­
tween R3 and M(t) interwines rotation by R followed by 
translation by p withP+R. In particular (Pl +R1 )(P2 
+R2)=p 1 +RJJ2+ R 1R 2' Hence E 3={P+R:P E R 3

, R 
E 80(3)}; the Euclidean group, is contained in SOo(1, 4). 

Time translation which we denote by (/, t) or some-
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times just by t is the hyperbolic rotation (xa,xl,p) 
...... (xo cosht+XI sinht ,xa sinht+x1cosht,p ) where p E R3. 
Clearly (I,t)E80 0 (1,4) and (I,t)·M(s)=M(t+s). 

The following identities are easily established: 

(i) (I,t)R=R(I,t) for tER, RE80(3), 

(ii) (I,t)(p+I)= (e-tp+I)(I,t). 

Hence the subgroup P of 80 0 (1,4) generated by E3 
and time translations is the group consisting of the 
products (p+R)(I,t) pER3, RE80(3), and tER. We 
denote the element (p+R)(I,t) of 80 0 (1,4) by (p+R,t). 
By (i) and (ii) one sees (p + R, t)(q + Q, s) = (p + e-tRq 
+RQ,t+s). This defines multiplication inP. P is a 
closed seven-dimensional analytic subgroup of 
80 0 (1,4). 

2. FREE PARTICLE SYSTEMS IN M 

The states of a quantum mechanical system are the 
one-dimensional subspaces of a complex Hilbert space 
H; the observables are the self-adjoint operators, and 
more specifically the questions are the observables 
given by orthogonal projections. Invariance of physical 
laws under space-time symmetries is reflected in the 
existence of a projective unitary representation U of 
80 0 (1,4). Two quantum mechanical systems (UUHI ) and 
(U 2' H 2) are physically equivalent if there is a unitary 
map V from HI onto H 2 with VU I (x) = U 2(x)V for x in 
80 0 (1,4). The equivalence class obtained is a quantum 
mechanical physical system. 

If U is to describe a free particle, to each Borel sub­
set E of R3, there is a projection PE; it is the question: 
Is the particle in E? The map E - P E is a projection­
valued measure. Furthermore, U and P are related by 
the following: 

(i) Uq+RPEU;!R=P(q+R)E' 

(ii) If A is a bounded operator on H and AU P+R = U p+RA, 

APE = PeA for allp,R and E, thenA=cI, where c is a 
scalar, 

The probability the particle lies in set E when the 
system is in state qJ is (P E qJ,qJ)/lIqJI1 2

• Condition (i) re­
flects invariance of this probability under changes of 
coordinates while condition (ii) states that the pair 
(U I E

3
'P) is irreducible. Essentially this means that 

there are not two or more noninteracting particles ap­
pearing as a one-particle system. Using (i) and (ii) to 
describe free particles was developed by Wightman in 
Ref. 3. 

Let (U I , pI) and (U 2 , P 2) be two pairs satisfying (i) and 
(ii) above. They are said to be equivalent if there is a 
unitary map V from HI onto H 2 with VU~ = U~V for x 

(=-80 0 (1,4) and VP1=P~V for Borel subsets E inR 3. 
Equivalence classes under this equivalence are the 
distinct free particles in M. In this equivalence, the 
positional observables are preserved. Physical equi­
valence defines an equivalence relation on free parti­
cles. The equivalence classes under this equivalence 
are the free particle physical systems alluded to earli­
er. 
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3. RESTRICTIONS OF SOo (1,4) COCYCLES TO P 
Let U be a Borel projective unitary representation of 

80 0 (1,4) with cocycle a. Hence Uxy::a(x y)UxUv where 
la(x,y)1 =1 and a is Borel. By Th~orem'5.5, p:34 of 
Ref. 4, a may be assumed to be locally trivial that is 
a(x ,y) = 1 for all x, y in a neighborhood of the identity ~f 
80 0 (1,4). 

To analyze a further, a concrete realization of the 
universal covering group P of P is given. It is well 
known that 8U(2)""S3 is simply connected and is a 2-
covering of SO(3). Let qJ : 8U(2) - 80(3) be the covering 
map. KerqJ={±I}, the center of 8U(2). 8et P=R3 

x8U(2)xR. Define cJ5:P-Pby cp(P,u,t)=(P+qJ(u),t). 
Multiplication in P is given by (p, u, t)(p' ,u ' ,t') = (p 
+ e- tqJ(U)p' ,uu' ,t+ t'). (P, cP) is the universal covering 
group of P. It is a 2-3overing of P and KercP={(O, 
±I,O)}, the center of P. 

Let B be a Borel cross section of 8U(2)/{±I}, B may 
be taken so that B contains a neighborhood of the iden­
tity of I. Let y = qJ IB -1. Define a cocycle T on P by 

T«PI +R I ,tl)' (P2+ R 2,t2» 

_ \ 1 if y(R 1 )y(R 2 ) E B, 
- '1-1 if y(R

I
)Y(R 2)/ B. 

T is locally trivial for B is a neighborhood of the iden­
tity I in 8U(2). 

Proposition: Let a be a locally trivial Borel cocycle 
on P. Then there is a Borel coboundary (3 on P such 
that either f3(x, y )a(x ,y) = T(X, y) on P x P or f3(x ,y )a(x ,:v) 
= Ion PxP. 

Remark: (3 is Borel coboundary if there is a Borel 
function b : P - C, I b(x) 1 = 1 for allx, and (3(x, y) 
= b(x ,y)b(x)b(:v). 

Proof: Let U be an irreducible a representation of 
P. Choose a neighborhood N of 1 in P such that cP 1 N is 
a homomorphism and a 1 \'>(N»(,,(N) = 1. Define U x = U ~(x) 
for x EN. U is a local homomorphism of j5 and hence 
has an extension to P. 8ince U is irreducible, U is ir­
reducible. If HI is the Hilbert space for U and 1T is the 
canonical map of the unitary group U (H) of H onto the 
projective unitary group U .(H) = U(H)/{cI: 1 c 1 = I}, one 
has 1T(Ux )= U 0"(x) for all x. 8ince -0 and U are both 
strongly Borel, there exists a Borel function b on P 
with Ibl =1 and Ux=b(x)U;(X)' 

Let B = R3 X B x R. B is a Borel cross section for 
p/Ker 0"' LetY=(c;iilii)"l. Hence Uy=b(y(y»Uy(y) fory 
'=-1'. 8ince KercP={(O, ±I,O)}={±I} belongs to the center 
of P and "0 is irreducible, -0_1 = ±I. Now UYIY2 
:: a(Yl'Y2)UYIUY2' Hence 

a( Y1 , Y2)b(y( yl»b(y( Y2» -0 y(yJJY(Y2)= b(Y( Y1Y2»"O Y(YIY2)' 

Hence 

= UY(YlY 2)Y(Y2)-IY(Yl )-1 

_ \ U I ifY(Y I YY(:V 2)c:B 
-I U -1 if Y()'t>Y(:v 2 ) ri 13 . 
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Hence b(y(yly 2»b(Y(Yl»b(y(y 2»a(Yl 'Y2)= 1 if 0_1=1 
while b(Y(YlY2»b(y( y l »b(Y(Y2»= T( Yl , Y2) if 0_1 = -1. 
Q.E.D. 

4. LOCALIZABLE REPRESENTATIONS 

In Ref. 3 Wightmann calls pairs (U, P) which satisfy 
(i) and (ii) of Sec. II localizable. By using Mackey's 
imprimitivity theorem he showed U I E3 is induced from 
an irreducible cocycle representation of SO(3) and P is 
the canonical projection-valued measure associated 
with the induction. 

Let us assume (U ,P) satisfies (i) and (ii) of Sec. II. 
By Sec. III we may assume the cocycle a is either 1 or 
T. By (0 and (ii) (U I E

3
, P) form an irreducible system 

of imprimitivity for the action (p + R)' x = P + Rx. Since 
this action is transitive, one may apply the foremen­
tioned imprimitivity theorem, p. 291 of Ref. 5. It 
yields an irreducible a representation L of the stabi­
lizer SO(3) of the point 0 and a unitary map V from H to 
L 2(R3,HL ) such that VUp+RV-l = (ind!i(3)L)P+R and 
(VP E V-l)f=XE 'f where XE is the characteristic function 
of E. But the irreducible projective representations of 
SO(3) are known to be parametrized by nonnegative 
half-integers j. The representation DJ of SO(3) corre­
sponding to j operates on the finite dimensional space 
C2J+l; it has cocycle a= 1 whenj is an integer and cocy­
cle a=T whenj is a half-integer. Hence in the case when 
when L =DJ one has (indL )p+.zJ(x) = Dkf(Wl (x - p ». j is 
called the spin of the localizable system. 

Proposition: Let U be a a representation of SO 0(1, 4). 
Let P be a projection-valued measure defined on the 
Borel subsets of R3. Assume the pair (U ,P) satisfies 
(i) and (ii) of Sec. II. Then there is a nonnegative half­
integer j and a unitary operator V from H to 
L 2(R 3, C2i+l) such that VU p+R V-If (x) = Dk!(Kl (x - p» and 
VPEV-lf=xEf. 

Furthermore V is unique up to a scalar of modulus 1. 

Proof: All that remains to be shown is the uniqueness 
of V. Assume W:H_L2(R3,C 2M) is unitary and 
WU P+R WI = VU p+R V-I, WP EW"l = VP E V-I. Then 
V- l W commutes both with U I E3 and P. By (ii) V-I W 
,.=c1 where lei = 1. Q.E.D. 

E . -
5. EXTENSIONS OF INDSO'(3)D' TOP 

Our goal will be to show that for each representation 
ind!5(3)DJ there is, up to unitary equivalence, one and 
only one extension to P. 

Theorem: Let U be a projective unitary representa­
tion of P with cocycle a"" 1 or a = T. Assume (U p+.zJ)( x) 
=Dk!(R-l(x -p» for fc:L 2(R\C2J+l ). Then there is a 
unitary map V of L2(R3,C2J+l) such that VU(P+R,t)V-1f(x) 
= exp(3/2t)Dk!(etR"1(x - p». 

Proof: a is locally trivial. Hence by the same argu­
ment as in Sec. III, there is an ordinary representation 
U of P such that Ox= U ~(:<) in a neighborhood of the iden­
tity. Since aI OO (3»(OO(3) is locally trivial one also can 
obtain an ordinary representation jji of SU(2) with jj~ 
=D~(u) for u near the identity.:. O(P,u,o/(x) 
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=~~f(q;(U)-l(X -p)) for (p,u) near (0,1).:. U(p,u ,o/(x) 
= D~f(q;(u )-l(X - p» for all p E R3, U E SU(2). 

Let F be the Fourier transform of L 2(R 3 , C2J+l). 

:. Ff (x) = IR3 e-2v l:<' Yf( y)dy when f E V (R \ C2J+l) 

n L2(R3, C2J+1). Then FU,p,u, 0)F-1f(x) = e-2rix,pjjU( q;(U)"lX). 

Let W(P,u, t) =FO(p, u,t)F-l. Then W(O,I, t) W(P,I,O) W(~,I, t) 
= W(O,I, t )(P,I, 0)(0,1, -t) = Vl{e-tp, I, 0)' Define for each t the 
unitary operator Ht of L 2(R3,C2J+1) by Htf(x) 
:: e-3t !2f( e-tx). Again Ht W(p,I,O)H_ t = W(e-tp,I,O)' 
:. H~IW(o,I,t) commutes with W(P,I.O) for allpER 3

• 

Consider the projection-valued measure P defined on 
R 3 by P Ef = XEf. One knows these projections are the 
central projections in the commuting ring of Wi R3; see 
p. 18 of Ref. 6. Hence H;tW(O,I,nPE=PEHiIW(O,I,t). 
Therefore, W(o.l,tj>EW(~,I,t)::H?EH?::PetE' Define a 
left action of P on R3 by (p,u,t)'x::etq;(u)x. Then 
W ~ E W;l :: P X' E for all x inP. Since the action is transitive 
onR3/{0}, the pair (W,P) forms a transitive system ofim­
primitivity. By Mackey's imprimitivity theorem, there 
is a unitary representationL of dimension 2j + 1 for the 
stabilizer subgroupH of (1, 0, 0) and a urrltary equivalence 
S onL2(R3, C2J+1) such that S WxS-l :: (indtL)x and SPeS-l ::PE ' 

Here we have used the natural identification of P /H 
and R3/{0}. Clearly H ={(p, 11,0) : q;(u)(I, 0, 0)= I}. Let 
T = {u c: SU(2) : q;(u)' (1,0,0):: (1,0, O)}. Let B be a Borel 
cross section of the left coset space SU(2)/T. Define 
Y:R 3/{0}_p by y(x)::(O,a(x), lnlxl) where a(x) is the 
unique element in B such that q;(a(x»(1, 0, O)=x/lx I. 
Then (indL )(P,U, t)f (x) =e-3!2f£y(x)_1(p, u, t )Y(e-t w (u)-lx) 
X f (e - t q;(u )-lX). But y(x):: (0, a(x), In I x I), y(e-tq;(u )-lX) 

:: (0, a(q;(u)"lx), - t+ In Ix I). Hence y(x ,-l(p, u, t) 
x y(e-tq;(u )"lX):: (Ix I q;(a (X)t1p, a-1(x )ua(q;(u )"lX), 0). 

Since SPeS-I=P E for all Borel sets E inR3
, there is 

a Borel, unitary matrix-valued functionx ..... S(x) such 
that (Sf)(x)::S(x)f(x); see Theorem P6, p. 92 of Ref. 6. 

:. SW(P,I,O)S-Y(X) = e-2rix'Pf(x) 

:: L <lxl w(",(x»-Ip,nf (x). 

Hence e-2lrix
'
P::L<lxIW(Odx»-lP,I,O) a.e. x. Since both are 

continuous, they are equal everywhere. But 
exp( -21Tix • p):: exp[ -21Ti(x /Ix I)' Ix Ip]:: exp[ -21Ti(1, 0, 0) 
'lxlq;(a(x»"lp]. Hence L(P,I,0)=e-2ritl ,O,O)'p. 

Since SW(O, u,O) S-lf (x) = S(x)D;S(q;(u )"lX)"l f(p(u )-IX) 

::L(O,o<-l(X)uodw(u)-IX»f(q;(U)-lX), one has S(x)D~(q;(U)-lX)"l 
:: L(O,,,,-l(x)uO«W(U)-lx» a.e. x for each 11 E SU(2). Choose 
x o* 0 such that 

M={u c: SU(2) :S(xo)jj~S(q;(u)"lxr1 

:: L (0, 0< -1 (,-o)u", (W (U)-l xO»} 

is conull in SU(2). Let T o={u E SU(2): q;(u)xo=xo}. Let 
uoC: To. Since Mis conull there exists au E SU(2) such 
that U;lU and u both belong to M. 

:. S(x o)jj~S( cp(u )"lX 0)"1:: L(o, ",-l(,-o)u", (~(M)-lxo» 

and 

S(Xo)jj~_I~(q;(u)"lxor1=L(o o<-l(x )u -lu",(w(u)-lx »' o ' 0 0 0 

:.S(xo)jj~ S(xo)-l::L,o ",-l(x ). ",(x» o ' 0 0 0 

:. s (x0)i5~ ("o)D~(XO)-lUO"'(XO) (S(x o)D~ (xo»"l :: L(o, 0«"0 )-luO'" ("0»' 
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But a (xot1T oa (x o)= T. Hence S(Xo)D~u< )D~(S(xo)D~b »-1 
o 0 

=L(D,U) for U E T. 

Consider the unitary map R of L2(R3, C2J+l) defined by 
(Rf)(x)=15!(x)a(:r )-lS(Xory(x). Since 

° 
jj a (:ro)-lS (X o,-lL (p, .)S(x 0)15 ,,(xo) 

:::e-2~iP'(1,O,O)ii~ forpER3 , uET, 

one has 

R ( indL )(1), u, oW1f (x) 

::: exp( -3/2t)15~(x)15~(\xo)'lS(xot1 

x L (Ix I", (a (x) )-11>, ",-1 u< )U"'( '" (. )-l x » 

X S(xo)D~(%o)D~("(U)-lX)-lf(e-t cp(U)-lX) 

::: exp(-3/2t) exp[ -27Ti(1, 0,0)' IX I cp(X)-lp 1 
- i - J 

D ",(x)D", (x)-l .. a C", (u)-lx ) 

X jj~ ('" (U)-l x)-t/(e-'cp (u )-lX) 

== exp( -3/2t)e-2• ix' PDU(e-tcp(u )"lX). 

Hence 

X D!7f(e-1 cp (u )"1), )dy 

== exp(3/2t)15! 

X f exp[27Tietcp(uf1(X - p). y 1Ff (y )dy 

::: exp(3/2t)15~f(etcp(u )-l(X - P ». 
But D x= U ~(x) for x near 1 and jjt= D~(u) for 11 near I. 
Hence if V=r1RSF, VU~(P,u,t)V-Y(x)==exp(3/2t) 
X D!(II)f(etcp(u)-I(x -p». 

:. vu (p+R.tl V-If (x) = exp(3/2t)DkJ(elR"1(x - p)) for (p 
+ R, t) near (1,0). Since both sides are (J representa­
tions, equality holds for all (p+R,t). Q.E.D. 

6. FREE PARTICLES AND FREE PARTICLE 
PHYSICAL SYSTEMS IN M. 

From the theorem in Sec. V, one sees that every 
equivalence class defining a free particle physical sys­
tem of spin j contains a (J representation U on 
L 2(R3, C2i+1) such that U(P+R,t)f~"()= e3t/2D1,f(etR-1(x 

-p)). Hence U is determined on the group Ii. As P 
contains time translations U t, the free Hamiltonian 
may be calculated. It depends only on the spin j and 
the inherent geometry of Ai. Other information must 
then be determined from the behavior of U on the re­
maining part of SOo(1,4). Some examples of free par­
ticle physical systems are given by Hannubus in Ref. 1. 
They are those described by the principal unitary ser­
iesN"',j, J.l2:0,j=0,t,··' ofSO o(1,4)o They are de­
find on Ii by N"',j (P+R, of (x) = e 3t /2 e -;j.4tD1,f(etW I(x - p». 
Hannubus, by comparing with the Poincare group, con­
cluded J.l is the mass of the free particle. 

Free particles in 1'v1 are equivalence classes of pairs 
(U ,P) which satisfy (i) and (ii) of Sec. II. Equivalent 
pairs define the same free particle physical system. 
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Here we shall work with the COnverse problem. Given 
a free particle physical system F S' determine all the 
free particles which define F s' 

Hence let F s be a free particle physical system of 
spin j. Choose a representation U in F s such that 
U (P+R, tlf (x)= e3t/2Dkf(etR-1(x - p» for fin L 2(R3, C2i+l). 
Let P be the projection valued measure defined by P E 

= XEf. Let U (UXUe(u» be the group of unitary inter­
wining operators for U on SO 0(1 ,4) (on E 3 ). Clearly 
U (U) c Ue(U). Let Q (U) be the left quotient space Ue(U)/ 
U( V). For x E:: Q(V) consider the pair (XV ,P) where XVg 
= WV g W-1 , Wc:x. 

The pair (XV ,P) certainly satisfies (i) and (ii) and 
hence determines a free particle. 

Theorem: Any pair (V, Q) defining the free particle 
physical system F s is equivalentto (XV ,P) for some uni­
que x, In particular the (XV, P) are pairwise nonequiva­
lent. 

PYoof: Since (V, Q) defines F S' V is unitarily equiva­
lent to V, Hence we may assume V = V 0 By the propo­
sition of Sec. IV, there is a unitary operator T of 
L 2(R\C 2i+1) such that T-1Vp+RTf (x) = Dkf(R"l(X -p» 
=Up+Rf(x) and TQET1==pE. Hence TcUe(U) and if 
x=TU(V), (U,Q) is equivalent to (:rV,P). To show x is 
unique assume (XV,P) is equivalent to (YV,P). Since 
xV I E"'YV IE= U I E and (V,P) satisfies (ii) of Sec. II, YU 
= xV by the proposition of Sec. IV. :. y =x. Q.E .D. 

If F s is irreducible, one sees the defining free parti­
cles are in one-to-one correspondence with the unitary 
intertwining group for ind~(3)Dj. 

Proposition: If V is unitary and V intertwines 
in~(3)DJ, then V=F-1MF where F is the Fourier 
transform and (Alf)(x)::M(x)f(x), /1'1 being a Borel, 
unitary matrix-valued function satisfying M(Rx) 
::D1,M(x)Dr

1
. Such functions AI are in one-to-one cor­

respondence with the Borel, diagonal, unitary matrix­
valued functions on the nonnegative real line. 

Proof: Let V=FindDir1. Then (Vp+Rf)(x) 
:= e-2.ix·PD~f(R-lx). Now FVF-I commutes with U I R3. 

Hence it commutes with the central projections P E 

wherePEf==XE'f. Hence FVr1=M where Mf=m(x)f(x) 
and x t- /11 (x) is a Borel, unitary matrix-valued func­
tion; see p. 92 of Ref. 6. Since URM=MVR, D~m(R-1x) 
= /Il(x)D~ a.e. x for each R. Therefore, m(Rx) 
= Dk III (x) Dk-1 a.e. R for almost all x. Let J.l be the 
Haar measure on SO(3), I J.li :: 1. Then M(x) 
:: JDk-1m(RX)D1,dJ.l(R) is a Borel, unitary matrix­
valued function; M(Rx) = D1,M(x)D1,"l, and AI", 111 a.e. 
Hence V=F-1MF. 

If M(Rx)==DkM(x)Dh-l, 1H(x, 0, O),x> 0 belongs to the 
commuting ring of Di, T; T={R :R(l, 0, 0)= (1,0, O)}. 

T is commutative and Di I T is a diagonal direct sum of 
distinct characters of T; see Ref. 7, Chapter 2. Hence 
M(x, 0, 0) is diagonal. Q.E.D. 

Consider a representation U of SO o( 1, 4) with 
V(p+R,t)f(x)=:e 3t /2Dkf(e tR-1(x -p». LetPEf=XEf. Set 
V=r1MF where Mf(x}= Ix I i '"f (x). A straightforward 
calculation shows VV(p+R, I) V-1f(x) = e3t f:2e 1j.4t Dk 
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x/(e tR-1(x -p». Hence V does not commute with U on 
SOo(l, 4). Therefore, (U,P) and (VUV-1,P) define dis­
tinct free particles in M, however they define the same 
physical systems. What the mass is for such a system 
is not clear. 

CONCLUSION 

To find the free particles of spin j in imaginary Lo­
bachevsky space, it suffices to find all the projective 
unitary representations of SOo(1, 4) whose restriction 
to J5 have form U lP+R.n/(x) = e3t/2D/d(etR-l(x -p». 
Having these will determine all free particle physical 
systems of spin j, and if one desires the positional ob­
servables be preserved, all free particle systems. 

APPENDIX 

Let e be locally compact, separable groupo A pro­
jective unitary representation of e is a map U : e 
- U (H) where H is a Hilbert space and U (H) is the group 
of unitary operators on H such that U .=1, U Xl' 

"'a(x,:~)UxUy, andx-(UiP,IP) is Borel measurable for 
all cp, if! c H. U is a unitary representation provided a 
:= 1. a is called the cocycle of U. 

Let K be a closed subgroup of e. Then elK, the 
left cosets of K in e, form a left Borel e-space. In­
deed, let 7T : e - e /K be the map 7T(g) = gK. Then the 
smallest a algebra on e /K making 7T Borel makes the 
map x ,gK -xgK Borel. Let a be a Borel cocycle on e. 
Let L be a projective representation on K with cocycle 
(J. There is a measure }J. on e /K such that for each 
gEe there is a Borel function Pg > 0 on e /K such that 
}J.(g-IE)::: fEPg(xK)d}J.(gK). There is also a Borel map 
y: e/K - e such that 1T{y(gK»:::gK. A map with this 
property is called a Borel cross section. In specific 
cases both }J. and y may be determined from the struc­
ture of e and K. We now define ind~L. Let H be the 
Hilbert space for L. Then the Hilbert space HL for indL 
is HL ={I II: e /K - H ,xK -(I (xK), cp) is Borel for all cp, 
and fll!(xK)1I 2d}J.(xK)< co}. For gc e, (ind~L)(g)/(xK) 

2091 J. Math. Phys., Vol. 18, No. 11, November 1977 

= p.r(XK)1/2a(y(xK), y(xK»a(y(xK)" 1 ,g)a(y(xK)"lg, y(g-lxK» 

X L.,b:K l-l.rr(g-lxK II (g-lxK). The term involving P, is the 
weight necessary to make the operator unitary, the terms 
involving (J and the fact that L is a (J representation 
force indL to be a (J representation. 

A projection valued measure on e /K is a map E 
- peE) from the Borel subsets E of e /K to the ortho­
gonal projections on a Hilbert space H such that P(~) 
=0, p(e/K):::I; p(EnF)=p(E)P(F); andP(U~=lE,) 
=L;;'lP(E,) if E, nEJ =0foriofoj. Thecanonicalprojec­
Hon-valued measure associated with ind~L is the pro­
jection-valued measure defined on e/K by (P(E)f}(xK) 
= XE(xK)1 (xK) for IE HL where XE(xK) is 1 or ° accord­
ing to whether or not xK is in E. 

A central projection for a representation U is an 
orthogonal projection which commutes with all the 
bounded operators commuting with U. 

For more information concerning group representa­
tions and particularly induced representations, we men. 
tion Refs. 5, 6, 8, 9, and 10. 
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In the present paper some investigations have been made on the model suggested by Ray for a tachyon 
dust universe and the results obtained have been compared with the results in the flat Friedmann universe 
filled with ordinary dust (here called bradyon dust) moving slower than light, by various scientists, on the 
ground that the role played by time for ordinary matter is played by spatial coordinates for tachyons. The 
effect of the cosmological constant (A) on the expanding tachyon universe also has been discussed here. 
The tetrad technique has been used as a mathematical tool for handling the problems of gravitational field 
equations and perturbation of momentum flux. 

1. INTRODUCTION 

A. Background 

Many surprising astronomical discoveries have been 
made during the past several years, Many unusual 
physical phenomena happened in the universe that were 
guessed previously by theory and these phenomena 
have been explained by putting the general theory of 
relativity into service. For instance, the expansion of 
the universe neutron stars, 3 OK microwave background 
radiation, cosmic rays, pulsars, supernovae, quasars, 
and exploding galactic nuclei are some examples. It is 
with this background that we turn to a study of tachyon 
cosmologies. It is possible that the universe with all its 
diversity actually contains tachyonic matter as an im­
portant constituent 

In the present paper, we start with the spacelike 
line element proposed by Ray! which is based on Petrov 
classification2 of gravitational fields by the symmetry 
of the space-time, regardless of the weak point that it 
allows dust solutions only. The energy-momentum 
tensor for dust is given by Tij = PItjIt j where P is the 
momentum-flux of the tachyon dust and Iti the 4-
velocity. For bradyons, p is the energy denSity. 

In Sec. 1 B we give a brief note on comparison of the 
tachyons with ordinary matter, called bradyons here. 
In Sec. 1 C we describe the tetrad notation used in the 
paper which has been earlier used by Srivastava and 
Pathak. 3 

In Sec. 2, which is composed of four subsections, we 
deal with the theory. In Sec, 2A we derive tetrad field 
equations and their solutions for tachyon dust. In Sec. 
2 B we report the results obtained by Johri et al. in the 
flat Friedmann universe filled with dust like bradyons 
for the sake of comparison with our model. In Sec. 2 C 
we apply perturbation theory on those field equations. 
In the succeeding section also we report the results ob­
tained for flat Friedmann universe after a slight pertur­
bation for the same purpose. 

In the concluding section we discuss the results ob­
tained in the theory section. Here I have stressed the 
similarity between a tachyon dust universe and a flat 
Friedmann universe filled with bradyon dust. 

2092 Journal of Mathematical Physics, Vol. 18, No. 11. November 1977 

B. A brief account on comparison of tachyons and 
bradyons 

For our purpose let us choose a particular inertial 
frame so. The light speed c owing to its invariant char­
acter allows an exhaustive partition of frames fE {I} in 
two subclasses Is}, {s} of frames having speeds It < C 

and U> c relative to so, respectively. For Simplicity in 
the following we consider ourselves as "the observer 
so." Frames s E. Is} will be called subluminal and frames 
s E. {S} superluminaL The relative speed of two frames 
sb S2 (or Sj, S2) will always be smaller than c and the 
relative speed of two frames Is}, Is} will always be 
greater than c. The important point is that the above 
exhaustive partition is invariant when So is made to vary 
inside {s} (or inside {S}). On the contrary, when we pass 
from So E. {s} to a frame So E. IS}, the subclasses {s}, {S} 
are interchanged one with other. One confusion may 
arise here on the phYSical ground, "how can an ob­
server pass from subclass {s} to subclass {S}." We do 
not actually mean that an observer of class {s} goes 
to class Is}, but we mean that when we consider the 
observer of the class Is} and afterwards the observer 
of class Is}, both are not the same observers. 

Further it is well known that the linear transforma­
tions L, making the transition between two inertial 
frames fl,.{2 must be such that 

X02_X'2=± (x5- X2 ) 

for every 4-vector X= (xo,x) where x means either 4-
pOSition or 4-momentum or 4-velocity or 4-current 
density and so on. In particular 

c2t'2 _ x:2 = ±(C2t2 - :e) 

or 

c2t'2 + (iX,)2 = ±(c2t2 + (iX)2). 

For the phYSical validity it follows that objects must 
exist, which are at rest relative to S and tachyons 
relative to frames s. From the further fact that luxons 
I show the same velocity to any observer s or S it can 
be deduced that a bradyon relative to an S, B (S) will be 
a tachyon relative to any s, T(s) and vice versa, 4 

B(S) = T(s), T(S) =B(s), lis) =1(S). 

Now it is concluded that when frames s, S observe 
the same event "timelike" vectors transform into 
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spacelike vectors and vice versa in going from s to S 
or from S to s. That is to say that the role of space­
like coordinates and timelike coordinates are inter­
changed while considering tachyons and bradyons. What­
ever role the time coordinate plays for bradyons is in­
terchanged with spatial coordinates for tachyons, and 
vice versa. 

C. Notation 

In this paper, space-time is represented as a four­
dimensional Riemannian space with metric tensor giJ 
of signature (+, +, +, -). Covariant differentiation is 
indicated by a semicolon (;) and covariant differentiation 
along the lines (xl, x2, t), constant t, is indicated by a 
prime over the variable, i. e., prime denotes a/ax3

• 

Round brackets around the indices indicate symmetriza­
tion and square brackets antisymmetrization. Here we 
have taken 81TG = c4 = 1. 

The Einstein's field equations for dust filled cosmo­
logical models are 

(1. 1) 

where ua are the spacelike 4-velocities for the tachyon 
fluid so that uaua = 1. 

The acceleration of the fluid is 

lij=Ui;jUJ , where the dot denotes a/at. (1. 2) 

The velocity gradient may be further split up as 

where 8=Uti is the expansion scalar. Uij=U(i;j) 

+ U:jUj) - t8HiJ is the trace-free shear tensor. WiJ 
= Ui;j + UjUj is the vorticity tensor, Here H jj is a ten­
sor which projects a quantity from x 3 = constant to 
(xl, x2, t) = const defined by 

or (L 3) 

Here giJ and Ui have their previous meaning. 

The Ricci rotation coefficients are defined by 

so that 

rabe + reba = O. 

Here ca are four orthonormal vectors hereafter called 
tetrads of vectors which do not, in general, always re­
main the same. 

The Lie derivative of c~ with respect to ca is 

(ca , c b) = Y~bCe, Y~b= nab]' 

It follows that Y~b and r~b are linearly dependent, 

Y;b = r~b - rg", 

rabe= t(Yabc + Ycab- Ybca)' 

Now the Einstein field equation (1.1) can be written 
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down in the tetrad form as 

Rbd = a4r~b- aer~b- r~gI1b + r~br;d 

= - (A - p/2)Hbd - (A + p/2)UbUd• (1. 4) 

The antisymmetry property of the curvature tensor is 
equivalent to the Jacobi identity 

The tetrads are so chosen that the spacelike vector 
C3 is the tachyon fluid flow vector U3 so that 

ua = 03, Ua = o~. 

(1. 5) 

In a cosmological model filled with pressure-free 
tachyon fluid, the lines of flow are spacelike geodesics 
and the contracted Bianchi identities are 

(1.6) 

Suppose the perturbation of the model results in the 
formation of momentum flux p + op so that the ratio of 
increase in momentum flux to the model, the contrast 
momentum flux for tachyons is K = op/ p, the contrast 
energy density for bradyons is fl = op/ p, and the rela­
tive expansion in this region is - 08. 

Perturbation of (1. 6) gives 

(1.7) 

Therefore, 

a
3
(oP) = a3(Op) _ op p' = _ 08. 

D P p2 (1. 8) 

This gives the ratio of growth of K with respect to x 3 in 
the condensation. 

2. THEORY 
A. Momentum flux of the tachyon dust universe 

Let us conSider the metric1 

ds2 =A2 (dX1)2 + C2 exp[x1 ](dx 2)2 

+ (dx 3)2 _ C2exp[x1 ] (dx 4)2 (2.1) 

as the metric for the background model. 

The nonvanishing tetrad components corresponding 
to the components of the fundamental tensor in the line 
element (2.1) are given by 

(cDt:o = 1/ A, 

(c~)t=o = (ef)l=o = ~ exp [_ x;]. 
The components of 110 are given as 

[8dl=o =- Y!31 =A'/A, 

[82J/=0 = - 1.32 = c'lc, 
[84]tao =- Y~34= C'/C, 

and other components of ~be vanish. 

(2.2) 

(2.3) 

(2.4) 

The tetrad field equations (1. 4) for the tachyon dust 
model are 

D8t + 8t (8 t + 82 + 84) = - A + p/2, 

D82 + 82 (81 + 82 + 84)=-A+p/2, 

D(81 + 82 + 84) + (ej + 8~ + 8~) = - A - p/2, 
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D64 + 64(6 j + 62 + (4) =-11. + p/2. 

Here D=a/ax3• 

Computing the components Tj3 and T3t of the energy­
momentum tensor for this model with the help of (1.1), 
we find that 

Tt3 = T3j = ~ (-~ - ~/) = 0, 

from which it immediately follows that 

A =C, apart from a constant. (2. 6) 

Now (2.2), (2.3), (2.4), and (2.6) together yield 

[6dt=o=[62]t~o=[64]t=O=A'/A=6o (say). (2.7) 

Hence Eqs. (2, 5) and (2.7) give 

Dec + 3 6~ = - 11. + p/2, 

3D6o + 365 = - 1\ _ p/2. (2.8) 

These equations further yield 

2Deo+365=-II.. (2.9) 

Case I: when 1\ = 0 

In this case (2. 9) is reduced to 

2D60+3e5=0 (2,10) 

which is easily integrable, giving 

A = G(x 3)2/3 + E, 

where G and E are integration constants and 

This leads to the momentum flux variation relation for 
tachyons 

4 
p= 3(x 3)2 

in the background model. 

Case II: when 11. '* 0 

In this case the solution of Eq. (2. 9) is given by 

(2.12) 

A 3 / 2 = Y37A sinl/! and 60 = v'A73 cotl/!, (2.13) 

where 

tJ!= x
3V;X + Y). (2,14) 

Here I/! is the measure of x 3, the proper distance for 
tachyons playing the same role as the proper time fOI' 
bradyons. Y) is an integration constant. 

In this case we find by solving Eq. (2. 8) with the help 
of (2.13) that the momentum flux variation relation for 
the model is 

(2.15) 

B. Energy density variation relation for dustlike bradyons 
in the flat Friedmann universe 

Case I: when A = 0 

In this case the energy density p for the model is 
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given by5 

P = 4/3t2
• 

Case II: when 11. '* 0 

In this case p is given by6 

p = 11. cosech2 (';311./4)t. 

C. Perturbations of momentum flux in the proposed 
tachyon dust model 

(2.16) 

(2.17) 

Dust is characterized as pressure-free fluid hence we 
can take p = O. Moreover for the sake of Simplicity we c 
consider a, U' also vanishing. Hence Raychaudhuri's 
equation for tachyons, 3 

e' + te2 + 2(a2 - U'2) + i(ll- 3p) + 1\ = 0 
v ' 

where J.l is the total relativistic energy of matter mea­
sured by ua given by the relation J.l = p(l + E) where E is 
the specific internal momentum flux of the tachyon 
fluid, is reduced to 

6' + t e2 + ~p + 11. = 0, 

After a slight perturbation, we have from this equation 

de + 26oD6 + iDp = O. (2.19) 

Now with the help of (1. 8), (2.19) reduces to 

Case I: when 1\ = 0 

Equations (2.11), (2,12), and (2.20) yield 

D2K + 3 ~X3) DK - 3 (;3)2 K = 0 

which gives an integration 

K= Ej(X 3)2/3 + E 2(X 3)"j, 

where E j and E2 are constants. 

Case II. when 11. * 0 

(2.20) 

(2.21) 

In this case Eqs. (2,13), (2,15), and (2.20) imply 

D2K + 2Y7V3 cotl/!DK - (11./2) cosec21j!K = O. (2.22) 

Now changing the independent variable x 3 by Ij! through 
the transformation Ij! =x3vrsA/2 + D, we have Eq. (2.22) 
in the form 

d2K 4 dK 2 2 ---" + - cot,/,- - " cosec K = 0 dlj!" 3 'f dlj; 3 • 

On solving this equation we find two solutions 

K j =Ft cotlj! 

and 

K 2 =F2 cotlj!ji> sin2 / 3I/Jsec 2I/Jdlj!, 
a 

where 

Ij! > [3> O. 

(2.23) 

(2.24) 

(2.25) 

D. Energy density perturbation for bradyons in the flat 
Friedmann universe 

Case I: when 11. = 0 

Sushil K. Srivastava 2094 



                                                                                                                                    

In this case after slight perturbation of the energy 
density, contrast density M (= op/ p) obtained by solving 
the differential equation5 

as 

fi2M +..! dM _ 2M _ 
dt2 3t dt 3t2 - 0 

I1=B j fI3+Bzr 1• 

Case II: when A*-O 

(2,26) 

In this case after perturbation of Raychaudhuri's 
field equation7 the differential equation is obtained in 
the forms 

d2J.!. /4A)1 /2f (3A)1/2]dJ.!. 
-;jif + \3 Lcoth 4"" t dt 

Af f3A) 1/2] - 2" ~oSech2\4"" J J.!.:= 0, 

having its solution as 

111 = Fi cothr, 

M2 =F2 cothr IT sinh2/3 rsech2 rdr, 
> 

where r', y'" 0 and r=tV3i\/4, 

3. DISCUSSION 

Equation (2. 12) shows that, in the case of A vanish­
ing, as x 3 increases the momentum flux of the model 
decreases and also space- time is singular at x 3 = O. 
Applying a different method Ray has also derived a 
momentum flux variation relation for tachyons in this 
model when A = 0, which is given as p = (3/ 4B~) 
x (sintx 3)2 where Bo is a constant. This relation can be 
interpreted to mean that space-time has a singularity 
at x 3 =0 but for the maximum value of sintx3

, p=3/4B~ 
which is a constant and minimum value of p, while our 
result yields that p would be zero when x 3 tends to in­
finity, i. e., the minimum value of p would be zero, 
Now from the comparison of the two results we find that 
the idea of infinite distance for tachyons carries no 
physical meaning and it is reasonable for a particle 
moving with such a high velocity. The analogous result 
for bradyons is given by Eq. (2.16) where there is an 
interchange of x 3 into t, 

Equation (2. 15) implies that in the case of nonvanish­
ing A, momentum flux for tachyons decreases with the 
increase in I/J to its minimum value p = A which is in­
variant and also space- time is singular at I/J = O. The 
corresponding relation for bradyons is given by (2. 17) 
which is hyperbolic in nature showing a little difference 
between a tachyon dust universe and a bradyon dust 
universe. 

One thing more is notable here; the nature of the 
momentum flux relations for tachyons in the case of A 
vanishing and in the case of nonvanishing A is different. 
If physical considerations are not seriously taken, ac­
cording to the solution (2.12) the minimum value of p 
is zero in the first case while the minimum value of p 
is A in the second case. But near the singular point 
x 3 = 0, momentum flux becomes infinite in both cases. 
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This implies that A has its effects at larger scales only. 

To make the situation clearer, let us assume that the 
tachyons were created at or after a big bang along with 
many strange particles but they being superluminal 
soon went out of the boundary of bradyons due to repul­
sion between bradyons and tachyons, 4, 8, 9 where every 
physical phenomena is spacelike for a subluminal ob­
server. This caused the continuous decrease of the 
momentum flux for tachyons and this decrease con­
tinued up to a fixed value of p and vanished afterwards 
with the result of expansion of the tachyon universe. 

Another notable point here lies in the fact that A is 
more effective in the case of tachyons than in the case 
of bradyons. As it is evident from (2.16) and (2,17), up 
to the remote future the energy density of bradyons 
tends to zero in both cases (when A = 0 and when A*- 0) 
but in the case of tachyons it is not so. 

Let us further assume that there exists a region at 
some distance from the point source of tachyons where 
its momentum flux is p + op against p. Now for further 
discussion we first take up the simpler case (when A 
= 0), In this case we find that two relations for contrast 
momentum flux K (= op/p) for tachyons as K 1 - (x3)2/3 

and K2 - (x3t 1• K 1 - (x3)2/3 shows that condensation of 
tachyons increases algebrically as (X 3)2 / 3 with increase 
in x 3 which would create meta galaxies. But the solu­
tion K2 - (x 3r 1 shows that the contrast momentum flux 
decreases with increasing x 3 meaning thereby that no 
condensation among tachyons would take place, But this 
goes against the fact that tachyons attracts tachyons, 
Now the question arises, "How is it proved that tachyons 
attract tachyons?" For answering this question we 
would have to go back to velocity addition formulas in 
the special theory of relativity and from those formulas 
we find that a tachyonic observer observes a tachyon 
moving with a subluminal velocity, not with a super­
luminal velocity. Therefore, we are able to say that 
tachyons are subluminal with respect to tachyons and 
superluminal with respect to bradyons, This fact has 
also been stressed in Sec, 1 B. On this ground there is 
no harm in taking the idea that tachyons attract tachyons 
because classification of the fundamental particles 
bradyons, tachyons, and luxons is primarily based on 
velocity consideration. It can also be proved by some 
analytical methods as considering spacelike geodesics, 
etc. It is why we discard the solution K2 - (x 3t 1, The 
similar case happens for bradyons as it has been dis­
cussed by Johri5 through Eq. (2.28). 

In the case A*- 0, from solution (2,24) we find that 
when I/J - 0, K - 00 and when I/J -71/2, K - 0, and as I/J 
increases K decreases. It means that no condensation 
would occur, Hence this solution is also not of interest 
on the grounds mentioned above. But solution (2,25) 
follows in that, as I/J increases from a fixed value {3 > 0, 
K increases which means that condensation takes place 
resulting in the formation of meta galaxies in this case 
also. The cosmical constant A is found effective here 
also if we compare the results in the two cases (when 
A = 0 and when A*- 0). In the first case contrast momen­
tum flux of tachyon universe increases algebrically as 
(x3)2/3 which is faster than that in the second case where 
contrast momentum flux increases with the increase in 
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I/> (the measure of x 3). The parallel results also hold in 
the flat Friedmann universe filled with bradyon dust as 
it has been discussed by Pathak6 through solutions (2.27) 
and (2.28)0 

Thus from the above discussions we find that a 
tachyon dust universe also expands as a bradyon dust 
universe and there is the possibility of the formation 
of galaxies as there is for the bradyon universe. More­
over, it is also found here that the cosmical constant 
J\ has similar effects in the tachyon universe at larger 
scales but it is somewhere still more effective. 
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K matrix for the Woods-Saxon potential* 
B. Talukdar and M. N. Sinha Ray 

Department of Physics. Visva-Bharati University. Santiniketan 731235, West Bengal. India 
(Received 13 December 1976) 

The s-wave part of the off-shell K matrix elements for the Woods-Saxon potential has been obtained in 
terms of elementary transcendental functions by using the differential equation approach to off-shell 
scattering. 

The purpose of the present note is to obtain the s-wave 
part of the off-shell two-body K matrix for the Woods­
Saxon potential in close anlaogy to our recent work on 
the T matrix1 (cited as paper I hereafter). Recent 
interest in the K matrix calculation has been stimulated 
because of its potential application to nuclear scattering 
reactions. 2 

The differential equation approach to off -shell scatter­
ing can be adapted to the K matrix calculation by impos­
ing standing wave boundary conditions on the solution 
of the van Leeuwen and Reiner equation. For a central 
potential the relevant off -shell wavefunction regular at 
the origin is given by3 

1 
f/J(k,q,r)= - 4Tf q (k IK(E)lq)[j(k,r)+ j(-!<,r)] 

1 
+2i [j(l?,q,r)-j(k,-q,r)], (1 ) 

where (k I K(E) I q) represents the half off -shell K matrix 
written as 

2 Imj(J<,v) 
K(J<,q,s)= Tfqlj(Il)1 cos6(1l) (2) 

In Eqs. (1) and (2) II is an on-shell momentum related to 
the energy by s = k 2 + if = E with f «1 and q is the off­
shell momentum. The objectsj(k,r), j(k,q,r), j(k), 
and j (ll, q) are the appropriate J ost solutions and J ost 
functions. Here 6(k) stands for the s-wave phase shift. 

In terms of the wavefunction f/J(k, q, r) the off -shell K 
matrix can be written in the form 

2 fW =-p drsinprV(r)f/J(Il,q,r). 
Tf q 0 

(3) 

Using the values of on- and off-shell Jost solutions 
j(±k,r) andj(k, ±q,r) [Eqs. (14) and (16) of Ref. 1] for 
the Woods-Saxon potential, 

-V 
V(r)=1+e(rJ1/a' (4) 
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- H (A, E, C, -q, a', T' ,R)eik'r m,n 

( 
1 )m+n+ia(k'+Q1}} 

x 1 + e (r-R 1 I a . 

Each quantity in Eq. (5) has been defined in paper I 
except 

(11 ei<k-k'lR(A)m(E)m 
Gm = (C)mm! ' 

ei(k+k'lR(A') (E') 
G(2 1 - m m 

m - (C')mm! ' 

and 

E(k, q) = - trrq (1? I K(s) I q) 

with 

(5) 

(6a) 

(6b) 

(6c) 

A'=ia(J<+Il'), E'=ia(1?+k')+1, C'=1+2ika. (7) 

For the sake of clarity we note that in writing Eq_ (5) 
we have used the series representation for the hyperge­
ometric function. 4 Substituting Eq. (5) into Eq. (3) we 
find 

K(p,q,s)=_o drsinprL; E(J<,q) 2Vi~ ro { 

Tfpq 0 m.O 

X G(11 ik'r ~ (
1 )m+1+i (k'-k1a 

mel + e(r-R1!a 

( 
1 )m+1+i<k+k'laJ + G(21 ik'r 

me 1+c(r-R1!a 

+ Q2L; {Hm,n(A, E, C,q, a, T,R)eik'r 
n- 0 

x I. 1 ) m+n+1+i (k'-Q 1a 

\1 + e (r-R 1! a 

+ Hm,n(A, E, C, - q, at, T' ,R)eiltr 

( 
1 )m+n+1+ia (k+q1}} 

X 1 +e(r-R1!a . 

As usual we break up the integrals in Eq. (8) as 

f: dr 000 = foR dr 000 + f; dr 000 

(8) 

and perform the latter integrals to obtain the K matrix 
in the final form, 

2V 00 

K(p q s)=.::..:..Q L; {E(k q)[G(11(I(l) (k)+J<2 1 (;.:-») " rrpq m,s=O ' m m, a,s m,O.s 

+ G~1(I~1.1o •• ( - k) + I~,lo,s( - k »)] 

+ Q2L;[Hm n(A, B, C,q, a, T,R) 
"0:0 ' 
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-Hm,n(A,B,C, -q, a', T' ,R)(I~,)n,s(-q) 

+I~:~,s(-q))l}, (9) 

where 

are exactly the same objects as defined in paper I. The 
triple sum in Eq. (9) is uniformly convergent. 1 Thus it 
can be used to check on programs which attempt to 
compute the Kmatrix by iteration techniques. 5 
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Stability, equilibrium and KMS for an infinite classical 
system 

M. Pulvirenti 

lstituto Matematieo dell'Universita di Camerino. Camerino, M.e., Italy 
(Received 2 August 1976) 

The stability condition as a property which characterizes the thermodynamic equilibrium is studied from 
an abstract point of view. Furthermore, an application of the main result to the case of an infinite classical 
harmonic system is given. 

1. INTRODUCTION 

The goal of equilibrium statistical mechanics is to 
give a reduced description of large and complex sys­
tems in terms of a few parameters which satisfy the 
laws of the thermodynamics. The macroscopic observ­
abIes are usually obtained by averaging the microscopic 
ones (measurable functions on the phase space) with a 
measure which is required to describe the equilibrium 
state, and then by performing the (thermodynamic) 
limit for N, v- 00 (with some care), since the finite 
volume averages have the unpleasant property of de­
pending on the particles number N and volume V. The 
use of such finite volume equilibrium measure is justi­
fied by the so-called ergodic hypotheSis, which seems 
very hard to prove whenever it does not fail. 1 

Another point of view is to consider infinite systems 
directly. In this case the macroscopic equilibrium state 
is described by a measure on the phase space of the 
infinite system, that is the limit of finite volume equi­
librium measures or the solution of the DLR equa­
tions; we will refer to such measures as Gibbs or 
equilibrium states for the system. 2 Obviously, beSides 
the well-known results obtained by the equilibrium 
statistical mechanics, there remains the problem of 
justifying our making use of the Gibbs measures instead 
of the stationary (with respect to time evolution) ones. 
In this context it seems quite natural to look for some 
"physical condition" that forces any invariant measure 
satisfying it, to be a Gibbs state. Such kind of an 
approach was proposed by Haag, Kastler, and Trych­
POlmeyer3 (see also Ref. 4) for quantum systems. A 
classical analog of this result has been obtained by 
Aizemann, Gallavotti, Goldstein, and Lebowitz. 5 (Also 
see Ref. 6.) 

The basic result in Ref. 5 may be summarized as 
follows, Let us consider an infinite classical particles 
system and a class f) of stationary states on it, such 
that the following properties are satisfied: 

(a) there exists an algebra D of functions on the phase 
space that is invariant for the time evolution of the sys­
tem and on which the Poisson brackets make sense; 

(b) each state of f) is three-fold mixing with respect 
to the time evolution. 

(c) D is supposed to verify the claSSical analog of the 
Ll asymptotic Abelianness, the so-called dispersivity. 

With these conditions it is shown in Ref. 5 that the 
only states in f) which are stable under local perturba-
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tions are KMS states. The KMS condition is a good 
candidate to describe the thermodynamic equilibrium 
by itself and it proves in many cases to be equivalent 
to the Gibbs condition. 7 

Unfortunately, besides the free gas case, it is diffi­
cult to verify or disprove the assumptions (a), (b), and 
(c) in the case of interacting systems. In fact the ergo­
dic properties as stated in (b) have not yet been 
proven,8 and furthermore the choice of D seems prob­
lematic since it must be simultaneously large enough to 
satisfy (a) and small enough to satisfy (c). 

In this paper the same result as in Ref. 5 is obtained 
in an abstract framework, without reference to any 
physical system by means of relaxed assumptions. 
More precisely it is required: 

(a ') the existence of an algebra a of functions on 
which the Poisson bracket makes sense, and which is 
a core for the dynamical infinitesimal generator; 

(b') the systems are assumed to be weakly mixing. 

No dispersivity property is required. 

Though the properties (a ') and (b ' ) are implied by (a) 
and (b), it is still hard to prove them in the most in­
teresting physical cases. In particular, property (a '), 
that is the self-adjointness of the Liouville operator on 
the algebra of the cylindrical observables, seems to 
require a deeper knowledge of the infinite motion than 
we have thus far for the classical continuous system. 9 

We conclude by observing that we need to strengthen 
the stability assumption with respect to that used in 
Ref. 5. This means that, in selecting KMS states in 
the class of the invariant states satisfying (a ,) and (b'), 
we need a stronger condition. 

The main result (Theorem 2.1) of this paper is 
formulated in Sec. 2, and an application to a concrete 
system is discussed in Sec, 3, In Sec, 4 the proof of 
Theorem 2,1 is given, making use of the following 
theorem [it may be found in Ref, 10], 

Theorem L 1: Let (X, 6, Il) be a probability space and 
H be a self-adjoint operator on L 2 (6, Il), 

Let us suppose the existence of a self-adjoint algebra 
of functions A c[)(H) such that 

(i) A is a core for H, 

(ii) Y j,gEA then H{fg)=jHg +gHj. Then exp(iHt) im­
plements a group of automorphisms of L®(6, Il). 

Copyright © 1977 American Institute of Physics 2099 



                                                                                                                                    

2. DEFINITIONS, NOTATIONS, RESULTS 

Let (/(,6, w) be a Lebesgue probability space" and let 
a denote a representation of the real line lR as measure 
preserving automorphisms of the measure algebra 6(W); 
the following measurability condition is required: 

if A, BE 6(W), then lR 91 f- w(A r, atB) 

is a measurable function. (2.1) 

On the basis of a well-known theorem of Halmos, 
Von Neumann, and Rokhlin, 11 we may think of a p t E lR, 
as a family of almost everywhere defined point trans­
formation on /(. Furthermore the above condition (2.1) 
implies the existence of a weakly measurable (and hence 
strongly continuous) unitary group Ut on L 2 (w), such that 

for a. a. K E /<., 'fI IE lR, 'fI fE L2(wlo 

Let H be the self-adjoint operator on L 2 (w) that 
generates Ut ; we put L = iH and denote by [J(L) its 
domain. 

Let us suppose that a is a self-adjoint algebra of 
functions with the following properties: 

(i) a c r, Lp(w)n[J(L); 
p~2 

(ii) there exists a self-adjoint subalgebra Be a of 
essentially bounded functions such that IE Band B is a 
core for L; 

(iii) a bilinear form (the Poisson bracket) {o, .}: Cl x a 
- a is defined such that for any f, y, h E fI the following 
properties are verified: 

(a) {t, K}= {J, K}, 

({:l) {t, K} = - t1[, f}, 
(y) {f, gh}=tf, g}h +{f, h}g; 

(iv) Lac a; 

(v) w({Lg, h})= -w({g, Lh}), g,h Ea. 

De(inition 2.1: A system Y", (/(, u.', a, a , {', .}) with 
the above properties is called a Poisson system. 

Definition 2.2 (KMS): A Poisson system Y is said 
to verify the (static) KMS condition at some inverse 
temperature (3E lR if for any f, gE n 

- (3w(tLg) = w(tf, g}). 

Delinition 2.2 (KMS): A Poisson system Y is said 
to verify the (static) KMS condition at some inverse 

(i)'fIfEa,:3 o:'fI AE(O,O):3P)./EL(w) 

such that W(P).f) = 1 and the bounded measure defined as 
follows: 

dw).1 = p).fdw 

is formally invariant for the perturbed dynamics, i. e. , 

wAf(Lg+'\tf, g})=O, gEn. 

(ii) lim(pl./ - 1)/,\ = dd~).f \ exists 
).--0 "- ).=0 
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(iii) If {fJ~, a is such thatfn - 0 in L 2 (w), 

then 

dfA/n I ( ) _ 0 in L2 w . 
d'\ >-=0 

The main result of this paper may be summarized in 
the following theorem: 

Theorem 2.1: If a weakly mixing Poisson system Y is 
stable, then there exists an inverse temperature (3 

for which Y is KMS. 

We recall that the weak mixing condition means: 

1 f T I I ~~ T (t, Utg) - (t, Eoff) I dt = 0 
-T 

'f/ f, KE L 2 (w) and Eo is the projection on the constants. 
In the proof, that we will give in Sec. 4, only the 
ergodicity and the equality SpH = lR will be used as 
consequences of the weak mixing condition. 12 

3. HARMON Ie SYSTEMS 

In this section we will show by means of Theorem 
2.1, that for some physical system, the only states of 
a certain class that are stable in the sense of Definition 
2,3, are the equilibrium states. 

The main difficulty we meet in using Theorem 2.1 is 
to describe the phySical models in terms of Poisson 
systems and in particular to show property (ii) of Sec. 
2, which, as we will see later (Remark 3.3), implies 
a unicity property of the time evolution with respect to 
the considered class of invariant states. We specify 
these conSiderations by studying the simple model of an 
infinite system of interacting harmonic oscillators. The 
equilibrium and the dynamics for this model have been 
studied in a more general context by Lanford and 
Lebowitz l3 and by Van Hemmen. 14 

Harmonic Svstem (one dimension): The phase space I<. 
is (lR2

) Z, i. e:, the space of all the sequences ¥ = {x ,,J "'E 'Z: 

where x", '" (p"" q a> is the point of the one -particle phase 
space. The interaction is described by an infinite 
dimensional matrix V"" a with the following properties: 

(i) translation inl'ariancc: 

V""a= V",+y,a+y, I 'fI I a, (3,yEZ. 

(ii) short YanKe interaction: For each a, (3E Z there 
exists r E Z· such that (3 > a ± r implies V", ,a = O. 

(iii) positivity: For all finite nonzero sequences {q",}, 
one has Z;""aV",sq",qa>O. Then the finite volume 
Hamiltonian is 

n n n 

Hn=~.:G P" + ~ L Vrxaq",qs'? O. 
(X::::-n Q::-n 13=-n 

The infinite equations of the motion are 

P",=.:GV",a(Js, q",=p"" 
a 

that may be written as 

.~=Ax, 

where A: /( - K is the linear operator defined by 

(Ax)" =(-L.i V", aqa,P",), 
s ' 

where 

M. Pulvirenti 
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Let us denote by 1<.0 the subset of K such that for each 
XE 1<.0 one has 

limexp(-iai)lx"i=o, (3.2) 
!a ) .... 00 

where I x" I = max( Ip" I, I q" I); then Ko is a Banach space 
with the norm 

" Let us set 

I I -
A=- sup Vo 81 and A=maX(A,l). 

8<= I -r, '" I ' 

Then we easily get for each x E Ko, 

IIAxll~ (2r+l)'A !lx!l. 

(3.3) 

Hence the operator ('At: Ko- Ko gives a solution of the 
problem (3.1) with initial data in Ko. 

We now introduce the following partial dynamics. For 
all n E Z+ let us define the projection operator on Ko, 

\ 

if I 131 ~ n, 
(P

n
X)8 = XO'8 

if 1 131 ~ n. 

Then by (302), 

IIPnx-xll-O (n- oo ) 'tI XE 1<.0. 

As a consequence, setting An ""PnA one has 

exp(A/)x- exp(At)x (n- 00) 'tI XE Ko. 

exp(Ant)x is obtained by evolving the oscillators in 
[-11,111 under the action of themselves and freezing the 
oscillators in [- n, n Ie in their initial positions. 

Let F": IR2(2n+l'_<J: be an infinitely differentiable func­
tion such that for every lz E Z there exists a k E Z for 
which i ~ I -k I (<lhF)(~) I - 0 as I ~ I - exo, where (JhF denotes 
a derivative of order II and ~ E IR2 (2n+ll. Starting from F n 

we define the function fE K ~ <J: as follows: 

(3.4) 

We denote by II the algebra of all functions f of this 
kind, and by Be II the subalgebra of all bounded func­
tions with bounded derivatives" 

The Poissoll brac/?r/ is defined on II by the usual 
formula: 

(3.5) 

where / and g are obtained by F" and em via (3.4). The 
sums in (3. 5) are finite by definition and the Poisson 
bracket is a bilinear form on II x II which verifies (iii) 
of Sec. 2. 

The Lioll1'ill(' operato), L is defined by the composi­
tion of the infinite formal Hamiltonian with the functions 
of a via the Poisson bracket. By definition if F n gener­
atesfas in (3.4), then ({f)(x)=limk{Hk,/}(x) 
=(VxFn,PnAx) where ( , ) denotes the following scalar 
product: 

(x, y) = Lx" . y" 
0< 
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and x" 'Yo< is the usual scalar product in IR2. 

We denote by m the set of all probability measures w 
on K with the following properties: 

(i) w(K -1<.0) = 0; 

(ii) w is a regular Borel measure on Ko; 
(iii) w is invariant for the dynamics expAt; 

(iv) n!xWdw(x) <+00; 

(v) II C L 2 (w). 

Proposition 3.1: If w EftJ then Y"" (K, w, a, II, {o, .}) is 
a Poisson system. 

Proof: The measure space (I<., w) is Lebesgue, since 
1<.0 is a separable complete metric space and w satisfies 
the properties (i) and (ii) above. The algebra a is an 
L 2 (w) dense self-adjoint algebra of unbounded functions. 
This may be shown by approximating any II· II-continuous 
bounded function j: Ko - a:: with a sequence defined as 
/n(x) = /(Pnx) and then approximating any /n with elements 
of 13. Denoting by a n the algebra of all / E II depending 
only on the first 2(2n + 1) coordinates and moment, then 
LancQn+randhenceLac a since a =Una n• If/Ea, then 
for 11 large enough, L/={Hn,/}- The Jacobi identity, 
together with the invariance of the state, gives property 
(v) of Sec. 2. 

Let us define 

where at = expA/, a; = expAi. Then Ut is a strongly 
continuous unitary group by the invariance of wand the 
continuity of the motion. To complete the proof we need 
13 to be a core for L. 

If now L denotes the infinitesimal generator of U
t 

it 
remains to show that 

Since [I B = LIB, it is enough to prove that 

UtfEf)(L 1 B*)' / E IR andfE 13. 15 

In other words, we must find a sequence {gJ;=1 C 13, 
such that J[n - Uti and LJ[n - L Uti in L2(W). 

Let us put 

gn(x) = (Ut"f)(x)~ n EZ + 

(3.6) 

since / E 13 for n large enough gn depends only on the 
variables in [-1/ - r, n +r 1. Furthermore gn E a n+r n 13 
and Ilgnll~ = Ilfll~. Since a;x- atx 'tI XE Ko, then 
gn - Uti, w a. e.; the estimate I Utf -gn I ~ 211ill~ and the 
dominated convergence theorem imply that gn - Uti in 
L2(W). Furthermore we have 

(Lgn)(x) = (L Utnj)(x) = (V,Utnf, Pn+rA ,-) 

= (V"nxj, a;Pn+rAx) 
t 

= (V"7J , a;PnAx) 

+(V"1J, a~(Pn+r -Pn)Ax). 

The first term in the rhs is UtnLf and the second one is 
bounded by 

cll(Pn+r -Pn)Axl!, c E IR 
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by the Schwarz inequality. Hence: Lgn - L Udw a. e. 
Finally the estimate: 

I L Uti - Lf[n I (x) ~ I (Ut - Utn)UI (x) +2c11A II I! x II 

~21IUII~ +2c11AI! Ilxll 

and the property (iv) for the measures in!11 , allow the 
use of the dominated convergence theorem to achieve the 
proof. We can now use Theorem 2.1 to obtain: 

Th('oY('})/ 3.1: The KMS states are the only weakly 
mixing stable state of the class!11 . 

RrmaYk 301: The above Proposition 3.1 and Theorem 
3 0 1 hold for a y-dimensional lattice since our dynamical 
arguments do not depend on the space dimension 
crucially, 

RenwYk 3.2: In Refs. 13 and 14 the ergodic proper­
ties of the dynamical flow U<, w, QlJ where w is a KMS 
state, are also studied. In particular it has been shown 
that Qlt is ergodic if and only if V has no point spectrum, 
and that QI t is Bernoulli if and only if V has absolutely 
continuous spectrum. 

R('mayk 3.3: Let us consider the dynamical flow 
U<, w, O't) where w is K. M. S. and O't is a time evolution. 
The property L I *e* = L implies that (I<, w, O't) is the only 
flow constructed by solving Eq. (3.1). Otherwise L 18 
should have other self-adjoint extensions. Furthermore, 
the above self-adjointness property means that the 
dynamiCS is essentially local, since the knowledge of 
the infinitesimal generator on local quantities is enough 
to get the whole dynamics. 

4. PROOF OF THEOREM 2.1 

By Definition 2.3, (il we have 

(c,AI([r;) = - Aw AI( (r, f[}), r, f[ r: II • 

The invariance of w then gives 

W«[PAf -ll/'\)Lf[) = - (c,AI({r, ;;}). 

Finally by Definition 2.3, (ii), one obtains 

w( dPAf \ Lg\ = - w({f, f[}). 
d'\ A=O :} 

(4.1) 

Denoting by Eo the projection on the constants, we put 

H=L 2 (w)eEOL 2(w). 

Then by renormalization w(dpv/ dA I A=o) = 0 and hence 

(4.2) 

By the ergodicity 

[RanL 1"=ker(-L)=EoL 2(w) (4.3) 

and so 

(4.4) 

because a is a core for L. 

By (4.1), (4.2), and (4.4) we see that the mapping 

l f-- dPAf I ~ Tr 
. dX A=O ., 

f c: a 

is a well-defined linear operator. Furthermore Defini­
tion (2. 3) (iii) forces T to be continuous. Let T be the 

2102 J. Math. Phys., Vol. 18, No. 11, November 1977 

continuous extension of f on all L 2 (w). We shall prove 
that T is self-adjoint and that it commutes with the 
spectral family of H = - iL . 

Putting f,gE II, by (4.1), 

(c,ch Lg) = - w({j,f[}) = - w(U,;m 

= w( TlLg) = w(TlLf[) 

and hence 

Tl= Tf. 

Furthermore if f = Lh, hE a, by (4.1) and (4.5), 

(l, TLf[) = (Lh, TLg)=w(TLJdh) 

= -w({Lf[,h}) =w({g, {h}) 

= - (J,)( {T,,d) = w( TtL;;) 

= (T(, Lf[). 

Combining (4.2) and (4.6) we obtain T = T*. 

Finally'rl f, g E II we have 

(Tl, Lf[) = - w({l,;;}) =w({;;, 7}) = - (T.Ij, 0) 
= -(U, Tf[)= - (TU,;;) 

and so Tlc: f)(L) and L Tl= TU. 

(4.5) 

(4.6) 

Let us now fix 11 E f)(L). We can choose a sequence 
{rn }~=I C a such that 

l" - Ii, L t~ - L 11 • 

By the continuity of T 

Tl"-Tu, TLfn-TLu 

and hence 

Tu E f) (L) and L Til = T L 11. 

Defining 

p. A = (L + AI) -I 'ff A E .IR 

and putting 

f[= RArE f)(L), IE L('J,)) 

we have 

so we can conclude that T commutes with the spectral 
family of H. 

The antisymmetric operator: Do ~ T LIB acts as a 
derivation onB [that is DoUg)=fDofJ+f[Dof, 'rI f,f[EBI 
and this in virtue of (4.1) and property (y) in the defini­
tion of the Poisson bracket (Sec. 2). 

We want to show that Do is essentially antiself-adjoint 
on B in order to show that expDot implements an auto­
morphism of L~(w), / E IR. (See Theorem 1.1). 
Suppose the contrary. Then there exists h Ef)(D;) such 
that 

D;h =±h. 

'rI IE B we put (L +I)/=gE II; then 

(h, Dof)='f(h, l), 

(h, TLRIg)='f(h, RIg), 

- (R jz, TLf[) = ± (R _lh ,f[). 

M. Pulvirenti 2102 



                                                                                                                                    

If f spans B the g's span a dense set by the core proper­
ty of B and hence 

LTR_lh=~R_lh 

This is a contradiction since L T defined on D(L) is 
antisymmetric. 

Let us define the two parameters group of automor­
phisms of Lro(w): 

V(t, s) = exp(DI) exp(L s). 

Then Sp V, defined as 

Sp V '" {A E' 1R2j j(A) = 0 for all f E L1 (]R2) 

: V,'" IV(t)f(t)df=O} 

is additive. 16 (This may be seen by using Theorem 4.1 
of Ref. 16, in Abelian case recognizing that in this 
context it is enough to have the commutativity of V

t 
with 

the ergodic flow Ut to obtain the conclusion.) 

On the other hand, 

SpV={(A/-l,A)jAESpH, /-lESpT; A,j.l'FO}U{O}. (4.7) 

Then combining the additivity of Sp V with (4.7) we can 
find, for fixed /-ll oF /-l2 E SpT, a jJ. E SpT with this form 

- A 1 /-l1 + A2 /-l2 
/-l= 

'\1 + A2 

= ~{/-l1 + /-l2 + '\1 - '\2 (/-l1 - J.l2)} 
'\1 + A2 

where AI' '\2 E SpH. Since SpH =]R by the weakly mixing 
assumption, the number jJ. may be arbitrarily large and 
this is in contradiction with the continuity of T. Hence 
it is possible only an eigenvalue f3 (different from 0) for 
T. So we conclude that 

and the KMS condition is proven. 
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We exhibit the logical connection between two mathematically and physically interesting notions of 
Markov property due to Nelson [J. Funct. Anal. 12,97 (1973)] and to Wong [Ann. Math. Stat. 40, 
1625 (1969)] . respectively. in the case of Gaussian generalized stochastic fields. 

INTRODUCTION 

Markov property, or probabilistic causality, is a 
statement of conditional stochastic independence of 
random variables and the notion of "conditioning" was 
first introduced by the Russian mathematician Markov. 1 

His compatriot, Kolmogorov, 2 then gave this important 
concept a very rigorous mathematical basis by invoking 
measure theory. What are now known as Markov 
stochastic processes intervene in many important physi­
cal and mathematical considerations and a theory of 
these processes utilizing various mathematical methods 
is at an advanced stage of developmenL However, the 
definition of Markov property for stochastic processes 
indexed by P, explicitly utilizes the ordering relation of 
points of P,. In trying to extend the notion of Markov 
property so that it may apply to a stochastic field, 
generalized or ordinary, one is, therefore, initially 
handicapped by the absence of a corresponding ordering 
of the points of P, ri, d >- 1. In spite of this apparent diffi­
culty, one can still consider Markovicity of stochastic 
fields, but because different localizations are now 
possible, there are several notions of Markov proper­
ty3-C, for these fields o In ReL 3, for example, 
Hegerfeldt discusses the connection between a notion of 
Markov property introduced by him and that due to 
Nelson. Here, we deal exclusively, with generalized 
stochastic fields, and we consider two notions of Markov 
property for these fields due to Nelson4 and Wong, 5 

respectively. Nelson's notion of Markov property has 
been employed in recent investigations in constructive 
quantum field theory",7 and it has led there to develop­
ments of no small Significance. By imposing a regulari­
ty assumption on a Euclidean invariant (see below) 
scalar Gaussian generalized stochastic field, Wong was 
able to show,5 much earlier than Nelson, that such a 
field would be Markov in his sense if and only if it is 
the same scalar generalized stochastic field which now 
leads, via Nelson's recent reconstruction theorem, 4 to 
the free massive scalar Wightman quantum field. It is 
therefore, mathematically and physically interesting to 
investigate the connection, if any, between these two 
notions of Markov property which we formulate below. 

1. EUCLIDEAN COVARIANT GENERALIZED 
STOCHASTIC FI ELDS 

The d-dimensional Euclidean space Ed is a couple 
(fl,d,I·I)where 

,., :/<d_P,+=[O, 00), 

X= (xl> ... , ,ex) I-- 'x, =(t X~)1/2. 
1=1 
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Ed is a group spaces whose group of transformations is 
the Euclidean group M(d). 9 The latter is the semidirect 
product of the additive group Ed and the d -dimensional 
orthogonal group O(d), L e. , 

M(d) = Ed G) O(d). 

Thus, each gE M(d) is a pair g= (QI, h) with QI E Ed and 
hE O(d). The orthogonal group O(d) is compact and 
hence it admits finite -dimensional representations 0 10 

Let S(P,d) be Schwartz space of rapidly decreasing 
complex-valued C~ functions on P'ri. Let (n, 13, Il) be a 
probability space and let 

HO(n)= {~U)= (UI): i= 1, ... , N) : IE S(P,d)\ 

be an N -component generalized stochastic field ll on 
(n, /J, Il). We assume throughout that H"(n) is of second 
order, Le., ~U)=(~l{f)""'~N{f))EHO(n) implies 
~Jr)EL2(n,l3, Il), i=1, ... ,N. In that case, each 
~(f) E HO(n) necessarily has an expectation functional 
because LQ(n, 13, Il) contains Lr(n, 13, Il), for q <r. 

Let!11 U) and BU( 1), I (2») denote the matrices whose 
entries are frI/()= <1, ~JmL2(n,8,~) and (~iU(1)), 
~/ r (2 »)) L2 (n ,8, '"» respectively. Thus the column matrix 

/J1 U) contains the mean values of the components of 
~Cf) E HO(n), while B{f (1), I (2») is the matrix of their 
correlation functionals. Let h 1- V(h) be an N -dimen­
sional unitary irreducible representation of O(d). We 
are interested, in this paper, in N -dimensional general­
ized stochastic fields which transform covariantly with 
respect to M(d) in the following way. 

(1.1) Definition: LetHO(n)={~U)=(UI); i=1, ... , N): 
Ie S(P,d)} and let hI-" V(h), lz E O(d), be as just described 
above. Then, we say that HO(n) is a Euclidean covariant 
generalized stochastic field transforming according to 
the unitary irreducible representation II I-- V(lz), h E O(d), 
if it satisfies the following conditions: 

(i) the induced action Tg on HO(n) of the transformation 
g of p,d onto itself is specified as follows 

(Tg~U)L= .0Vi/h)~/Vgf), i= 1, ... , N. 

(ii) the mean matrix /J1 (f) and the correlation matrix 
BU( 1), I (2») are such that 

(a) frI (f) = V(h ) /J1 (V gI) 

(b) B(f(1),I(2»)= V(Jz)B(Vg!(1), V gI(2») V(h)-l 

where (VgI)(x) =(g-lX) and 

g= (a,h) EM(d)=EdG)O(d). 
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(1. 2) Remark: It is clear that (ii) (a) is readily satis­
fied if t11 i{j) = 0, i = 1, ... , N. Hence in what follows, we 
assume this to be the case, i. e., that the components of 
each ~(j) E HO(n) have zero mean. For a detailed analy­
sis of the structure of the most general form of 
B{j (1), f (2» and the spectral representation for 
~(j) E HO(n) such that (ii) (b) holds, we refer the reader 
to Refs. 12 and 13. 

2. THE SPACES H ( P, d) AND H ( p,d) 

Let HO(n) = {~(f) = (~/f): j = 1, ... , N): fE S{R")} be 
an N -component Euclidean covariant generalized 
stochastic field on the probability space (n, B, Il); let 
(~i(X), ~j(y»L2(rl.B." )=Bi/x -y), and let B(p) denote the 
NXN matrix whose entries are given by 

Bi/p)= J dxBJx) exp(ip .x). 

Set (S{Rd»N = SN' 

The random-variable-valued generalized function ~ 
may be regarded as a bounded linear operator with do­
main SN and range contained in L 2(n, B, Il) as follows 14

: 

~ : SN - ~(SN) c L 2(n, B, Il), 
N 

f=(f" ... , rN)f-~(f)=~ Uf). 
,. i=l 

Let 
(".) SN: ~(SN) >< ~(SN) - <r 

be the following sesquilinear functional: 

(W O », W(2»)) - Wf( I », ~(f(2»))SN 

The positive -definiteness of ii(p) = (B ij(P): i ,j 
= 1, ... , N) now allows us to assert that (",.) N is indeed 
an inner product, and II W)IISN = Wf), W»'/2 SN = 0, if 
and only if f = 0, and hence, if and only if ~(f) = 0. 

Next, let H(P!) denote the Hilbert space delivered by 
functional analytic completion of the pre -Hilbert space 
(HSN ), (',·)S) in the norm topology derived from the 
following inner product: 

(', ')H(P,d): ~(SN) x ~(S N) - <r 

(~(f(J), ~(f(2») I- <~(f(J», ~(f(2»)H(//) 

=Wr(l) ~(f(2») • 
- ,- SN 

H{Rd) is isometrically isomorphic to the Hilbert space 
H(fld) obtained by the completion of S N= (S(j~d»N in the 
norm-topology furnished by the inner product, 

(', ')H(P,d): S NXSN- <r, 
(f(l), f(2»..- (f(l), f (2»H(r<h 

= <~(f(J), t;(f(2»)H(W)' 

Hlfl d
) is called the index space for H(P/). 

Each of the Hilbert spaces H{Rd) and H(fld) has a 
quasilocaP5 structure. Take H(Rd), for example, and let 
D be any bounded open subset of Rd with complement D' 
and boundary aD. Define H(D) as the completion in the 
topology of L 2(n, B, Il) of the linear space 
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{~(f) E ~(S N) : f E S N' supp f CD}. 

The collection {H(D) : D C R d} of Hilbert spaces of 
random variables is a net whose ordering relation is 
isotonous inclusion, 

if D2 ~D" then H(D) CH(D2). 

It must now be clear that H(Rd) is the completion, in the 
norm topology of L 2 (n, /3, Il), of U DCRdH(D)o 

In case A is a bounded closed subset of R d, we define 

H(A) = n H(D), 
D~A 

where the intersection is taken over all bounded open 
sets D in Rd which contain A. 

Any linear space of random variables which possesses 
a quasilocal structure comes well equipped to sustain 
the important notion of Markov property. In this com­
munication' we introduce two notions of Markov proper­
ty and study the connection between them . 

(2.1) Markovicity in the sense of Nelson1
: Let HO(n) 

={~{j)=(Uf): i=l, ... ,N):fES(fld)} 

be a Euclidean covariant generalized stochastic field on 
(n, /3, Il). Then, ~(n) is said to be Markov in the sense 
of Nelson if, for any bounded open subset D of Rd, and 
for all 11 E H(D), 

(2.2) E(u IH(D')) = E(u IH(?D)), 

except possibly on a set of Il-measure zero. 

For any bounded open or closed subset A of Rd
, let 

QA be the orthogonal projection of H(R d
) onto H(A). 

Then, ' 

and (2.2) admits the following abstract formulation: 

(2.3) QD,QD=QanQn, 

as an operator equation on H(fl d). 

As already indicated in the Introduction, this notion 
of Markov property has led recently to the clarification 
of some mathematical and physical problems in the 
study of relativistic quantum fields. The other definition 
of Markov property of interest to us is that due to Wong. 

(2.4) Markovicity in the sense of Wong5: Let ~(n) 
={~{j)= (~/f) :i= 1, ••• , N)} be as in (201) above. Then, 
HO(n) is said to be Markov in the sense of Wong if, for 
any nested increasing family aD" aD, ;]D2 of boundaries 
in Rd

-\ we have that 

H(eD2) -Pan H(aD2) 

is stochastically independent of H(aD,), where PaD is the 
projection of H(eD2) onto H(aD). 

(2.5) Remark: Wong's notion of Markov property was 
originally formulated5 only for Gaussia~ generalized 
stochastic fields. The formulation given here is an ex­
tension and improvement on that in Ref. 5. 

Most investigations4.5.16.17 of the notion of Markov 
property have dealt with generalized or ordinary 
stochastic fields or processes obeying the Gaussian 
probability distribution law, because of the relatively 
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simple form to which the concept of stochastic indepen­
dence reduces for this type of random variables. In 
what follOWS, we put the constraint on H"(n) that finite 
collections of elements from HO(Q) have Gaussian prob­
ability distribution. With this assumption, stochastic 
independence of two members of HO(Q) is equivalent to 
their orthogonality in L2(Q, B, /J). 

It is useful to obtain an abstract formulation as in 
(2.3), for Wong's notion of Markov property. To this 
end, there is the following result: 

(2.6) Theorem: Let aD" ilD, and aD2 be any increas­
ing triplet of nested boundaries and let maDl ), H(aD), 
and H(aD2 ) be respectively, the associated boundary 
data Hilbert spaces. Let PaD denote the projection of 
H(aD2 ) onto H(aD). Then Wong's notion of Markovicity 
is equivalent to the following condition: 

QaD QaD = QaD PaD QaD2 1 2 1 

as an operator equation on H(P'rl). 

Proof: Wong's definition of Markovicity is the follow­
ing statement: H(aD2 ) -PaD H(aD2) is always orthogonal 
to H(aD1). This is equivalent to the following: 

(QaD 11, QaD V)H(Rd) = (PaDQaD U, QaDI')HlRrl) 
2 1 2 1 

for every 11, 11 belonging to H(P,ril. 

Thus, it follows that 

(QaD QaD 11, QaD l !) HIRd) 
1 2 

= (QaD PaDQaD 11, QaD vlH(Rrl). 
1 2 1 

Hence 

«QaD 1 QaD2 - QaDl PaD QaD)u, 1') HIRe;) == 0, 

for every 11, 1) E H{fltf). In particular, this is true for 
every I) E H(P,d) and for arbitrary but fixed U E H(P,d). 

Next, set 

(qaD QaD -QaD PaDQaD )11= 1>(11). 
1 2 1 2 

Then, since u is fixed in H(P,d), so is 1>(u). From the 
preceding, we have then that the bounded linear 
functional 

F,,:H(P,")- 0:, 

I1-F,,(1')=(1>(u), v)Hd<d) 

is identically zero on H{fld). Hence, by the uniqueness of 
any bounded linear functional on a Hilbert space, it 
follows that 

1>(u) = (QaD 1 QaD2 - QaDI PaD QaD)U = 0 

for all U E H(P,d). 

Hence, 

(*) QaDIQaD2=QaDlPaDQaD2' 
as claimed. -

(2.7*) Remark: If HO(Q) is not Gaussian as we assume 
it to be here, then (*) is a necessary but not sufficient 
condition for Markovicity in the sense of Wong. 

(2.7) Definition: Say that H"(Q) = {~(j) = (~/f): 
i = 1, ... , N): f E S(P,d)} has the restricted Markov prop­
erty of Wong if E(UlIIH(aD»=E(uIH(iJD)}E(1JIH(iJD)) for 
every U E H(D) and 11 E H(D'). 
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(2.8) Remark: There is the following connection be­
tween the restricted Markov property of Wong and 
Wong's notion of Markovicity" 

(2.9) Theorem: Let HO(Q) have the restricted Markov 
property of Wong. Then, H"(Q) is Markov in the sense 
of Wong. 

Pmof: Let D1, D, D2 be bounded open subsets of p,d 
such that 

D2::JD::JD p 

Then, the boundaries ?D)) aD, aD2 form an increasing 
family of nested surfaces in p,rl-l. 

Now, H(riD), H(?D), and H(ClD2) are subspaces of 
H(P,rl). Furthermore, H(aD 1) is a subspace of H(D) and 
H(aD2) is a subspace of H(D'). 

Hence, since by hypothesis H()(Q) has the restricted 
Markov property of Wong, we have 

E(1I1' IH(iJD) == E(1I1H(aD) E(1J lH(aD)) 

for every 11 E H(aD 1 ) C H(D) and" E H(ClD2) CH(D'). This 
last equation implies 

\If, I')L 2«(l •• u) = \11, E(1IIH(:1D»LI(l.B.,,) 

or equivalently, 

\11, I' -E(I'IH(ClD)))L2m.8.,,)=0. 

Hence, we have that for every 1I E H(aD 1) and every 
I1~H(?D2)' I' -E(1'IH(aD» is stochastically independent 
of II. This is Wong's definition of Markovicity, and 
hence the claim is vindicated. -

(2.10) Remark: Let us now make contact with Nelson's 
notion of Markov property. To this end, we can assert 
as follows: 

(2.11) Theorem: If HO(Q) is Markov in the sense of 
Nelson, then it has the restricted Markov property of 
Wong. 

Proof: From Nelson's definition of Markov property, 
it follows that 

E(u1J IH(D')) = I)E(u I H(D')) = 1JE(u I H(iJD» 

for allu EH(D) and all!) E H(D'). But H(aD) is a sub­
space of H(D'). Hence, 

E(E(1I/l1 H(D')) IH(2D) = E(1I IH(D) E(1IIH(D)), 

by what precedes 

== E(1111 IH(ilD)). 

Thus, we have established that 

E(w) I H(D) = E(u I H(D)) E(I! I H(aD» 

for allu EO H(D) and all I) EO H(D'). But this is the re­
stricted Markov property of Wong as we have defined it 
in (2.7) above. Hence, our claim is justified" _ 

(2.12) Remark: We have obtained the following 
sequence of logical implications: 

Nelson's notion of restricted Markov 
Markov property v property of Wong -----,.-' 

Wong's notion of 
> Markov property 
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That Wong's notion of Markov property is not only 
apparently, but indeed genuinely, weaker than Nelson's 
notion of Markov property emerges vividly in a paper, 
currently under preparation, by this author. 
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A class of quasilinear parabolic equations with fixed boundaries arising in studies of cross-field diffusion in 
toroidal multipole plasmas is presented. It is well known that these equations have separable solutions 
which decay in time. Surprisingly, both octupole and numerical experiments show, in particular cases, 
that the separable solution evolves from an arbitrary initial distribution of particles. The evolution and 
stability properties of these solutions are demonstrated in this paper. When the coefficients of the 
equations are independent of the spatial variable, infinitesimal perturbations decay as the fourth power (or 
higher) of the separable solution time dependence; the separable solution is therefore stable. When the 
initial particle distribution has no nulls except at the boundaries, an approximate analysis shows that large 
perturbations decay exponentially causing the rapid evolution of the separable solution. The analysis 
allows the asymptotic behavior of the system to be predicted approximately from knowledge of the initial 
particle distribution. 

I. INTRODUCTION 

A series of experiments on particle diffusion across 
magnetic fields in the Wisconsin toroidal octupole plas­
ma containment device has been conducted by Drake, 
Greenwood, Navratil, and Post. 1 These experiments 
were performed with a purely poloidal field. They found 
that a density profile developed which decayed in ampli­
tude but otherwise was essentially independent of time. 
This remarkable time independent density profile was 
dubbed the "normal mode" of the system and corre­
sponds (as we will show) to the separable soluti~n of 
the relevant nonlinear diffusion equation. Reduced to 
standard form and normalized units, the equation of 
interest is 

an a [ all ] F(x)-=- D(n)-a forO:sx:S1, at ax (x 
(1) 

where n is the particle density, x is the spatial variable 
in one-dimension, and t is the time. The geometrical 
factor F(x) is a positive function determined by the oc­
tupole geometry. The diffusion coefficient D(n) is a non­
linear function of the density. In the experiments of Ref. 
1, D was found experimentally to scale like Okuda­
Dawson diffusion2 

D(n) 0:: n-1 /2, (2) 

but in other density and field strength regimes the scal­
ing is different. In general, the dependence of the dif­
fusion coefficient on the denSity can be parametrized 
by taking 

D(n) cc n6
, (3) 

with 6?· - 1. We may treat (1) with D specified by (3) 
as a mathematical model of the physical problem and 
determine what the predictions of that model are. 

The present paper will treat the analytical properties 
of Eq. (1). The questions to be answered are: (a) What 

a)Present address; Courant Institute of Mathematical Sciences, 
New York University, 251 Mercer Street, New York, NY 
10012. 
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is the nature of the separable solution and how does the 
geometrical factor affect it? (b) Is the separable solu­
tion stable against infinitesimal perturbations? (c) Does 
an arbitrary initial distribution of particles evolve into 
the separable solution? These questions are given 
satisfactory answers in the sections which follow. The 
geometrical factor can cause the shape of the separable 
solution to be asymmetrical and affects the decay rate 
but has little effect on stability. Infinitesimal perturba­
tions are shown to decay faster than the separable solu­
tion so stability is established. Furthermore, it is 
shown that the separable solution will rapidly evolve 
out of an arbitrary initial particle distribution as long 
as the density does not vanish anywhere except at the 
boundaries. Numerical experiments confirm this 
conclusion. In a second paper published elsewhere, 3 

the model equation (1) is derived phenomenologically, 
and the theoretical predictions for the decay constants 
and shape of the separable solution are compared to the 
experimental results. A more detailed discussion of 
the effects of the geometrical factor F(x) is also given 
there. 

II. A MODEL OF NONLINEAR DIFFUSION 

Equation (1) can be put into a form more convenient 
for both analytical and computational purposes. The 
proportionality constants for (3) can be chosen for con­
venience to give 

D(n) = (1 + 6)n5 for 6" - 1. (4) 

(We exclude the case 6 = - 1. A similarity solution ex­
ists for this case, 4 but the boundary conditions and an­
alysis must be treated by methods different from those 
required in the remainder of this paper.) A new depen­
dent variable can be defined as 

m(x, t) =n1
+

5 for 6" - 1, 

which satisfies 

F(x)(mQ
-

1 )t = mm 

where 
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(5) 

(6) 
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q "" (2 + 6)/(1 + 6) (7) 

and subscripts indicate partial derivatives. For 6 > - 1, 
we see that O:S m(x, t) < 00 when 0 :Sn(x, t) < 00 and fur­
thermore m = 0 when n = O. We will call m(x, t) the 
pseudodensity associated with n(x, t) since it is non­
negative and behaves very much like a density 
distribution. 

The geometrical factor F(x) is positive in the cases 
of physical interest and has a singularity at some point 
x = xs' This singularity is integrable. (For the toroidal 
octupole, this singularity corresponds to the singularity 
in the function giving the flux tube volume per poloidal 
flux increment.) Typically, the singularity may be of 
either square root or logarithmic type. To include the 
case of physical interest in our studies of (6), we must 
consider F's which satisfy 

F(x) > 0 for o:sx:S 1, 

1 r F(x) dx < 00, 
• 0 

and allow F to have a singularity for some x =x s ' In 
addition, it is consistent and convenient to 
F'{x) "" 0 for x < Xs and (x) :s 0 for x> Xs> where F' 
=d/dx. 

The general analysis that follows will apply for all 
6 > - 10 Since the case of most interest in Ref. 1 is 6 
= - t, the detailed calculations will be restricted to 
treating this case as an example. If in addition we as­
sume the geometrical factor F(x) is not of crucial im­
portance, we may study the especially simple case of 
F(x)=l and o=-t or 

(8) 

(9) 

(10) 

The density n(x, t) = m 2(x, t) [from (5) and (7) with 6 
=-t or q=3] obtained by solving (10) for m will be 
shown to have many of the properties of the denSity pro­
files found experimentally. 

Two types of boundary conditions are of interest: 
(a) For short times after the plasma has been injected 
into the octupole, the bulk of the particle denSity is 
localized and begins diffUSing towards the boundaries. 
Thus, for short times the density is essentially unaf­
fected by these boundaries. This situation is approxi­
mated by supposing there are no finite boundaries, i. e., 
consider - 00 < x < 00. (b) For long times, a Significant 
fraction of the particle density is in the vicinity of the 
boundaries. The experimental results on the toroidal 
octupole are well apprOXimated by taking n = 0 at the 
boundaries. Using our transformed variables, this con­
dition corresponds to the boundary condition for the 
pseudodensity given by 

m(O, t) = m(l, t) = o. (11) 

For 6> - 1, (11) is consistent with the phYSical require­
ment of finite flux. 

Exact solutions to (6) can be found when F(x) = 1 as­
suming the boundary conditions discussed previously. 
The method of similarity transformation discussed by 
Boyer5 and Ames6 in a similar context (i. e., () > 0) can 
be employed. Since the method is well-documented 
elsewhere, we will simply quote the results here. 
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Assuming an m(x, t) of the form 

m(x, t) =S[x/R(t)]T(t) 

satisfies (6), we find for QI"* 0 

{

SO(l- az2 /z~? /0 

S(z) = 0 for az2 > z~ when a> 0, 

and for all 0' 

and 

{

A (1 _ rt/T)1/r 
T(t) = 0 

o for t '> T /r when r;· 0, 

where 

z~ = 2S~A-1 and a= 2 - q, 

T = (q - 1 )R~~ A _1 and r = q - 2 QI - 2. 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

In Eqs. (15)-(17), A is the separation constant and QI 

is determined by the boundary conditions. Ao, Ro, and 
So are arbitrary constants. 

Allowing x to range over all - 00 < x < 00, the phYSical 
boundary condition5 is that the total number of particles 
is conserved during the diffusion assuming no sources 
or sinks are present. This implies 

N(t) = L:n(x, t) dx = [T(t) ),,-1 R(t) .(:5"-1(z) dz (18) 

is a constant. USing (15), we find that (13) is a valid 
shape function if and only if 

QI=q-l. (19) 

For the second physically interesting boundary condi­
tion, n = 0 at the boundaries. It is easy to prove (and 
phYSically obvious) that R must be time independent so 
that 

0'=0. (20) 

This is the case of principal interest in this paper and 
is treated in Sec. III. 

III. THE SEPARABLE SOLUTION 

In Sec. II, we found that (6) could be separated for 
O:s X :s 1. The general time dependence was calculated. 
A detailed analYSis of the separable solution shape func­
tion is given in this section. 

A. Exact results 

For 6> - 1, QI = 0, and F(x) = 1, the shape function 
satisfies 

S" + AS'-1 =0, (21) 

where' = d/ dx. Note that if SoC,) is a solution with sepa­
ration constant AO' then S(x) = aSo(x) is also a solution 
with separation constant A = AOd' -2, where a is any posi­
tive number. Therefore, we can scale S so that O:s S 
:s 1 without loss of generality. Equation (21) can then 
be integrated to give the implicit relation 

I(S) = ~ s (1 _ d;')l 72 = px for O:s x:s t, (22) 
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where 

p2=2A/q. (23) 

Since S is necessarily symmetric around x = t S(x) for 
.~ os x os 1 can be found using the identity S(l - x) = S(x). 

The integral on the left can be expressed in terms of 
the incomplete beta function or in terms of Gauss' hy­
per geometric function as 

I(S)=~BSG,~)=Sl/q2FIG; 1+~; s). (24) 

No simple methods of inverting the hypergeometric 
function are known except for special values of its ar­
guments. Therefore, Eqs. (22)-(24) are not very useful 
for determining S(x) analytically. If desired, these 
equations can at least be used to determine the quali­
tative nature of S(x). 

However, certain special values can be obtained per­
mitting the exact evaluation of some relevant constants. 
For example, from (22) we find 

p = 21(1) 

2 r(l/q)rW 
=-q r(~ + l;q) 

(25) 

where r is the gamma function. Furthermore, the eigen­
value A is expressible in terms of p as 

(26) 

Thus the eigenvalue is known exactly for all q. In addi­
tion, one can show that 

(27) 

using (22). y is just the integral of the physical denSity's 
shape function. The total number of particles in the 
separable solution obeys 

N(t) = C I1(X, t) dx = yT'-l(t) (28) 
,0 

for all time. 

Table I gives values of q, p, y, and A for various val­
ues of the nonlinearity parameter O. We note that as 0 
varies continuously between + 00 and - 1, q varies mono­
tonically between 1 and + 00, P varies between 4 and 2, y 

TABLE I. Values of q, p, A, and y for selected values of fi. 
The defining equations given in the text are (7), (25), (26), 
and (27), respectively. The slope of the separable solution 
shape function is ± r near the boundaries. The separation con­
stant is A. The total number of particles in the separable 
solution is proportional to y. 

r, q r A Y 

4 8 

:1.4495 8.9242 0.77:,06 

0 2 7f 7r' 2/" 

2.8044 11. 7967 0.47545 I :1 -" 

- " 4 2.6221 13.7504 0.38138 

2e ;)07;) 15.7184 O. :31905 - :] 
S 1 

- 1+ 00 2 0 
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between 1 and 0, and A between 8 and + 00. The values 
given for 0 = - 1 should be thought of as limiting values 
as 15 - - 1+ since the analysis in the previous paragraph 
is not valid for 15 = - 1. The value of y is important for 
reasons to be discussed in Sec. V. The values of A are 
important for determining the time constant (17). 

B. Numerical methods 

Since the shape function for the separable solution of 
(6) is not known in closed form even with F(x) constant, 
it would be useful to construct numerical methods for 
calculating the shape functions. We construct a succes­
sive approximation method valid for arbitrary F satisfy­
ing Eqs. (8) and (9). The case o=-t is treated as an 
example. 

If the function F(x) containing the geometrical effects 
in the diffusion problem satisfies conditions (8) and (9), 
it is no more difficult to construct an iterative method7 

for the more general problem 

- S"(x) = Af(x, S) '= AF(X)SO-I(X) (29) 

than it would be for (21). It is straightforward to show 
that (29) is the equation for the shape function which 
derives from (6). 

It is natural to consider monotone iteration methods 
such as those proposed by Keller and Cohen8 and re­
viewed in an abstract setting by Amann. 9 Straightfor­
ward application of these methods is not possible how­
ever. The convergence proofs given in Ref. 8 require 
two assumptions which are violated here: (i) continuity 
of f(x, S) and (ii) f(x, 0) '> O. The singularity in the geom­
etrical factor F(x) violates (i). More importantly, the 
fact that f(x, 0) = 0 when q 2- 2 (thus admitting S = 0 as a 
solution) violates (ii). In fact, it is easy to construct 
examples where a straightforward iteration procedure 
with A = 1 will rapidly generate the zero solution in a 
machine computation. A discussion of some relevant 
aspects of Amann's work is given later in this section. 

The difficulties discussed in the previous paragraph 
can be avoided by using the following device. First, 
solve the linear boundary value problem 

L; ;'(x) = - F(x)S;:t (x) 
(30) 

taking So(x) = ¢(x) where 0 os ¢ and ¢ is some continuous 
integrable function, not identically zero. Then, define 

XiI = max L; i (x) (31) 
O:!!Ox~l 

and 

Si(X) = AiL;i (x). (32) 

Eqs. (31) and (32) merely normalize the amplitude of 
Si so its maximum value is unity. Defining the Green's 
function 

C(x, ~) = {X(l -~) for x os ~ 
~(1 - x) for x 2- ~, 

we can write the solution explicitly as 
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(34) 

Thus, if SI_1 =S/> (34) gives the solution of (29). 

If the amplitude adjustment in (31) and (32) is not 
done, then the results obtained depend strongly on the 
amplitude of the initial guess ¢(x). A small initial am­
plitude leads to a declining (diverging) sequence {SJ for 
q > 2 (q < 2) while a large amplitude produces the op­
posite result. On the other hand, if q is not too large, 
the normalization is not required at every step of the 
computation. With high precision, the shape produced 
at each stage is clearly the same with or without the 
normalization. However, searching for the maximum 
of L:I requires an inSignificant expenditure of computer 
time compared to the integration in (34). Therefore, 
normalization at each step of the computation is 
recommended. 

The method proposed in the preceding paragraphs 
has been tested numerically. It is both stable and con­
vergent for q = 3. Whether this iteration procedure con­
verges for all admissible q and F(x) is not known. How­
ever, it is clear that the iteration process is stabilized 
by the normalization in (32): The possibility of generat­
ing either vanishing or diverging iterates is eliminated. 
It has been observed empirically that, starting with 
¢(x) = 4x(1 - x), a monotonic decreasing sequence of 
iterates is generated when q = 3. It may be true that, 
for some choices of q and F(x), this iteration procedure 
results in an oscillating sequence, i.e., SI -SI+1 and 
SI+1 - S I' If this happens, convergence cannot occur. 
However, such oscillations have never been observed 
in the cases tested by Drake and the author. 3 

One additional fact about Eqo (34) is worth noting. 
Assume that F(x) (a) is symmetric about x=~, (b) is 
monotonic nondecreasing on (0, i), and (c) satisfies Eqs. 
(8) and (9). Then a tedious graphical analysis of the 
class of functions SI which can be generated from (34) 
shows that 

4G(x, i) ::s SI(X) ::s 4x(1 - x) (35) 

for all i =c: 1 and alll::Sq ::S000 The Green's function G is 
given by (33). The equalities in (35) are satisfied for all 
x if and only if (a) F(x) = 6(x - i) for the left-hand equal­
ity [6(x) is the Dirac delta function] or (b) q = 1 and 
F(x) = const for the right-hand equality. Equation (35) 
implies that the slope of the shape function at x = ° must 
be between 2 and 4. Table I shows that 2 ::s p::s 4 in agree­
ment with this resulL 

Thus, the operator on the right-hand side of (34) maps 
its domain into a compact set. If a monotonic sequence 
S I is generated by (34) [this is true for q = 3], that se­
quence must converge since it is bounded. A general 
proof of convergence could be obtained using Theorem 
6.1 of Ref. 9 if we could show that the operator [in­
cluding '\ defined by (31)] on the right of (34) is "in­
creasing." [An operator M is increasing if u(x)::s v(x) 
implies M(u) ::s M(v). ] The author has been unable to 
show that this is true for (34). Although such a theo­
retical result would be gratifying, it is not essential 
for practical computations. The computation itself will 
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tell us very quickly whether or not convergence takes 
place. 

C. The geometrical factor 

The geometrical factor F(x) can have three effects 
on the separable solution: (a) It can alter the shape of 
S(x). If F(x) is asymmetrical, then S(x) is asymmetrical. 
In particular, if F(x) has an integrable singularity for 
x."* i, then one can give a vari~tional argumen~ w~ich 
indicates that the peak of S(x) lIes somewhere III (Z, x.], 
not necessarily at x =x •. (b) As can be seen in (31), the 
eigenvalue A depends inversely on the integral of F(x). 
Hence, the decay rate of the separable solution is also 
dependent on the geometrical factor. (c) The stability of 
the separable solution can conceivably be affected by 
F(x) if the decay rates of perturbations to the separable 
solution are altered substantially more than the sepa­
rable solution's decay rate. 

Of these three effects, the first two produce quanti­
tative changes but only the third can cause a significant 
qualitative change in the temporal behavior of the den­
sity profile. The stability of the separable solution to 
infinitesimal perturbations is examined in the next 
section. As we shall see, the presence of nonconstant 
F(x) does not appear to alter the qualitative behavior 
of the density profile. Even an integrably Singular F(x) 
does not change the decay rate of the perturbations 
enough to make the separable solution unstable for 6 
:> 1-
- - 2 0 

IV. STABILITY OF THE SEPARABLE SOLUTION 

In this section the effects of infinitesimal perturba­
tions on the stability of the separable solution are ex­
amined. For 6> - 1 and F = 1, Eqo (6) becomes 

(36) 

Suppose that m is the separable solution plus a small 
perturbation 

m(x, t) =S(x)T(t) + u(x)v(t). (37) 

The perturbation is assumed separable. This assump­
tion does not restrict the generality of the arguments. 
Since the perturbation is small, linear equations for u 
and v are obtained by substitUting (37) in (36) and lin­
earizing. The result is 

(38) 

where T and S are given by (14), for Q! = 0, and (22) 
respectively. K is the separation constant for the per­
turbation. 

The equation for v can be integrated and yields l' 

within a multiplicative constant as 

where 

p = 2 - q + KIA. 

Since T decreases as t - 00, v decreases as long as 

(39) 

(40) 

p > 0 and decreases faster than the separable solution 
for p > 1. Stability requires p > 1 for all perturbations 
which are not Simply perturbations of the separable 
solution's amplitude. 
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K (and therefore the time dependence of v) is deter­
mined by the eigenvalue problem 

u~'(x) + KiS'-Z(X)ui(x) =0 (41) 

withu(O)=u(l)=O. Equation (41) is a Sturm-Liouville 
equation. A theorem of Coddington and Levinson10 may 
be applied. The theorem states that there are an infi­
nite number of eigenvalues Ko, Kb • " with Ko:S Kl :S KZ' , , 

and Ki - 00 as i - 00. The eigenfunction Ui corresponding 
to Ki has exactly i zeros in (0, 1). Notice that Uo = S 
satisfies (41) with Ko = A. S has no zeros in (0,1); there­
fore, KO = A > 0 is the smallest eigenvalue. Such a per­
turbation corresponds to a change in the initial ampli­
tude of the separable solution. The exponent of the time 
dependence for this mode is P = 3 - q. For all 
perturbations, 

{
lfOr02":O p2": 
o for 02": - ~. 

(42) 

The separable solutions for 02":0 are obviously stable, 
For 02":02": - 1, more argument is required. 

To see that the lowest mode of (41) is just an ampli­
tude perturbation and therefore ignorable, recall the 
form of the separable solution 

m(x, t) = S(x)T(t) = S(x)A u(l _ dAor t)l Ir, (43) 

where d is a constanL Then it is easy to show that 

a
A
11l = S(x)A~-3T3..q (I). 

a 0 
(44) 

General arguments can be given to show that (44) must 
satisfy the linearized perturbation equation since it is 
the first (linear) term in a Taylor series expansion of 
(43) in the amplitude. The result p = 3 - q is not sur­
prising when seen in this lighL This analysis also in­
dicates that this lowest mode cannot affect the stability 
of the separable solution. Only perturbations with one 
or more zeros in (0, 1) are important to stability. Such 
perturbations must decay with exponents greater than 
Po = 3 - q. How much greater can only be determined by 
solving the eigenvalue problem (41). 

If we can show that Kl is large enough so that Pl :> 1 
for all 0, then stability will be established. We seek a 
solution of (41) which (i) vanishes only once in (0, 1) and 
(ii) also vanishes at the boundaries, It is easy to find 
a function which satisfies (i). The function S'(x) obvi­
ously satisfies this condition but it does not satisfy (ii). 
Since S itself satisfies (ii), we try 

(45) 

Using the identity S'I. =pz(1_ S'), we find (remarkably) 
that this ansatz does satisfy (41) for all q and has 
eigenvalue 

Kl =q(A + pZ) =(2 + q)". (46) 

Substituting (46) into (40), we find that/or all q (!) 

Pl = 4. (47) 

Thus, the lowest nontrivial perturbation decays four 
times faster than the separable solution. All higher 
perturbations decay still faster. The stability of the 
separable solution has therefore been established in the 
geometry free F(x) = 1 case. 
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When F(x) '" const, another argument is required. Note 
that substituting (37) into (6) gives an equation like (38) 
whose time dependent part is identical but whose spa­
tially dependent part gives 

u;"(x) + KiF(x)S'-Z(X)Ui(X) = O. (48) 

Clearly uo =S and KO = A is again a solution. The trick 
used above to find Ul does not work in this case. Instead 
we will attempt to find a useful lower bound for P1, Com­
bining the equations (48) for i = 0 and i = 1, we find in 
general that 

(49) 

We now assume F(x) is symmetric about x=L Integrat­
ing (49) on [o,~l and using the facts thatS'(~)=O and 
S(~) = 1, we find 

Klf A = 1 - um) [10112 
1l{(X)S '(x) dX]-l . (50) 

For convenience, we make the convention that ul (x) 2": 0 
for O:S x:S·~. Then a simple graphical construction 
shows that 

(51) 

Furthermore, by integrating the denominator of (50) by 
parts, we find that 

( 1/ 0 (112_1 
.0 "1l{(x)S'(x) dx = A. u F(x)S' (X)U1 (x) dx~' O. 

Hence, the ratio of these two factors is negative and 
the contribution to Kl is positive, 

For i = 1, multiply (48) by u{(x) and integrate. We 
find 

(52) 

(53) 

Assuming F'(x) 2": 0 for O:S x:S ~, we see that the inte­
grand in (53) is nonnegative for O:S x:s·~. From the 
symmetry of the problem, III (~) = 0 and also 1l1"(}) = O. 
Thus, the last term in (53) vanishes at x = ~ since 
u~'W = 0 implies 

lim F(X)U1 (x) = O. 
x-1/2 

We conclude that 

U{2(X) :Sut,(~) 

for all O:S X :S 1. Therefore, again using S(~) = 1, we 
find 

(1/2 u{(x)S '(x) dx 1 < 1 u{(~) I. 
, u 

(54) 

(55) 

(56) 

Strict inequality in (56) is true because u{(x) must change 
sign somewhere in (0, ~). Using (56) in (50), we find 

(57) 

Equation (57) is a rather weak result since we have not 
used the oscillation of the integrand in (56) to improve 
the bound, However, it is sufficiently strong to prove 
stability for 02": - ~ because (57) implies 
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Pi = 2 - q + Kd"- > 4 - q. (58) 

Thus, Pi > 1 for all q "" 3 regardless of the geometrical 
factor F. Stronger bounds can no doubt be found. 

We have proven that the separable solution is stable 
against infinitesimal perturbations for all 13 > - 1 when 
F(x) = const. We have also proven stability for 13 2: - t 
when F(x) is symmetric and F'(x) 2: 0 for 0"" x ""t. We 
conjecture stability for all 13 > - 1 and arbitrary F(x) 

satisfying (8), (9), and the monotonicity condition 
F'(x) 2: 0 for x"" x S ' 

V. EVOLUTION OF THE SEPARABLE SOLUTION 

Infinitesimal perturbations were shown to decay more 
rapidly than the separable solution in Sec. IV, Although 
this is an interesting result in itself, the physically re­
levant problem is to consider initial density distribu­
tions that are far from the separable solution, i. e., 
with finite perturbations, The experimental situation is 
clearly of this nature. Particles are initially injected 
into the containment device with some arbitrary spatial 
distribution. It is then experimentally observed1 that 
after a finite time, the bulk of the particles appear to 
be in the "normal mode." 

Numerical experiments have been performed for 0 
=-i with F(x)=l using Eq. (10). The initial values 
m(x, 0) were chosen according to 

3 

1I1(X, 0) = E az sin(l + l)x, 
z =0 

(59) 

uSing four different sets of values for the {azt. The four 
cases tested were (~, a2, a3 , 04) equal to: (i) (1, 0.4,0,0), 
(ii) (1,0, 0.3,0), (iii) (1,0, - O. 3,0), and (iv) (1,0,0, 
0.225). Equation (10) was integrated using a linear 
three-level difference scheme developed by Leesll for 
quasilinear parabolic equations. In all four cases, the 
particle distribution decays into a distribution numeri­
cally indistinguishable from the separable solution by 
t = 0.1. In all four cases, all of the particles escape 
before t = 0.2. 

Since both the plasma experiment and the numerical 
experiment indicate that the separable solution evolves 
from arbitrary initial data in a finite time, it would be 
satisfying to show analytically why this should happen. 
This analysis would be most convincing if we could pre­
dict the effective amplitude of the separable solution 
that evolves out of an initial particle distribution. Such 
an anlysis is given in this section. 

A. Prediction of the asymptotic amplitude 

An analysiS predicting the final amplitude of the sepa­
rable solution 0> - 1 is given here. This analysis is 
followed by comparison to the results of numerical ex­
periments for 0 = - t. 

Since (48) is a Sturm-Liouville equation, 12 the func­
tions Ili form a complete, orthonormal set with 

101 
dx F(x)ur2(X)Ui (x)Uj(x) = co ii , 

where by assumption ° "" Uo "" 1 and 

f dx F(x)u~(x) '" C. o 
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(60) 

(61) 

The other UI'S are normalized to give (60). 

An arbitrary function vanishing at x = ° and x = 1 can 
be expanded in the complete set {Ul}. In particular, 

~ 

m(x, t) =0 aj(t)uj(x) 
i=O 

(62) 

where the a j ' s are time dependent amplitudes. The 
equation of motion for the a's is obtained by substituting 
(62) into (36) and using (41) to simplify the right-hand 
side. Noting that S =uo, we obtain 

~ ~ 

(q - l)F(x) 6Gj(t)Uj (x) = - F(X)U~-2(X) ~ ai(t)KiUi(x) 
j=O i=O 

x [P.o a1 (t)uz (X~2..q . 

To simplify notation, a further definition is useful 

-Po bji(t)Ui(X) =' uj(x)[ao(t)uo(X) 1'-2 [E ai(t)llJ,J..q. 

Equation (64) again uses the completeness of the set 
{uit. Equation (63) then becomes 

(63) 

(64) 

F(X)6 Gj(t)Uj(x) = - (q _1)_1 F(x)a~..q2>jajbjiui(X). (65) 
j ij 

Multiplying by Ur2Ui and integrating with the help of 
(60), the equations of motion become 

~ 

Gl(t) = - (q - l)~laij"" 6 Kjbjiaj . 
j=O 

(66) 

No approximations have been made in deriving (66), 
which gives an infinite set of nonlinear equations for 
the time dependent amplitudes. In this form, (66) is 
actually harder to solve exactly than the original non­
linear equation. However, it is not difficult to obtain 
approximations to the bji's which permit progress to 
be made. 

Assuming that m(x, t) does not vanish in the interior 
of (0,1), the product in (64) can be expanded as 

[ 
~ ,r"" 

[aouo(x) f-2 E ajui(x)J '" 1 + (2 - q);dx, t) 

+ 1/2(2 - q)(1- q)x2(X, t) + ... , 

where 
~ 

X(x, t) =6 aiu/aouo. 
i=l 

(67) 

(68) 

We will assume that the expansion (67) converges and 
that the first two terms are dominant. 

To obtain a first approximation to ao(t) for finite am­
plitude perturbations, we must retain terms to O(a/), 

j * 0, in (66) for i = 0, Since the right-hand side of (66) 
is of order bjia;, we only need to retain O(aj ) in com­
puting bjo • Furthermore, to obtain ai (i *0) correct to 
O(aj ), j * 0, in (66), we only need to retain terms of 
0(1) in bji as is easily seen. Then retaining terms to 
the specified order, we find 

() _ 2-q 11 ,Q-3 
bji t _Oji+-(t) dX110 UjUiFz_laZuZ +O(akaZ)···. cao , 0 -

(69) 
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The most important special cases of (69) are, for i = 0, 
when 

(70) 

and, for i * 0, j * 0, when 

(71) 

In (69)-(71), k and l satisfy 1::; k, l::; 00. 

Substituting (70) and (71) into (66), we find 

(72) 

and 

(73) 

where Pi is given by Eq. (40). 

Equation (73) can be integrated to yield 

ai(t)::: ai(O) exp [- :~\ i t a~""(t) dt l (74) 

If ao is nearly constant for small t, then 

(75) 

Therefore, the perturbations of finite amplitude decay 
exponentially at times short enough for ao to be approxi­
mately constant. 

Substituting (75) into (72) and integrating, ao is found 
to be 

(76) 

and 

00 

xB[a1(O)-aW)] forq*2o (77) 
/=1 

The linear case has q = 2, and in that case (76) is ex­
act. Equation (77) is the principal result of this section. 
Since a/(t) vanishes exponentially from (75), the asymp­
totic time dependence of ao for q * 2 is 

ao(t) :::Ao[l- rt/T]l IT, (78) 

where r=q - 2, 

(79) 

and 

T = (q _ l)AiiX -1; 

cf. Eqs. (14) and (17). 

In general, an arbitrary initial distribution of par­
ticles satisfying the boundary conditions will decay into 
the separable solution. Furthermore, Eq. (79) predicts 
the amplitude of the asymptotic state. Ao can be cal­
culated from the initial values of the pseudodensity rn 
if S =Uo is knowno This conclusion follows from the fact 
that the integrals 

(80) 
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1 00 

.fa F(x)u·-2 (X)1II 2 (x, t) dx = c B a2(t) '" cB(t), 
i=O 

(81) 

and 

.fa1 F(x)u~(x) dx = c (82) 

can be found numerically if !fo and In are known. 

Certain features of the preceding analysis should be 
given some additional attention before proceeding to 
some numerical examples. 

First, the principal approximation involves the ex­
pansion in (67). This expansion converges for all x 
when 2 - q 2:: 0 and for all x except x's for which II1(X, t) 

= 0 when 2 - q < O. The convergence may be quite slow, 
however, when 2 - q« - 1. Thus, we may argue that the 
approximations we have made are valid for 1::; q ::; 3 
but will become less reliable for q> 3. 

Second, notice that it should be possible to obtain a 
linear stability argument from this analysis by taking 
I a j 1« ao for i * 0 and setting ao(l) = T(I) as given in Eq. 
(14). This is easily done by substituting T for (10 in (74) 
and integrating, We find that, within a multiplicative 
constant, a/(I) is again given by (39), as we would ex­
pect. Since these results are independent of the detailed 
behavior of F(x), we can conclude that the conjectures of 
stability for 1 :os q :os 3 in earlier parts of this paper are 
true for all physically reasonable choices of F(x). How­
ever, because of the convergence questions raised in 
the previous paragraph, it is still questionable whether 
the separable solution is stable for all admissible F(x) 
and q" 3, 

Finally, we remark that the existence of the approxi­
mation (79) for the asymptotic amplitude is rather sur­
prising. Except for the approximation in (67), the argu­
ments leading to (77) are short time approximations. It 
is not obvious that letting t - 00 in (77) should result in 
an expression for ao(l) which has exactly the right 
asymptotic character eWe interpret this result to mean 
that, for this class of quasilinear equations, the solu­
tion of the initial boundary value problem is always 
close to the separable solution except for cases with 
extreme initial conditions. 

B. Numerical comparisons 

To demonstrate the accuracy of the amplitude pre­
diction given by (79), the formulas were evaluated nu­
merically for /j = - ~ with F(x) = 1 and were compared to 
the results of numerical experiments. 

In order to make this comparison, a test to deter­
mine how closely the particle distribution approximates 
the separable solution is required. First note that if 
the density is in the separable solution then 

(83) 

from Eq. (27). Recalling that for /j < 0, the separable 
solution vanishes in a finite time, what that time will 
be can be predicted using (17). The time at which the 
density is zero everywhere in a numerical experiment 
may be called the experimental termination time and 
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is given by 

tE = t + 2A-1[N(t)/y ]1/2. (84) 

The constants A and yare known exactly (see Table I). 
The number tE will not remain a constant during a nu­
merical experiment unless the density is in the sepa­
rable solution. However, as the perturbations decay, 
tE rapidly approaches a constant. When tE is stationary 
within some desired degree of accuracy, the perturba­
tions are negligible to that degree of accuracy. 

A gross estimate of the termination time can be found 
from the initial density distribution by finding tE at 
t=O, 

(85) 

Equation (85) is only an order of magnitude estimate. 

The theoretical estimate for the termination time 
obtained from (79) is easily shown to be 

The numbers B(O) and ao(O) can be obtained from the 
initial distribution using (80)-(82) at t = O. 

(86) 

The results of these calculations are compared in 
Table 110 The values of tE in the numerical experiment 
were stationary to six Significant figures by t = 0.10. 
The order of magnitude estimate to is seen to agree 
with tE to two and sometimes three Significant figures. 
The theoretical estimate tT agrees very well with tE 

being accurate to three and sometimes four Significant 
figures. The approximations made in part A of this sec­
tion are therefore valid to a satisfactory degree of ac­
curacy in this particular case. Similar comparisons 
could be made for other values of 0 to check the accu­
racy of the predictions in general. Such a systematic 
study will not be carried out here. 

VI. CONCLUSIONS 

We have shown that for the geometry free case 
[F(x) = 1] the qualitative behavior of plasma diffusing 
across a magnetic field can be successfully modelled 
using Eq. (6) and zero density boundary conditions 
when 0 > - 1. The principal effect of the geometrical 
factor F(x) is to make the separable solution shape 
function asymmetrical. A second effect of the geometry 
is to modify the eigenvalue A [see (31) J. Since the rate 
at which plasma escapes from the containment device 
depends on A, F(x) also determines how long it takes 
for all the particles to escape. 

When F(x) = 1, the separable solution has been shown 
to be stable against infinitesimal perturbations for all 
0> - 1. The slowest decaying perturbation to the pseu­
dodensity m(x, t) =S(x)T(t) has time dependence T4(tl. 
Thus, all perturbations decay at least four times faster 
than the separable solution. For finite perturbations 
an approximate analysis valid for all F(x)'s being con­
sidered [see Eqs. (8) and (9)] shows that initially the 
perturbations decay exponentially for all 0 > - 1. Fur­
thermore, an estimate (79) of the asymptotic separable 
solution amplitude was obtained. For 0 = - t, this es­
timate satisfactorily predicts the time it takes for all 
particles to escape in numerical diffusion experiments. 
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TABLE II. Values of the termination time from the order of 
magnitude estimate to [Eq. (85)] and the theoretical estimate 
tT [Eq. (86)] are compared to the value of tE [Eq. (84)] found 
in numer ical experiments for (, = - }. The initial distribution 
of the pseudodensity is given by m(x, 0) = "'2'l:oa z sin(Z + 1hrx .with 
the four cases of (al,a2,a 3 ,a4) equal to: (i) (1,0.4,0,0). 
(U) (1,0,0.3,0), (iii) (1,0,-0,3,0), and (iv) (1,0,0,0.225). 
The value of tE in the numerical experiment was constant to 
six figures by t = 0.1. 

Case to tT tE 

0.1873 0.1825 0.1847 
ii 0.1815 0.1675 0.1677 
iii 0.1815 0.189:3 0.1895 
iv 0.1782 0.1762 0.1762 

When F(x) * constant but symmetric, stability has 
been rigorously established for 0 ~ - t and is conjec­
tured for all 0> - 1. 

We conclude that the solutions of the model diffusion 
equation (6) behave qualitatively the same as plasma 
particle density diffusing across the magnetic field of 
a toroidal multipole. Stability of the separable solution 
is assured on theoretical grounds for B ~ - ~. A detailed 
comparison with toroidal octupole experiments will de­
termine whether the quantitative predictions concerning 
the shape function and decay rate are also in agreement. 
Such a comparison is made and favorable agreement is 
found in Ref. 3. 
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Global structure of the "Kantowski-Sachs" cosmological 
models 
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A discussion is given of the "Kantowski-Sachs" cosmological models; these are defined locally as 
admitting a four-parameter continuous isometry group which acts on spacelike hypersurfaces, and which 
possesses a three-parameter subgroup whose orbits are 2-surfaces of constant curvature (i.e .• the models 
possess spherical symmetry, combined with a translational symmetry, and can thus be regarded as 
nonempty analogs of part of the extended Schwarzschild manifold). It is shown that all general relativistic 
models in which the matter content is a perfect fluid satisfying reasonable energy conditions are 
geodesically incomplete, both to the past and to the future, and that at each resulting singularity the fluid 
energy density is infinite, In the case where the fluid obeys a barotropic equation of state (which includes 
all known exact perfect fluid solutions) the field equations are shown to decouple to form a plane 
autonomous subsystem, This subsystem is examined using qualitative (Poincare-Bendixson) theory. and 
phase-plane diagrams are drawn depicting the behavior of the fluid's energy density and shear anisotropy 
in the course of the models' evolution. Further diagrams depict the conformal structure of these universes, 
and a table summarizes the asymptotic properties of all physically relevant variables. 

1. INTRODUCTION 

In the study of spatially homogeneous cosmological 
models in general relativity, it is customary to formu­
late the subject in terms of the Bianchi classification, 
or of some modification of this (see, e. g., Ref. 1). 
This classification is based on the original works of 
Bianchi, who gave the first canonical reduction of three­
parameter Lie groups. In general relativity, Lie groups 
most frequently appear when one postulates that the 
metric gab be invariant under a continuous transforma­
tion. The infinitesional generator of this transformation 
is known as a Killing vector, and the set of all conti­
nuous transformations that leave invariant a given 
metric forms a Lie group, known as an isometry group. 
Spatial homogeneity of a cosmological model is defined 
by requiring that (locally) the space-time be invariant 
under an isometry group which acts transitively on 
spacelike hypersurfaces. 

For simplicity, we shall assume that the matter con­
tent of the models consists of a perfect fluid, satisfying 
the Einstein field equations with zero cosmological con­
stant A. In this case the energy-momentum tensor Tab 

can be written in the form 

Tab = (j..1. + P )Uallb + Pf{ab, 

where u is a unit timelike vector tangential to the fluid 
flow lines, J1. > 0 is the total energy denSity, and P is 
the isotropiC pressure of the fluid. We shall also assume 
that the fluid obeys an equation of state of the form p 
= p(J1.), satisfying the plausible inequalities 0:5 P :5 J1. 
and O:5dp/dJ1.:51. Under these conditions, the vector 
field u can be characterized as the unique timelike 
eigenvector of the Ricci tensor Rob' 

Suppose that a cosmological model is spatially homo­
geneous. Then it is invariant under an r-parameter 
isometry group Gr whose orbits are space like hyper­
surfaces (so that r? 3). At any point q on any such 
hypersurface 5, there are three nonzero linearly in­
dependent Killing vector fields tangent to 5, and, if 
r"> 3, there are additional linearly independent Killing 
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vector fields tangent to 5, but which vanish at q. In this 
last case there is a continuous isotropy group Hq , which 
consists of those transformations that are isometries 
leaving the point q fixed. Each such transformation, h 
EO Hq , will generate a Lorentz transformation in the tan­
gent space, Tq , of q, and this will leave invariant all 
intrinSically defined vectors in To. Thus II acts in the 
subspace of To orthogonal to u, and so Ho is either one­
or three-dimensional; consequently, if r', 3, then 
either r = 4 or r = 6. If r = 6, the spacetime is not only 
spatially homogeneous but also spatially isotropic, and 
belongs to the Friedmann-Robertson-Walker class. 1 

If y = 4, the spacetime is locally rotationally sym­
metric. 2,3 If either r = 4 or r '=- 6, then, in (Ill but Olle 

case, the full isometry group Gr admits a three-param­
eter subgroup which acts transitively on spacelike hy­
persurfaces, and the corresponding space-times can 
be regarded as being Bianchi models possessing addi­
tional symmetries. The exceptional case arises for the 
following reason. Any four-parameter Lie group G4 

admits a three-parameter subgroup G3 , whose orbits 
are either two- or three-dimensional. 4 In the latter 
case, the space-time belongs to the Bianchi class. In 
the former case, the orbits are necessarily of constant 
curvature. If this curvature is zero or negative, then it 
can be shown4 that the group G4 admits a second three­
parameter subgroup, whose orbits are three-dimen­
sional (so the space-time belongs to the Bianchi class), 
but if the curvature is positive there is no such sub­
group, and G3 is isomorphic to SO(3, lR), or Bianchi 
type IX. Although the detailed proofs of these state­
ments have already been given by Kantowski,4 this re­
ference is not immediately available, and so similar, 
but slightly improved, versions are presented in Ap­
pendices A and B, where it is also shown that the four 
linear ly independent Killing vectors ~l' ~2' ~3' and 'T/ 
can be chosen so that their Lie algebra is given by 

(1. 1) 
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The three Killing vectors ~1' ~2' ~3 generate the sub­
group G3 with two-dimensional orbits. Appendices A 
and B are also given for didactic purposes, to exem­
plify the use and formalism of Lie group theory. 

Perhaps the most familiar space-time admitting a 
four-parameter Lie group with Lie algebra (1. 1) is the 
Schwarzschild solution, although here the vector field 
1] is time like outside the event horizon. The vectors 
~h ~2 and ~3 generate the spherical symmetry of the 
model. That part U of the analytically extended 
Schwarzschild space-time inside the event horizon has 
exactly the same symmetries as the models presently 
being discussed, since then all four group generators 
are spacelike. In effect, what we shall now do is to 
investigate what (nonempty) cosmological space-times 
locally possess the same symmetries as that of the re­
gion U of the extended Schwarzschild solution, and then 
analytically extend the resulting manifold to obtain its 
global structure. Space-times so determined are known 
most commonly as the Kanfowski-Sachs models, follow­
ing the studies by Kantowski and Sachss in the case 
where the matter content is dust (i. e., incoherent mat­
ter, with equation of state p = 0), and by Kantowski4 in 
the case where the matter content is dust (p = 0), radi­
ation (ultrarelativstic Fermi gas, with equation of state 
P=tfl) or Zeldovich's "stiff' matter (with equation of 
state p = fl). Despite this nomenclature, such model 
universes appear to have been studied first by 
Kompaneets and Chernov, 6 in the case of dust and radi­
ation. (I thank Dr. L. P. Grishchuk for informing me 
of this fact. ) Further discussion of the Kantowski­
Sachs models, including exact solutions, is given in 
the case of dust by Ellis2 and Thorne,7 of Zeldovich 
stiff matter by Thorne, 7 of a general perfect fluid by 
Stewart and Ellis, 3 of a perfect fluid and an electro­
magnetic field by Doroshkevich, B Thorne, 9 and Stewart 
and Ellis, 3 and of a pure electromagnetic field (the 
Berfotti-Robinson solutions) by Bertotti, 10 Robinson, 11 

Stewart and Ellis, 3 and Thorne. 7,12 Ellis13 has discussed 
the various topological structures that are possible in 
the Kantowski-Sachs models. 

In the present article it is shown that certain features 
exhibited by the known exact solutions are in fact gen­
eric properties of the model. The most interesting such 
feature is that any perfect fluid model will be geodesic al­
ly incomplete both to the future and to the past, and that 
the energy density of the fluid becomes infinite at both 
of these singularities. 

In Sec, 2, we give the general form of the metric 
with the symmetries (1.1), together with the field equa­
tions. In Sec. 3, it is shown that all perfect fluid mo­
dels possess both a past and a future singularity, at 
which the fluid's energy density becomes infinite. In 
Sec, 4, we examine the case where the perfect fluid 
obeys a barotropic equation of state of the form p 
= (')1- 1) fl, where 1 :5 ')I :5 2, and show that for each value 
of ')I there are special models in which the fluid shear 
remains finite at the singularity, and that there are 
also models which are time symmetric about the mo­
ment of maximum expansion. Diagrams are drawn de­
picting the variety of possible types of evolUtion, and 
conformal representations of the models are given. A 
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table summarizes the character of the different types 
of singularity, by exhibiting the asymptotic time depen­
dence of all physically relevant variables. Section 5 
draws the conclusions. 

2. THE METRIC AND THE FORMALISM 

We shall be concerned with the Kantowski-Sachs 
metric which admits four spacelike Killing vectors, 
~b ~2' ~3' and 1], with Lie algebra (1.1). Since the 
space-time is spherically symmetric, it follows that 
there are coordinates {f, r, 8, ¢} such that the orbits of 
the Killing vectors ~h ~2 and ~3 are the 2-surfaces 
{f, r=const}, in which the metric takes the form14 

dt2 
ds2 =-~ +)(I.(f, r) dr- + y2(t, r)(d82 + sin28d¢2), 

where the coordinates (t, r) are chosen in each two­
surface {8, ¢ = const} so that they are orthogonal [i. e. , 
(a/af)' (a/ar) = 0], but are otherwise arbitrary. Since 
the vector field 1] is invariantly defined, it lies in the 
two-surfaces {e, ¢ =const}, and we can choose the (f, r) 
coordinates so that 1]=N(f, r, 8, ¢)a/ar. From Killing's 
equations we obtain N =N(r), so, by redefining r, we 
have 1] = a far, i. e., without loss of generality, N = 1. 
Killing's equations then necessitate F=F(f), X =X(t), 
and Y = Y(t), and, by redefining t, we have, without 
loss of generality, F = 1. Thus the final form of the 
Kantowski-Sachs metric is 

and the field equations are 

2XY 1+}-2 

and 

XY +-yz-=J1, 

2Y 1 + y2 
-y+--yz=-P, 

.. 
X Y XY 
X+Y+XY=-P' 

(2.2) 

(2.3) 

(2.4) 

where a dot denotes differentiation with respect to f. 
Equations (2.2)-(2.4) are compatible if and only if the 
conservation equation 

( X 2Y) P-+(J1+p) X +-y =0 (2.5) 

is satisfied, by virtue of the Bianchi identities. 

These field equations can be expressed as constraint 
and propagation equations for the volume expansion 
8 = X/X + 2Y /Y and shear tensor, ali' which, with re­
spect to any orthonormal frame whose" 1" -direction is 
aligned along alar, is of form ali =diag(2a/v'3, - a/v'3, 
- a/v'3), where a= (1/v'3) (X/X - Y /Y). Thus 

B+t82 + 2a2 +HJ1 + 3p) = 0, 

u + a8 - (1/v'3)/l'" = 0, 

t82 _ J + 1/l'" = fl, 

together with 

Equation (2.6) is the familiar Raychaudhuri's equa-

C.B. Collins 

(2.6) 

(2.7) 

(2.8) 

(2.9) 
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tion15
•
16 of relativistic cosmology, 17 whereas Eq. (2.8) 

can be derived from the Gauss-Codacci equations re­
lating the curvature tensor of the space-time to that 
of the hypersurfaces {t = const}, which therefore have 
Ricci scalar R* = 2/y2 > O. 

Any metric (2.2) of our class (i. e., containing a per­
fect fluid with /l> 0, 0:5 P :5 /l, and 0:5 dp / d/l :5 1 and 
obeying Einstein's fluid equations with A = 0) is neces­
sarily of Petrov type D (22) and not any specialization 
thereof. This is proved in Appendix C. 

The covering manifold of the space sections {t 
= const} of the Kantowski-Sachs metric has topology 
52 x Rl. One can obtain other topologies13 by (a) a iden­
tification of points under a translation in the JR1 (i. e. , 
7) direction, or under a translation in the R1 direction 
together with a rotation or a reflection, (b) an identifi­
cation of antipodal points in each 52 {t, r = const}, and 
(c) a combination of (a) and (b). 

3. SINGULARITIES-PAST AND FUTURE 

If we define a characteristic length scale 1 by l3 =xy2 
(so e = 31/Z), it follows from Raychaudhuri's Eq. (2.6) 
that 

3i'/l+2()"2+i(/l+3p)=0. (3.1) 

Suppose that there is a time to such that eo = e(t 0) > O. 
Then, if lo=l(to), /lo= /l(to), and Po=p(to), it follows 
from the energy conditions 

and from (2,9) that 

(3.3) 

whenever 0 < 1 :5l o. Since (3.1) shows that 1 < 0, we 
deduce that 3 T1 <to such that l-O and /l_oo as t-T1+, 
prm'ided that t can be extended that far. It is conceiv­
able that there is an intervening singularity which 
prevents us from extending the model as far back as 
time t = T 1 • Such a situation is exemplified in the 
case of the Friedmann-Robertson-Walker models 
by simply cutting out and discarding a region 1-(5) to 
the past of any Cauchy hypersurface 5 or, less arti­
fiCially, in the case of certain anisotropic cosmological 
models by the onset of a milder type of singularity, 
where /l is finite. 18 In order to circumvent any "arti­
ficiaf' Singularity, we shall simply assume that if it 
is possible to extend the universe to earlier times, then 
the universe is so extended: L e., we assume that the 
manifold is inextendi ble. We now show that with this as­
sumption there are no other" intervening" singulari­
ties; that is, if l(t) is bounded away from zero at time 
T, it is possible to extend the space-time to values of 
t< T. 

Theorem 1: If 3 to such that lo = l(t 0) > 0 and i (to) > 0, 
then the Cauchy data for the field equations on the hyper­
surface t=to is regular, and the model can be extended 
back to earlier times t:5 to. 

Proof: The proof of the theorem divides into two 
parts, depending on whether or not Yo = Y(t o) is zero. 
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We show first that the case Yo = 0 is untenable, and 
then proceed to examine the case Yo> O. 

Suppose that Yo = O. Then Y - 0+ as t - to+. By in­
equalities (3.2) and (3.3) it follows that /lo = /l(to) and 
Po =p(to) are bounded. By Eq. (2.3), if Y is ever zero, 
then Y < 0, and so as Y approaches zero it cannot do so 
in an oscillatory fashion; thus 3 t1 > to such that Y> 0 
for all t ~ (to~ t1 ). Choose t2 E: (to, t1 ), and write Y2 = Y(t2) 
> 0 and Y 2 = Y(t2)' By Eq. (2.3) it follows that 

d • 
dY (Yi'2) = - (1 + py2) (3.4) 

and hence 3 K 2: 1 such that 

Y2(1 + Y1) - y:5 yyZ:5 Y2(K + i1) - KY 

whenever Y.<Y2' Consequently, Y_+oo as t-to+, and, 
a fortiori, Y/y_+oO as t-to+. Recalling that /l is 
bounded, it follows that for all <: satifying 0 < <: < 3, 
3 t3 E: (to, t2) such that 

I /l _l/y2! < <:y2/y2 

for all t E: (to, t3). USing Eq. (2.2), we obtain 

/l - 1/y2 + 3y2/y2 < (3 )Y y 
Y /Y + <: / 

for all t E: (to, t3 ). Since Y - 0+ as t - t 0+, it follows that 
1 - 0 as t - t 0+, which contradicts our assumption that 
l(to) > O. Hence, if l(to) > 0, it follows that Yo = Y(to) --> 0. 

Now suppose that l(to+) > 0 and Yo=Y(to+»O. Since 
l3 =XyZ, it follows that X(to+) > 0, and X(to+) is finite. 
By the inequalities (3.2) and (3.3), both /lo = /l(to+) and 
Po=p(to+) are finite. From Eq. (2.3) we again see that 
y = 0 implies Y < 0, and thus if Y(to+) = 0, then 3 t~ > to 
suchthatl(t~+»O, Y(t~+»O and Y(t~+);"O, i.e., with­
out loss of generality, Y(to+);" O. From Eq. (2.2), it 
follows that X(to+) is finite. USing (2.3) and (2.4), we 
see that X(tv+) and Y(to+) are bounded. Finally, from 
Eq. (2.5) we find that i;.(to+), and hence p(to+), is finite. 
Consequently, the metric components, X and Y, the 
components X/X and Y /Y of the second fundamental form 
of the hypersurfaces {t = const}, and the fluid's energy 
density and pressure are all regular for t 2: to. By our 
assumption of extendibility, the fact that the Cauchy 
data is well defined on t = to means that the model can 
be extended to values of t :5 to. This completes the proof 
of the theorem. 

We shall now show that every model of our class is 
geodesically incomplete both to the future and the past. 
This is achieved by showing that, unless a singularity 
intervenes, Y(t) tends to zero in the finite future and in 
the finite past and then by recalling from Theorem 1 
that if Y - 0, then 1 - O. 

Theorem 2: The perfect fluid Kantowski-Sachs models 
are geodesically incomplete both to the past and future. 
At the associated singularities, /l-+oo, e_±oO, and 
either R* - Rt > 0 and ()" - ± 00 or R* - + 00 (Rt is a 
constant). 

Proof: Equation (2.3) shows that if Y is ever zero 
and l;" 0, then Y < ° at that time (and so a maximum of 
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Y = Y(t) is achieved). We show first that if 3 to such 
that Yo'" Y(to) > 0 and Yo'" Y(to) > 0, then it is impossible 
to have Y > 0 for all t?: to, and conclude that the only 
alternative is that 3 t1 > to at which Y(tl) = 0, l(tl) *" 0, 
in which case a singularity is encountered at some later 
time, at which 1=0. 

Suppose that l' > 0 for all t?: to. By Eq. (3.4) we have 
(yy2)' = _ Y(l + py2) :: _ Y, and hence Y(l + 0) 
:: Yo (1 + Y~) for all Y?: Yo. Hence Y is bounded above by 
Y o(1 + ~). Since Y> 0, it follows that 3 Y> 0 such that 
Y - Y - as t - + 00. Define a new time variable T by T 

=Jt t(1Iy1
/ 2 )dt. Since Y-Y- as t-+oo, it follows that 

T - ~ 00, and, from Eq. (2.3), that ~y IdT2:: i for T?: O. 
Thus Y:: - tT2 + YoT + Y o- - 00 as T - + 00, and this con­
tradicts our assumption that Y> 0 for all t?: to. It is 
therefore false that l' > 0 for all t?: to; consequently, 
assuming that the manifold is inextendible, either 3 a 
time tl >to such that Y(t1-)*" 0 and l(tl-) =0, or 3 a 
tjme t2 > to such that Y(t2) = 0 and 1(t2) *" 0, in which case 
Y < 0 for t?: t2, and so 3 a time t3 > t2 such that Y(t3-) 
= 0 [and the time reverse of the argument in the proof 
of Theorem 1 shows that 1(t3-) = 0]. Hence, we have 
shown that if 3 to such that Yo'" Y(to) > 0, then there is 
a singularity to the finite future of to, at which 1- 0 
(and so IJ = 3i II - - 00), and, by the inequalities (3.3), 
at which /J.- + 00. It also follows that there is a singular­
ity to the finite past of to, since Eq. (2.3) shows that 
Y < 0, and, by our extendibility assumption and the 
arguments in the proof of Theorem 1, the only possi­
bilities are that 3 t4 < to such that Y(t4+) '* 0 and 1(t4+) 
= 0, or 3 ts < to such that Y(t s+) = 0 and l(ts+) = O. At 
this past Singularity, 1- 0, IJ = 3i;1- + 00, and /J.- + 00. 

The time reverses of the above arguments show that 
if 3 t; such that Y(t~) < 0, the same qualitative conclu­
sions hold: There is a singularity to the finite future 
and finite past of t~, at which /J. - + 00 and IJ _ ± 00. 

In order to determine the possible behaviors of the 
fluid shear a and the Ricci scalar R* of the hypersur­
faces {t = const}, we first recall that if Y = 0 and 1,* 0, 
then, by Eq. (2.3), Y < 0, and so R* = 2/y2 cannot oscil­
late. Hence either R* - + 00 at the singularity, or R* 
approaches a finite limit. In this last case, R* cannot 
tend to zero, since this would require Y - + <YO, which, 
as we have already seen, is impossible. For any sin­
gularity at which R* tends to a finite (nonzero) limit, it 
follows from Eq. (2.7) that without loss of generality 
we can consider a time tl to the future of which a does 
not change sign, and so 3 K> 0 such that - K 
< [In(a13) r < K for all t?: t1 • Writing al '" a(tl), 11 '" l(t1 ), 

we obtain exp[ - K(t - tl)]:: a13 I al1f:: exp[K(t - t 1 )] for 
t ?: t17 and so, at the singularity to the future of t1 , a13 

is bounded away from zero, Le., a-±OO. A similar 
argument shows that when R* is finite, a - ± 00 at the 
Singularity to the past of t1 • This completes the proof 
of Theorem 2. 

In the next section we examine the subclass of models 
in which the equation of state is barotropic, and obtain 
examples of models with Singularities at which R* - Rt 
> 0 and a - ± 00, and of models with singularities where 
R* - + 00 and either a -± 00 or a- ao, where ao is a 
constant (possibly zero). 
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4. QUALITATIVE ANALYSIS OF THE MODELS 

We shall consider in this section those Kantowski­
Sachs models in which the perfect fluid content obeys 
a barotropic equation of state, of the form p = (y - 1) /J., 
where y is a constant. For values of y lying in the range 
1 :: y :: 2, this equation of state is thought to be physical­
ly plausible. Of particular interest are the cases y = 1 
(dust), y =4 (radiation) and y = 2 (Zeldovich stiff matter). 
We shall describe the models in terms of variables (3 
and n, defined by X", exp(- n + (3) and Y '" exp(- n - (3/2) 
(and hence 1'" (Xy2)1/3 '" exp(- n)). The quantity (3 is re­
lated to the fluid shear by a=i13(3. The variable n 
will be used as a time variable, and a prime will denote 
differentiation with respect to n; this description will 
then be valid except at the instant when n = 0, i. e. , 
when the universe stops expanding and be.gins to con­
tract. The fluid expansion rate is IJ = - 3n, the dyna­
mical importance of the shear is measured by allJ 
= (- 1/213)(3', and the dynamical importance of the 
fluid by x = 3/J./1J2 = /J./3n2 • This notation agrees with 
that of previous works of a similar nature. 19-21 

The first step is to reexpress the field equations 
(2.3)-(2.5) in terms of coupled first-order differential 
equations with two dependent variables, 13' and x, and 
with independent variable, n. Equation (2.2) becomes 

13'2 + 4x - 4 = (4/3n2) exp(2n + (3). 

The ii terms are eliminated from (2.3) and (2.4) to 
obtain 

(3" =%13 '(4 - (3 '2) - ~(3 'x(y - 1) + (2 - i(3 ~ 

. (1/3s"i 2 ) exp(2n +(3). 

Substituting for the exp(2n + (3) term from (4. 1) into 
(4.2), we have 

(4.1) 

(4.2) 

(3" =i(3'[4- (3'2 - (3y- 2)x] - H4 - (3f? - 4xJ. (4.3) 

Equation (2.5), together with the expression for n ob­
tained by eliminating the (3 IF terms from (2.3) and (2.4), 
yields 

(4.4) 

Equations (4.3) and (4.4) are exactly the same as the 
equations obtained in Ref. 19 for the locally rotationally 
symmetric Bianchi Type III models (where, in the nota­
tion of Ref. 19, C = k = 1). These equations form a plane 
autonomous system of ordinary differential equations, 
and the qualitative behavior of the solutions can be 
sketched in the x-(3' phase plane (for a description of 
this procedure, and for its applications to general re­
lativistic cosmology, see Refs. 18-24, and references 
cited to the standard literature). The resulting diagrams 
are, however, distinct from those of Bianchi type III, 
since in that case the region of interest is {(x, (3 ~ : x > 0 
and (3'?' + 4x - 4 < O} whereas here we shall be interested 
in the region {(x, (3') : x > 0 and (3 '2 + 4x - 4 > O}. This is 
evident from Eq, (4.1), and is directly related to the 
fact that in this case R* > 0, whereas for Bianchi type 
III, R* < 0; and more indirectly from the observation 
that the two classes of models can be related by a com­
plex transformation4 which involves X -X, Y - iY, and 
hence the transformations (3-(3-i1T13, n-n-i1T13. 
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x x 

x x 

- 2 [......iE:::::::-----

(ro2l 

FIGS. 1-4. Qualitative description of the evolution of the Kantowski-Sachs models, in the case where the matter content is a per­
fect fluid obeying the equation of state p = (I' -1)1l for the following (constant) values of I' : 1 oS I' <4 (Fig. 1), Y =} (Fig. 2), ~ < Y < 2 
(Fig. 3) and 1'=2 (Fig. 4). Each diagram refers to the evolution for a fixed value of 1', and each curve represents this eVblution for 
a fixed set of initial conditions. The variable x = 31l/02 measures the relative dynamical importance of the matter, and the variable 
(3' = - 2/"3(u/e) measures the relative dynamical importance of the fluid shear. The fact that the curves extend to infinite values of x 
signifies that the !1 variable ceases to be valid at the time of maximum radius I =Xl/3y2/3 = e..(J. The entire course of evolution is 
indicated by associated types of arrows. The time reverse of any of these models is also feasible. There is, for each value of 1', 
one model that is time symmetric; This is denoted by a solid arrow (- ) in the figures. 

The discussion now divides up into the two cases 
1 S Y < 2 and y = 2, since in the special case y = 2, Eqs. 
(4.3) and (4.4) become 

(3"=t((3' -1)(4- 4x-i3l'2) 

and 

x' =x(4 - 4x - (312); 

this means that when y=2, (13' _1)2 =Kx (where K""- 0 
is constant) is a first integral, and that the integral 
curves of the system (4.3) and (4.4) are generically 
parabolas in the x-{3' plane. 

The integral curves of the system (4.3) and (4.4) are 
drawn in Figs. 1-4. Each diagram is drawn for a sin­
gle value of y, and represents the evolution of the class 
of models for that value of ')I, under a variety of initial 
conditions. Slightly different qualitative pictures emerge 
for values of y in the range 1 Sy<i (Fig. 1) y=i (Fig. 
2) and i < Y < 2 (Fig. 3), whereas there is an entirely 
different pattern of evolution if y = 2 (Fig. 4). In each 
diagram the integral curves extend out to infinitely large 
values of x (and, usually, of (3'). The interpretation of 
this is that the n variable has ceased to be valid, since 
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x - + 00 corresponds to n - 0-, and that the universe 
model has halted its expansion, and is about to contract. 
Apart from certain special cases, the fluid shear, a, 
will be nonzero at such a time, and so {3' will be infinite. 
If, for instance, 13' - + 00 at this time, then, since a is 
continuous, this means that the continuation of our model 
into the contraction era is depicted in Figs, 1-4 by {3' 

being large and negative. For this reason, the arrows 
in the diagrams depict the entire course of evolution 
(expansion and contraction), despite the fact that n is 
not a valid time variable throughout, although it should 
be recalled that the time reverses of these models are 
also feasible. 

In each diagram it can be observed that, for one inte­
gral curve, {3' remains finite as x - + ,:". This requires 
that the fluid shear approach zero as n - 0-, and has 
the interpretation that the model is time-symmetric or 
"momentarily static.,,7 

The general features of the singularities are as 
follows. In the case 1 s')I < 2, the models generically 
have either one" pancake" singularity (X - 0, Y - Yo:" 0, 
where Yo is a constant) and one" cigar" singularity 
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= matter singularity 
-- homogeneous hypersurface 
--_--- geodesic nor ma I and 

fluid flow line 

= matter singularity 
-- homogeneous hypersurface 
___ -- geodesic normal and 

fluid flow line 

FIGS. 5 and 6. Conformal ("Penrose") diagrams of the totally geodes ic timelike 2-surfaces {e, c/J = const} with metric induced by 
(2.1): 

ds2 = _ dt2 = X2 (t)dr2 • 

Null lines are drawn at ± 45° and infinite distances are rescaled to finite coordinate values. Figure 5 displays the evolution of mo­
dels whose singularities are points, barrels, or cigars. Figure 6 displays the evolution of those models which possess one pan­
cake singularity, and indicates how particle horizons are thereby removed in the preferred a/ar direction of the pancake. 

(X - + 00, Y - 0) or they have two cigar singularities. 
The pancake singularities are represented by the point 
x = 0, (3 '=_ 2, and the cigar singularities by the point 
x = 0, (3'= + 2 in Figso 1-3. At these general singulari­
ties the fluid shear a and expansion rate IJ are domi­
nant in the Raychaudhuri Eq. (206), and the fluid energy 
density J.1. is insignificanL The models which possess 
two cigar singularities can be characterized as those 
in which there is an instant at which the fluid shear 
vanishes. There are also two special models. One of 
these has one" point" singularity (X - 0, Y - 0), at which 
IJ and J.1. dominate in (206) and a is negligible, and the 
other singularity i's a cigar singularity, where a and IJ 
dominate over J.1., These singularities are represented 
by the points (1,0) and (0,2) respectively in the x-(3' 
planes of Figs, 1-3, The other special model is the 
time-symmetric one, which begins and ends in a cigar 
singularity [with a and IJ again dominating J.1., and rep­
resented by the point (0,2) in Figs. 1-3]. 

In the case of a perfect fluid obeying the "stiff matter" 
equation of state p = J.1., the variable (3' can attain any 
asymptotic value (3~, satisfying - 2 < {3~ < 2, with a cor­
responding value of x = 1 - {3 ~ /4; the type of singularity 
depends on whether (3~ ~ 1. The general situation is that 
there is one cigar singularity ({3 ~ :> 1) and one point sin­
gularity ({3~ < 1); at both singularities the quantities IJ, 
a, and J.1. are of equal importance in Raychaudhuri's 
Eq. (2,6). In some, but not all, of these models, there 
is an instant of time at which a = 0. There is one special 
(time-symmetric) solution, given by {3' '= 1, in which both 
Singularities are "barrels" (X -Xo:> 0, Y - 0, where XI) 
is constant), and J.1., (J, and IJ are equally Significant. 
This special solution is not expanding in the X direction 
(a /or), and was first discovered by Thorne, 7 

It is of interest to note that all known exact solutions 
of our class (see references cited in Sec. 1) possess 
Singularities as described above, and that the evolution 
of some of the dust, radiation, and stiff matter models, 

TABLE I. This table summarizes the nature of the Singularity, and gives the asymptotic behavior of all physically relevant vari­
ables: the fluid density /l, the fluid expansion e, the fluid shear (T, the average length-scale l, in the rest space of the fluid, the 
length-scales II = X and lz ~ Y, in the directions parallel and orthogonal to the a/ar direction, the integrated shear {3, and the Ricci 
scaler R *, of the spatially homogeneous hypersurfaces {t = const}. In each description the singularity is regarded as a past singu­
larity labelled by t - 0 and! denotes "tends to finite nonzero limit." In the case when a point singularity arises for values of I' in 
the range 1 ::001'< 2, the value of {3 is finite. By relabelling {3, !1 and y it is then possible to regard {3 as tending to zero, without any 
loss of generality. 

Dominant 
terms in 

Value of I' Description of Raychaudhuri 
[p~ (y-1)/l1 (x, (3') s ingulari!l /l e (T II =X l2 = Y (3 R*=2/y2 Eq. (2.6) 

(1,0) Point matter 1ftZ l/t 1/t(4-3r) /r tZ/3r t2/3r t2 I 3r t(2I3r)(3r-2 ) 1/[413r /l,e 2ec 1/t2 

singularity; par-
ticle horizons in 
all directions 

1:01'<2 (0, -2) Pancake matter l/tr l/t l/t tl I 3 t ! lnt ! e2,(T20: 1/t2 

singularity; par-
ticle horizon re-
moved in a/ar 
direction only 

(0,2) Cigar matter l/tr l/t l/t tl I 3 11 t l 13 f2/3 -lnt 1/[4/3 e2,(T2Q 1/t2 

singularity; par-
ticle horizons in 
all directions 

(xo, (30') Point 1ftZ l/t l/t til 3 t<1-/liYI3 t(2+~O)/G -lnt({3o'" 0); 1/t(2+86) f'I /l,e',a2ec 1/? 

1'=2 - 2 < Po' < 2~ (- 2 < Po' < 1), t4/3 (po = 0) 
xo=l-!po' barrel (f3o' = 1), 

or cigar 
(1 < Po' < 2) 
matter 
singularity; par-
ticle horizons in 
all directions 
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graphed and examined numerically by Kantowski and 
Sachs, 4,5 is in agreement with that obtained herein. 

We summarize our findings on the detailed nature of 
the singularities in Table I, and conclude with con­
formal diagrams for the totally geodesic timelike 2-
surfaces {e, ¢ =const} in Figs. 5 and 6. In the case 
where one of the singularities is a pancake, a rather 
distinctive situation arises (see Fig. 6), and is related 
to the disappearance of particle horizons in the direc­
tion of a jar. 

5. CONCLUSION 

We have shown that certain properties of known exact 
solutions of the Kantowski-Sachs cosmological models 
are general features of these models when there is no 
specialization made to a particular equation of state, 
In particular, we have shown that for any physically 
reasonable perfect fluid, there are matter singularities 
to the finite past and finite future, A detailed analYSis 
was carried out in the case where the perfect fluid obeys 
a barotropic equation of state of the form p = (')I- 1) /1, 

and an examination was made of the behavior of all phy­
sically relevant variables (summarized in Table I). 

Although the Kantowski-Sachs models are of a very 
special kind, any may not be applicable as an adequate 
description of the real universe, the results herein are 
regarded as important, since they indicate the caution 
with which any examination of the singularity in general 
relativity should be carried out, and exemplify the type 
of careful argument that will be needed in more general 
situations (cf. Ref. 18). 
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APPENDIX A: THE FOUR-PARAMETER LIE 
GROUPS ADMIT THREE-PARAMETER SUBGROUPS 

Let L be the Lie algebra of the generators Ei (i 
= 1,2,3,4) of a four-parameter Lie group. Thus L is 
given by the commutator relations 

[~i' ~j]=C~jEk' 

where the C~i are the structure constants of the group, 
satisfying 

C~i =qUj 

and 
CLIzC;"}1 =0, (A1) 

which are known respectively as the first and second 
Jacobi identities. The derived algebra L' of L, i. e. , 
the vector subspace spanned by the six vectors ~J ~k 
with the antisymmetric product [ , ], has dimension 
d ~ 4. If d ~ 3, then any basis of L' can be extended to 
a basis of L, in such a way that a three-dimensional 
Lie subalgebra results. The only remaining case, where 
d = 4, does not exist. For in that case L' = L, and the 
six vectors C7j~k span L, which has basis Ej and rank 
(~j) = 4, where (jk) is treated as a single index under 
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the code 1 = (12), 2 = (13), 3 = (14), 4 = (34), 5 = (42), 
6 = (23). Also if f. bce

' is the completely antisymmetric 
symbol (f-

bce
' =t[bce fJ , f-1234 == 1), f-bce'C"., has rank 4. 

Contracting (Al), we have 0(accad]e=0<=>0cdcaae 
= 0 <=> C· ae == 0 (since rank (C!' ii) = 4). Thus 

(A2) 

and so 

tdebcC' C" t = [f-debc C a C' _ 2c-decaCb C' 1 t 
be de 'ita de be v de cb 4ia 

=3£de[bccaldeC'bc~a=0 by (A2). 

Recalling that rank (£bCe' ca.,) = 4, there are four linear 
combinations of the six vectors cabc~a which vanish, 
and hence 4 = dimL' ~ 2, a contradiction. 

APPENDIX B: THE CASE OF THREE-PARAMETER 
SUBGROUPS WITH TWO-DIMENSIONAL ORBITS 

It is well known that if an n-dimensional manifold 
admits a maximal continuous isometry group of in{n + 1) 
parameters, then the manifold is of constant curva­
ture. 25 Consequently, if a three-parameter isometry 
grou.p G has two-dimensional orbits, those orbits are 
of constant curvature, which may be positive, zero, or 
negative. These orbits may be considered as the sur­
faees imbedded in flat three-dimensional space: 

and 

(a) Xl? + X 22 + X 32 
= 1 (positive curvature), 

(b) llXI + l2X2 + l3X3 = In (where li + l~ + l~ "* 0) 

(zero curvature), 

12 22 32 
(c) X + X - X = - 1 {negative curvature}. 

In cases (a) and (b) the metric of the 3-space is ds 2 

= dX
12 + dX?2 + d X 3

2 whereas in case (c) it is the indefinite 
form ds2 = dxl

? + dX22 - dX
32

• The generators EI, ~2' E3 of 
the group G ean be chosen to satisfy the Lie algebra 

where k = + 1 [case (a)], k = 0 [case (b)], or I? = - 1 
[case (c) J. The corresponding groups are of Bianchi 
types VIIo (k = 0), VIII (k = - 1) and IX (k = + 1) (see, 

(B1l 

e. g., Ref. 1). We now show that if this algebra is ex­
tended to a four-dimensional Lie algebra L, then, if 
k = 0 or - 1, L will have a three-dimensional subalgebra 
which is not of type (B1), whereas if k=+ 1 the only 
three-dimensional subalgebra of L is of type (B1) with 
k = + 1. This will suffice to show that if a three-dimen­
sional manifold admits a four-parameter isometry 
group, then it is only in the ease where there is a 
three-parameter subgroup with two-dimensional orbits 
that the manifold will not admit a simply transitive 
group. 

Following Kantowski, 4 we introduce a fourth vector, 
1J, which is an independent basis vector of the Lie alge­
bra L. In addition to (Bll, we must have relations of 
the form 

[T), ;i] =Aj1) + B{~i (i = 1,2,3; summation over 
j = 1,2,3) 
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to complete the Lie algebra. The quantities AI and B{ 
are constants. The second Jacobi identities (B2) yield 
the following equations: 

kA1 =A2 =A3 = 0, (B2) 

Hs - A1.&z + kIif. = 0, (B3) 

B~ -A1B~ +~ =0, (B4) 

Eg - B~ -A1~ - Et =0, (B5) 

kEt - kEg - kB~ = 0, (B6) 

kBr +~ =0, (B7) 

kIif. + ~ =0, (B8) 

~+A1Hs+kB!=0, (B9) 

B~ + A1 B~ - Et - Eg = 0, (BlO) 

and 

~+A1Eg+B~=0. (B11) 

These equations are derived from the relation 
[1], [~1. E2ll+[~b [~2' 7)ll+[~2' [1], ~ln=O, together with 
its two counterparts obtained by cyclic permutation of 

~1' ~2' and e3 • 

Consider first the case where k * O. Then from (B2), 
A1 = 0, and Eqs. (B5), (B6) and (B10) imply Bt = B2 
= ~ = 0; the resulting equations give ~ = - kIif., ~ 
= - kBi and B~ = - ~. Now instead of '1 choose the vector 
7)' = 11- ~ ~1 + Iif. E2 - BH3' Then ['1', Ell = ["IJ', ~2l 
=[1]', E3l=0. 

Next, we consider the case k = O. From (B7) and (B8), 
we have .&z = ~ = O. We can transform Bi and Iif. to zero 
by the allowable transformation E1 - t1 - Iif. E2 + Bi E3, 
which preserves (B1). Thus 

and 

[1], ~ll=A1'1+BtE1' 

[7), E2l = Bg2 + ~ ~3' 

From (B4) and (B11), A1 (B~ + Eg) = 0, so either A1 ;0 0 
and B~ = - Eg, or A1 = O. Suppose first that A1 ;0 O. Re­
placing 7) by 7)' = 1] + (Et/A1) ~1 maintains Br = Iif. = 0, and 
transforms Et to zero. Then Eqs. (B5) and (B10) im­
ply ~ + B~ = 0, which, from (B4) and (B11), requires 
B~ = Eg = O. From Eqs. (B5) and (B10) it now follows 
that ~ = B5 = 0, and hence 

Now suppose that l? =A1 = O. By Eqs, (B5) and (B10) 
we obtain Et = 0 and B~ =~; Eq. (B4) implies that ~ 
+B5=0. The transformations "IJ-7J'=(1/B~)(11-~E1)' 
in the case B~"* 0, and 7) - '1' = 7)- ~ E1 in the case B~ = 0, 
have the effect of transforming ~ to zero and B~ = ~ 
to 1 (if B~*O). Hence [7), E1l=0, ['I, E2l=€E2, and 
[1], E3l = € E3, where € = 0 or 1. 

We have thus determined that any four-dimensional 
Lie algebra containing Lie algebras of type (B1) has 
structure given by 
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(i) k=+1: [Eb ~l=E3' [E2, E3l=Eb [E3' Ed=E2' 

['7}, ~l=o, [1), ~2l=o, [1/, E3l=o, 

(ii)k=-l: [E1. E2l=E3' [E2,E3l=-E1, [E3,E1l=E2, 

[11, E1l=o, [1), ~l=o, ['I, El=o, 

(iii) k=O: [Eb ~2l=~3' [E2, ~3l=o, [E3, ~ll=~2' 

['7}, E1l=A'I), ['I, E2]=€E2, [11, E3l=€~, 

where either € = 1 and A = 0, or € = O. 

It is a straightforward but tedious computation to 
determine all possible three-dimensional subalgebras 
of these four-dimensional algebras. The results are 

(i) k=+l: The only case is that spanned by E1, ~2' t3' 
with [~1. ~2l=E3' [!2, ~3]=t1. [~3' E1l=E2' which is of 
Bianchi Type IX. 

(ii) k = - 1 : In addition to the original subalgebra that 
is spanned by ~1' E2, ~3' with structure [~1' E2l = E3, 
[E2, E3l = - ~b [E3, ~ll = E2 there is a family of subalge­
bras. This family of subalgebras is spanned by >'1 =1], 
>.z = E1 + aE2 + bE3' and Xs = c~ + d~3' where the constants 
a, b, c, and d satisfy c2(1 - b2) + 2abcd + cf(l - a2) = 0, 
c2 + ~ > O. It is essentially a one-parameter family, 
since if c "* 0 then, without loss of generality, c = 1 and 
a = 0 (which implies b2 = 1 + ~), and if c = 0 then without 
loss of generality d = 1 and b = 0 (and so a = ± 1). The 
Lie algebra formed by Xl. >.z, >-s is given by ["1, >.zl = 0, 
[~, >-sl = - (ad - bc)>.z ± (a2 + b2 - 1)1/2~, [>-s, ~ 1 = O. By 
appropriate linear transformations of >.z and >-s with 
either of the above specializations, this Lie algebra can 
be put into the canonical form [",-, ~l=o, [>.z, ~l="2' 
[~, i\1] = 0, and is a special case of Type Vr,. with It = - 1, 
i. e" a special case of Bianchi Type III (cf. Ref. 1). 

(iii) k = 0 : There is in addition to the subalgebra 
spanned by ~1' ;2' E3, with structure [eb E2l = ~, 
[E2, esl=o, [Es, ~l= E2, a one-parameter family of sub­
algebras spanned by >'1 = 7) + a E1, >.z = ~2 and ~ = E3, with 
structure [Xl, >.zl = €A:z + a~, [>.z, i\sl = 0, [~, i\ll = a>.z 
- €~. This is of Bianchi Type I if a = € = 0, Bianchi 
TypeVifa=O, €=1, TypeVIIoifa"*O, E=O, and Type 
VIIh if a"* 0, € = 1. In the case a"* 0, E = 0 the transforma­
tion ~1 - a~ reduc es a to the value a = 1. It follows that 
in the k = 0 and k = - 1 cases, there are subalgebras 
which are not of the type (B 1), whereas in the l? = + 1 
case there are no such subalgebras. If a space-time 
admits a four-parameter isometry group acting multi­
ply transitively on space like hypersurfaces, with a 
three-parameter subgroup whose orbits are two-dimen­
Sional, it follows that when k = - 1 there is a three­
dimensional isometry group of Type III acting simply 
transitively on the hypersurfaces, and that when h = 0 
there are two three-dimensional isometry groups, of 
Types I and VIIo, or of Types V and VIIh , acting Simply 
transitively on the hypersurfaces. These results are 
consistent with, but not necessitated by, those of Ellis 
and MacCallum. 1 In particular, there is only one case, 
that of k = + 1, where there is no three-parameter group 
acting transitively on spacelike hypersurfaces. 
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APPENDIX C: THE PETROV TYPE OF THE 
KANTOWSKI-SACHS MODELS 

We consider components of the Weyl tensor in the 
orthonormal tetrad eo = a/at, ~ = (l/X)a/ar, ~ 
= (l/y)a/aB, e3 = (l/Y sinB)a/a</>. The commutation 
relations are 

[eo,~] = - (X/X)~, [eo, e2] = - (Y /Y)e2' 

[eo, e3] = - CY lYles, [~,~] = 0, 

[e2' e3] = - (1/Y) cotB e3, [e3'~] = 0. 
It follows, using a decomposition as in Refs. 1, 26, 
that the acceleration (eo) and the vorticity of the fluid 
is zero, and that the orthonormal tetrad consists of 
Fermi-propagated shear eigenvectors that are Ricci 
eigenvectors of the homogeneous hypersurfaces. De­
composing the Weyl tensor Cabcd = R abcd + galdRcjJ 
+ gHcRd)a + (R/3)galcgd)b into its "electric" and" mag­
netic" parts, Eab and Hab , defined by Eab = Capb.ui'u· and 
Hab =iTlcdbsCatcdUtUS, we find (by using the Ricci identity 
Ua;d;c - Ua;C;d = RabCdUb for u= eo,~, e2' and e3 in turn) 
that the components in the orthonormal frame.Jlre Hab 
=0, Eab=diag(O, 2E, - E, - E), where E=-Hx/x 
+i(J.l.+3p)]. This means that the models are of Petrov 
type D, except in the case E= 0, which is in fact un­
tenable. This is because the restriction E = 0, together 
with the field equations (2.2)-(2.4), necessitates J.l. 
= 3[(1 + y2)/y?]. Differentiating this, and using (2.3), we 
obtain i.L = - (3Y /Y)(J.l. + pl. Comparing this with the con­
servation equation (2.4), it follows that x/x = Y/Y, 
since J.l. + P > 0. This is incompatible with Eq. (2.2). 
Consequently, E * 0, and the space-times must be of 
Petrov Type D. 

In fact, by local rotational symmetry, the only con­
ceivable Petrov Types are D and 0 (conformally flat). 
The above proof shows directly that the conformally 
flat case (E = 0) is impossible. This result can also be 
derived by recalling that if the space-time is conform­
ally flat and contains a perfect fluid for which J.l. + P > 0, 
then (Jab = ° (cf. ReI, 17), which contradicts (207). 

This result is consistent with, but not necessitated 
by, a theorem of Wainwright. 27 
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It is proved that a necessary condition for the validity of Huygens' principle on a curved space-time V 4 

is that V 4 be an Einstein space, In connection with this result some remarks about the strong and weak 
formulations of Mach's principle are also pointed out. 

1. INTRODUCTION 

The pioneering work about scalar Green's functions on 
a curved space-time was done by Hadamard/ Sobolev/ 
and Schwartz.3 Tensorial Green's functions on a curved 
manifold were then introduced by Lichnerowicz4

-
7 and 

DeWitt and BrehmeB for different purposes. They have 
since been studied by several authors (cf. Refs. 9-12, 
among others). 

One of the main peculiarities of such Green's func­
tions is that, in general, they have a tail, i.e., in gene­
ral, the support of the Green's function of ali near second 
order partial differential equation on an arbitrary 
space-time is not only the surface of the null cone, but 
also its interior, B,13 so that Huygens' principle, in gene­
ral, is not satisfied. This feature is present, for ex­
ample, in the generally covariant formulations of the 
Einstein field equations/4 so that, according to such 
formulations, the gravitational interaction is not forced 
to propagate along null geodesics. 

A great deal of work has been done in order to find 
necessary conditions for the validity of Huygens' princi­
ple on a curved space-time V 4 (cf. Ref. 13 and refer­
ences therein). In this paper we will prove that a neces­
sary condition is that V 4 be an Einstein space. 

In Sec. 2 we state the main theorems. In Sec. 3 we 
prove the main theorems in the case of a scalar kernel. 
In Sec. 4 we generalize the results of Sec. 3 to the case 
of tensorial kernels. Finally, Sec. 5 is devoted to some 
concluding remarks. 

2. STATEMENT OF THE MAIN THEOREMS 

Let (V4, g) be a four-dimensional Riemannian manifold 
with signature - 2 and D a causal domain of V 4

• More­
over let 

(2.1) 

where X, XED and d[x, x] denotes the geodesic distance 
between x and x. Consider tailless kernels of the type 

C1±)M(X, x) = F(x, x)g~ 5(±)(a[x, xl), 

where M and M denote the multi-indices 

M = (/11' /12' ., . , /1n) , 

M = (ill' il2 , ••• , "iln ) , 

(2.2) 

(2.3) 

(2.4) 

F(x, x) is a biscalar in C~(D x D) not identically equal to 
zero on the surface a = 0, g ~ is defined according to the 
following equation: 

2125 Journal of Mathematical Physics, Vol. 18, No. 11, November 1977 

(2.5) 

where 

T=(a,{3, ... ,T), T=(ii,/3, ... ,Tj), (2.6) 

and gc;1Y. denotes the parallel displacement bivector be­
tween x and x. 5(±) denotes the advanced (+ sign) or re­
tarded (- sign) Dirac distribution. Greek indices run 
from 0 to 3. 

Finally let us consider the following linear second or­
der differential equation 

[p~r6(x)V r V 6 + Q~r(x)Vr + U~ (x)]C~±)M(X, x) = 81Tg! 54 (x, x) , 

(2.7) 

where 

(2.8) 

and p={p~r6}, Q={Q~r}, and U={u~} are tensors in 
C~(D). V jJ. denotes the covariant derivative with respect 
to x and 54(x, x) is defined according to the following 
equation: 

(04(x, x), f(x» = f(x). (2.9) 

The purpose of this paper is to prove the following 
theorem. 

Main Theorem: Necessary conditions for the solva­
bility of Eq. (2.7) with respect to the tensors P, Q, and 
U are 

P(x);K(x)g(x) , 

R(x) = cg (x) , 

where 

K(x) = [gIY.8(x)pIY.8(X)]/4 , 

R={RIY.8}, 

c is a constant and P is defined as follows. 

In the case of n even, say 

n=2m, 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

divide the set of 2m indices M into two sets of m in­
dices, Ml and M2, each one ordered in an arbitrary 
way. Also define the multi- indices A 1 and A2 obtained 
from A through a Similar, but independent, procedure. 
p turns out to be defined by the following equation: 

pr6(X)=gAl A2gMl M2[p~r6(x)+p~6r(x)]/2, (2.15) 

where gAl A2 and gMl M2 are defined according to Eq. (2.5). 
Of course, P may depend on the choice of the multi-in-
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dices M1, M2, AI, and A2. Equation (2.10), however, 
is required to hold for any allowable choice. 

In the case of n odd, say 

11 = 2111 + 1 , (2.16) 

select an arbitrary index of A (Q = Ci i' say) and an arbi­
trary index of M (11 = 11k' say) and then define the multi­
indices N and B obtained from M and A by dropping the 
indices 11k and Ci i , respectively. Finally define the 
multi-indices N1, N2, B1, and B2 through the same 
procedure which allowed us to define the multi-indices 
M1, M2, AI, and A2 in the case of 11 even. In self-ex­
planatory notation, P turns out to be defined by the fol­
lowing equation: 

(2.17) 

Again P may depend on the choice of Ci i , 11k' N1, N2, 
B1, and B2 and we require that Eq. (2.10) hold for any 
allowable choice. 

From the main theorem the following theorem follows 
easily. 

Let (V 4, g) denote a four-dimensional Riemannian 
manifold with signature - 2 and let D be a causal do­
main of V 4

• Consider the linear second order differen­
tial operator 0 defined by the equation 

(2.18) 

where f = tfM} is a tensor and Q and U are tensors in 
C(D). 

Theorem 1: A necessary condition for the differential 
operator 0 to satisfy Huygens' princ iple is that the 
Ricci tensor R is proportional to the metric tensor g 
by a constant factor. 

Theorem 1 follows from the main theorem since add­
ing a tail term to the kernels (2.2) gives the most gene­
ral form of the retarded (- sign) or advanced (+ sign) 
Green's functions of the differential operator 0. 12 

3. THE CASE OF A SCALAR KERNEL 

We will now prove the main theorem in the case of a 
scalar kernel to better pOint out the technique of the 
proof. 

Let (V 4
, g) be a four-dimensional Riemannian mani­

fold with signature - 2 and let D denote a causal domain 
of V". Consider the scalar kernels 

C(±\X', x) = F (x, x) 6(±)( a[x, x]) , (3.1) 

where F(x, x) denotes a biscalar in C~(D x D) not identi­
cally equal to zero on the surface a = O. Finally con­
sider the following linear second order differential 
equation: 

[P"V(x)'\7" 'Vv+Q"(x)'V" + U(x)]G(±)(x,x) =81T64(.f,x) , 

(3.2) 

where the tensors p={pr6}, Q={QY}, and U are in C~(D). 
Moreover pYO may be assumed to be a symmetric ten­
sor without loss of generality. 

Theorem 2: Necessary conditions for the solvability 
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of Eq. (3.2) with respect to the tensor P, Q, and U are 

P(x) = K(x) g (x) , 

R(x) = cg(x) , 

where 

and c is a constant. 

(3.3) 

(3.4) 

(3.5) 

To prove Theorem 2 let us first note that by a stand­
ard procedure Eq. (3.2) can be rewritten as 

{2 p*roa; Y a; 6 - a p*Y6[J; Y; 0 - a[J;yQ*Y + U*a 2} 6(±)(2)( a[ x, x]) 

+ 41TP*64 (x, x) = 161T64 (x, x) , 

where 

p*e, = P*"(x, x) = F(x, x)pe,(x) , 

Q*e = Q*e(x, x) = Qe(x) _ 2P,e(x)F; ,(x, x) , 

U* = U*(x, x) 

= U(x) + pe'(x)F; e; /x, x)+ Q'(x)F; ,(x, x) , 

P* = P*(x, x) = gel p*e, , 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

6(±)(2) denotes the standard second order derivative of 
the 6(±) distribution (cf., for example, Refs. 1.5 and 16). 
Moreover for simplicity the symbol ";" is used for the 
covariant differentiation. 

Multiplying both sides of Eq. (3.6) by at (0 < t« 1), one 
finds 

{2 P*YOa;ya; 0 - ap*YOa;y; ° - aa;yQ*Y + a 2 U*} 

x a t 6(±)(2)(a[x, xj) = O. 

It is also easy to prove the following lemma. 

Lemma 1: If H=H(x,x) is a biscalar, then 

H6(±)(2)(a[x, x]) = 0 

if and only if 

H(x,x)=L(x,x)a 2
, 

with 

L(x,x)~O. 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

Lemma 1 essentially follows from the well-known 
identity 

26(±)([J) - [J26(±)(2)([J) = O. (3.15) 

From Lemma 1 and Eq. (3.11) it follows that 

(3.16) 

where 

L~O. (3.14) 

The left-hand side of Eq. (3.16) may be rewritten as 

(3.17) 

As a consequence the limit as x - x (cf. Ref. 8) of the 
function 

(3.18) 
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and of all its partial derivatives are finite. 

Differentiating both sides of Eq. (3.16) and taking the 
limit as X - x of both sides of the so-obtained equation, 
one finds an identity. 

Differentiating once more and taking the limit as x - x 
of both sides of the so-obtained equation, one finds 

P*(x,x)=K'(x)g(x) , (3.19) 

where 

(3.20) 

and 

K'(x} = [gY6(X}p*Y6(X, x)]/4 . (3.21) 

Inserting Eq. (3.7) in Eq. (3.19), one then finds 

P(x} = K(x)g(x) , (3.3) 

where 

K(x) =[gY6(X)pY6(X)]/4. (3.5) 

Equation (3.3) is the first of the two necessary con­
ditions stated in Theorem 2. 

For the second necessary condition (3.4) one inserts 
Eqs. (3.3) and (3.7) in Eq. (3.16) and divides both sides 
by a to obtain 

(3.22) 

performing an expansion to the second order of the 
first term on the left-hand side of Eq. (3.22), one findsB 

(3.23) 

As a consequence, the limits as x - x of the function 5 
defined by 

2Sa= 2La 1-1+ Q*"'a;o< (3.24) 

and of all its partial derivatives are finite. 

Inserting Eq. (3.24) in Eq. (3.22), differentiating both 
sides of the so-obtained equation, and taking the limit 
as x - x, one finds an identity. Differentiating once 
more and again taking the limit as x - x of both sides, 
one finds 

R(x) = q(x}g(x) , 
(3.25) 

where 

q(x) = 3 [U*(x, x) - 2S(x, x)]/2K'(x). (3.26) 

From purely geometrical arguments it follows that 
q(x) has to be a constant c, 

q(x)= c, (3.27) 

so that the second necessary condition (3.4) is esta­
blished. 

As a further remark, it should be noted that other 
necessary conditions may follow from condition (3.27). 
This possibility, however, will not be investigated in 
this paper. 

Finally we note that the procedure which allowed us to 
prove Theorem 2 shows that the hypotheses F(x, x} 
E C"'(D x D) and P, Q, U E C"'(D} are stronger than neces-
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sary and have been made only for the sake of simpli­
city. 

4. GENERALIZATION TO TENSORIAL KERNELS 

To generalize the results obtained in Sec. 3 to ten­
sorial kernels one must consider separately the cases 
when n is even, say 

n=2m, 

or odd, say 

n=2m + 1. 

(2.14) 

(2.16) 

In the case n = 2m the proof of the main theorem can 
be reduced to the proof of Theorem 2 by multiplying 
both sides of Eq. (2.7) by 

(4.1) 

where gM1 M2 is defined as in Sec. 2 and g"i11 M2 is defined 
from the multi-index M through a similar, but indepen­
dent, procedure. 

The main theorem is proved by performing the whole 
procedure above for any possible choice of M1, M2, 
M1, and M2. 

In the case n = 2m + 1 let us rewrite Eq. (2.7) as 

[p~~Y6(X)V'YV'6+ Q~~Y(x)V'y+ U~~l 

(4.2) 

where the multi-indices N and B have been defined in 
Sec. 2, while the multi-index N is obtained from M by 
dropping the index Il = Ilr 

The next step is to multiply both sides of Eq. (4.2) by 

(4.3) 

where the multi-indices N1 and N2 have been defined in 
Sec. 2, while the multi-indices N1 and N2 are obtained 
from N through a similar, but independent, procedure. 

The last step is to perform formally the covariant 
differentiations in the equation thus obtained and, fi­
nally, to multiply both sides of the so-obtained equation 
by g~. 

This procedure allows us to reduce the proof of the 
main theorem to the proof of Theorem 2. 

By performing the whole procedure above for any al­
lowable choice of /1, Il, N1, N2, N1, and N2 the main 
theorem can be proved. 

5. CONCLUDING REMARKS 

The main purpose of this paper has been to prove that 
a necessary condition for the validity of Huygens' prin­
ciple on a curved space-time V 4 is that V 4 be an Ein­
stein space. The proof has been given for differential 
operators 0 of the type (2.18) on the basis of the main 
theorem and of the result that by adding a tail term to 
the kernels (2.2) one obtains the most general form of 
the retarded (- sign) or advanced (+ sign) Green's func­
tions of the differential operator 0. 12 We also noted that 
the procedure which allowed us to prove the main theo-
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rem leaves open the possibility of obtaining further nec­
essary conditions for the validity of Huygens' principle. 

As already mentioned in Sec. 1, the kernels peculiar 
to the generally covariant formulations of the Einstein 
field equations have a support not only on the surface of 
the null cone but also in its interior /4 so that, accord­
ing to such formulations, the gravitational interaction is 
not forced to propagate along null geodesics. 

Some authors1?-Zl have made attempts to construct 
theories of gravitation based on the hypothesis that the 
gravitational interaction travels along null geodesics. 
This is the simplest assumption for the purpose of con­
structing a purely integraP? or an integrodifferentialls-21 

theory of gravitation in agreement with the strong Mach 
principle. A discussion about strong and weak Mach's 
principle is contained, for example, in Sec. 1 of Ref. 
18. The problem which arises in this connection is 
whether a tailless kernel of the type (2.2) can be con­
sidered as the Green's function of a linear second order 
differential equation. In the case of a positive answer 
there would be no difference in principle between the 
weak formulations of Mach's prinCiple and the strong 
ones based on tailless kernels of the type (2.2). Indeed 
one could reduce any integral or integrodifferential 
theory based on such kernels to a purely differential 
theory with suitable boundary conditions. The main 
theorem proves that this possibility is not allowed, at 
least if one limits oneself to linear second order dif­
ferential equations. 

Note added in proof: In the proof of Theorem 2 two 
assumptions, unfortunately not true in general, have 
been used, namely the hypotheses that the limits as 
;i(-x of the functions P*"Bd;e,d;B and R"Bd;"d;B and of all 
their partial derivatives are finite (hereafter referred 
to as assumptions A and B, respectively). For the 
necessary condition (3.3), however, assumption A is not 
needed since Eq. (3.16) may be easily proved also with 
t = O. On the contrary, in the lack of assumption B, the 
general proof of Eq. (3.4) requires conditions on the 
conformal factor K(x). Consequently, Theorem 1 
becomes: A necessary condition for the differential 
operator 0 to satisfy Huygens' principle is that the 
Riemannian manifold (V4, g) be conformal to an Einstein 
space. 
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The perturbation solution of the Percus-Yevick equation, based on the known solution for hard-sphere 
interactions, is found for the square-mound potential. The correlation functions are expanded in powers of 
the parameter a, related to the height of the mound, i.e., describing the deviation of the interactions from 
the hard-sphere ones. An algorithm for the calculation of subsequent coefficients is given. Numerical 
calculations show, however, that the series converges slowly and thus a few terms approximate the whole 
series with sufficient accuracy for small (but still finite) values of a, i.e., for almost hard-sphere 
interactions, only. For mounds high enough the system behaves very similarly to the hard-sphere system, 
but it quickly loses its "hard" characteristics as the mound decreases. This result, in the light of the success 
of the recent perturbation theory of liquids, seems to suggest that, whereas fairly significant changes of the 
potential in the outside of the hard core may be treated as small perturbations, even a small change inside 
the hard core very strongly perturbs the properties of the system. 

I. INTRODUCTION 

The importance of integral equations in the theory of 
liquids results, at least partially, from the existence of 
a few analytic solutions to these equations. Moreover, 
one of these equations, the Percus-Yevick (PY) approxi­
mation,l has proved to be fairly accurate for hard­
sphere systems. Hence the solutions of the PY equa­
tions obtained by Wertheim2 and Thiele3 for the one­
component system of hard spheres, and by Lebowitz4 

for the mixture of hard spheres with additive diameters, 
are commonly used for the determination of the proper­
ties of the reference system in the perturbation theories 
of liquids. 5,6 These latter owe their success mainly to 
the fact of very quick convergence of the perturbation 
series when the repulsive part of the interparticle po­
tential does not differ significantly from the hard-sphere 
potential, even if the attractive tail of the potential play­
ing the role of the perturbation, cannot be treated as 
very smalL In this paper we want to point out that the 
perturbation series behaves quite differently in the case 
of the short-ranged potential of the repulsive barrier of 
finite height. We have chosen this potential because it 
is possible to obtain for it the solution of the PY equa­
tion in the form of perturbation expansion of the relative­
ly simple form. 

Standard perturbation expansions 5 require for the de­
termination of higher-order terms a knowledge of the n­
particle (n? 2) distribution functions of the reference 
systemo The idea of the use of integral equations for the 
calculation of the perturbation corrections was proposed 
by Lado,7 who constructed an expansion in which it is not 
the bridge diagrams which are being neglected, but rath­
er changes in them caused by the perturbing potential. 
Madden and FittsB found the integral equations for the 
calculation of the first and second-order perturbation 
corrections to the radial distribution function g(r)o Re­
cently, Kohler, Perram, and White9 constructed a new 
method for the numerical solution of the PY equation, 
based on Baxter's formalism,lO and used it for the de­
termination of g(r) for the repulsive part of the Lennard 
-Jones potential. 
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Baxter's formulation of the Ornstein-Zernike equation, 
used in Ref. 9, is also convenient for our purposeo It 
can be outlined as follows: Let c(r) be the direct corre­
lation function defined by the Ornstein-Zernike equa­
tion, 

h (r) = c (r) + n J dth ( 1 r - t 1 ) c(t) , (1 ) 

where n is the number density, and her) =g(r) -l. The 
PY approximation, 

a(r)c(r)=[a(r)-l]g(r), a(r)=expl-u(r)/kT], (2) 

implies that, when the two-particle potential u(r) vanish­
es, c(r) vanishes, too. Consider now the potentials /l(r) 
of finite range d, Le., u(r)=O for r>d. Baxter intro­
duces a new function q(r), by writing Eq. (1) in the form 

rc(r) =-q'(r) +2rrnt dt q'(t)q(t -r), rdO,d], (3) 
r 

rh(r)=-q'(r)+2rrntdt(r-t)h(lr-t/)q(t), y?O, (4) 
o 

where q' (r) is the derivative of g(r). The function q(r) 
also vanishes identically for r> d, and is continuous. 
Combining Eqs. (1)-(4) we get one nonlinear integrodif­
ferential equation for Baxter's function q(r), 

-r[a(r) -lJ - q'(r) +2rrna(r) t dtq'(t)q(t -r) , 

= -2rrn[ a(r) - 1] t dt (r - t )q(t) 
o 

+2rrn t dt signer - t)q(t)a( Ir- t I) 
o 

x{-q'(lr- t l)+2rrnj" dzq'(z)q(z-Ir-tl)}. (5) 
IT-II 

II. SOLUTION OF THE PY EQUATION FOR 
SQUARE-MOUND POTENTIAL 

The square-mound potential ll can be defined by 

a(r) = {a for r< d , 
1 for r > d. 

(6) 

The value a = 1 (vanishing mound) describes the ideal 
gas, whereas the hard-sphere potential, for which a =0, 
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corresponds to the limit of an infinitely high mound. We 
look for the solution of Eq. (5) in the form of the power 
series in a, 

q(r; a) = t (jIiq,(r). (7) 
i=Q 

As a =0 means the hard-sphere interaction, the series 
(7) forms the perturbation solution of the PY equation, 
the unperturbed system being that of hard spheres of the 
same diameter.'2 

The function q(r; 0) is differentiable with respect to r. 
We look for such a solution for the functions q,(r) which 
would also be differentiable. Assuming that we can 
change the order of differentiation and summation in Eq. 
(7) we obtain the functions qt(r) as polynomials in ac­
cordance with the assumed property of q(r; ll!). 

Substituting the series (7) into Eq. (5) and equating 
powers of a, we obtain the system of equations for the 
functions q, (r). 

i-I 

qi(r)=-Oli r + 27Tn j"dt L q;(t)ql_I_j(t-r) 
r j =-0 

i-I 

-27Tnfd dfsign(r-t)6 qj(t) 
a J ~a 

I-I-J 

X 6 ,q~(z)ql_l-i_I(z-lr-II)}. (8 ) 
I~O 

The first of these equations immediately gives the hard­
sphere function Qo(r), 

_ 1 +21) 2 1.51)d 
qO(r)-2(1_1)2 (r -d") -(1_1))2(r-d), 

where 

1)=7Tnd3 /6 

(9) 

(10) 

is the so-called packing density. Equation (8) together 
with Eq. (9) implies (by recurrence) that the function 
q,(r) is the polynomial of (6i +2)th degree in r, 

(11) 

Equation (8) may be written in the form 

r<l 6' _1 .1' 
q{(r)+27TnJ_dt(r-l)qj(t)= 6 pur., z=I,2, .•• , 

a r JeO 

(12) 

where the coefficients Pu are determined by integrating, 
according to Eq. (8), the combinations of functions qj(r) 
with j<i. Hence Eq. (8) may be solved for every i by 
recurrence, qo(r) is given by Eq. (9), coefficients Po 
are given by coefficients AJI (j < i) determined in earlier 
steps, and the form of Eq. (12) implies lAj,Hl =a ll =Po 
for 1 = 2, ... , 6i + 1. The remaining coefficients, A ia , 

All = a/o' AI2 = atl /2, are determined from Eq. (12) (for 
l=O,I) and from the condition q(d) =0, which must be ful­
filled for every ll!. Hence, after some manipulations, 

6i+2 

A jO =-(Ail+d"A,2!4+ L P"I_Idl!l) , (13) 
I ~3 
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(14) 

(15) 

Let us note that for 1) = 1 the principal determinant of the 
pair of equations (14), (15) is equal to zero. Hence the 
solution of the PY equation for square-mound potential 
behaves Similarly to that for hard spheres, where the 
solution also diverges for 1) = 1. 

We may now calculate the remaining correlation func­
tions. From Eq. (3) we have 

~ 

c(r) = 6 aic,(r) , rc lO,d}, (16) 
i:--Q 

with 

, d 

re;(r)=-q,(r) + 27TnL: f diq;(t)ql-j(t-rL (17) 
j::"O r 

The functions ci(r) are thus polynomials of the (6i +3)th 
degree, with coefficients determined-in terms of coef­
ficients An-directly from the relations (17) and (11). 

The knowledge of c(r) leads to the determination of 
g(r). The Fourier transformation of Eqs. (1) and (16) 
gives 

C(k) ~ 
H(k) I-nC(k) ' C(k)= ,~aiC,(k), (18) 

and ll(k), C(k), and Cj(k) are the Fourier transforms of 
the functions h(r), c(r), and ci(r), respectively. Note 
that the functions C j (k) are well defined because c j(r) 
are (i) bounded and (ii) nonzero for n= lo, d 1 only. Ex­
panding H(k) as given by Eq. (18) in powers of a, 

(19) 
i==O 

we get the functions H, (k) as combinations of the pro­
ducts of functions C j(k) (with j '" i) and finally 

~ 

g(r)=1+6 aihi(r) , (20) 
i-Q 

where ht(r) are the inverse Fourier transforms of H t(k). 

III. NUMERICAL RESULTS 

To check the behavior of the perturbation solution ob­
tained in the preceding section the numerical computa­
tions of the expansions (7), (16), and (20) of the distribu­
tion functions c(r) and g(r) have been performed up to 
the third order in the perturbation parameter a. The 
Mandel, Bearman, and Bearman13 method (generalized 
for polynomials of arbitrary order) has been used for 
the inversion of the Fourier transforms Hi (k), Eq. (19). 

The numerical results show that the series of coeffi­
cients All' Eq. (11), is alternating for the initial terms 
of the series (7), the ratio IAi+l,/IA,,1 being the great­
er, the higher the density of the system. The inequality 
IA1+I.11< IAn I is fulfilled for very low densities, 1) 

< 0.005, only. The same behavior is found for the series 
cj(r)iht(r). 
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The PY approximation also enables us to check the ac­
curacy of the solutions obtained by the present methodo 
For this purpose, we introduce the function 

y(r) =g(r)exp[{:lu(r) I, (21) 

continuous for all r> O. Especially, 

y(d.) =y(d_) , (22) 

where 

y(d±) = lim v(d± E) 0 

( -0 

From Eqo (2), y(r) is also given by 

c(r) 
:vCr) 

exp[-/1li(r)]-1 
(23) 

The differences between the value of y(r) calculated 
from Eq. (21) and Eq. (23), as well as between y(d.) and 
v(d_}, may serve as the estimation of the errors result­
'ing from the approximation of the whole series (7), (16), 
and (20) by the finite numbers of terms. It is found 
that these differences do not exceed 0.005 for a =0,0075, 
and 0.02 for a =0.01, for nd3 =0.6 (the estimated error 
of numerical computations is of the order of 0.0001). 
In Fig. 1 the square mound functions c(r) and g(r) for 
nd3 =0.6, a =0.0075 are compared with the hard-sphere 
ones for the same density. The value of a=0.0075, i.e., 
(:lu(r) =408, may be recognized as the highest maximum 
value, am' for which the solution is still creditable, for 
the density nd3 =0.6, when the perturbation series is 
cut at a 3

• For higher densities the value of am de­
creases; For example, for nJ3 =0.9, am =0.0015, i.e., 
(:lu(r) =6.5. For this value of a, g(d+) =4.13, which is 
to be compared with g(d+) = 4.42 for hard spheres, a = O. 
For high densities the series (7), (16), and (20) con­
verge very slowly, so that retaining a few more terms 
of higher order in a does not noticeably change the val­
ues of am' 

Finally in Table I we illustrate the typical behavior of 
the a expansion by showing the several first coefficients 
bil expressing the function c/(r), [Eq. (16)] 

(24) 
i =0 

for density nd3 = 0.764 (1) = 0.4). The character of the 
functions qi(r), ct(r), and hi(r) is similar within the 
whole physical range of density both for coefficients of 
the polynomials and values of the functions for particu­
lar r. 

TABLE I. Coefficients bi! (listed only up to terms yB) from 
Eq. (28) for densitynd 3=0.764 (7]=0.4). 

yl bOI bl1 b21 b31 b 41 

yO -0.25E2 0.llE4 -0.73E5 0.56E7 -0.47E9 
yl 0.27E2 -0.12E4 0.77E5 -0.59E7 0.49E9 
y2 0.0 -0.24E3 0.21E5 -0.19E7 0.17E9 
y3 -0.50E1 0.31E3 -0.22E5 0.lSE7 -0.16E9 
y4 0.0 0.15E3 -0.15E5 0.13E7 -0.12E9 
y5 0.0 -0.75E2 0.72E4 -0.64E6 0.59ES 
y6 0.0 -0.57E1 0.10E4 -0.l1E6 0.12ES 
y7 0.0 0.61E1 -0.70E3 0.6SE5 -0.65E7 
yB 0.0 0.0 -0.90E2 0.13E5 -0.15E7 
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FIG. 1. Comparison of the 
hard-sphere (O! ~ 0, full line) 
and square mound (O! ~ 0.0075, 
dashed line) correlation func-
tions Cry) and g(Y) for nd3 
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IV. FINAL REMARKS 

In this paper the solution of the PY equation for the 
square-mound potential has been given in the form of 
the perturbation series, the unperturbed system being 
that of hard spheres. The computation of the coeffi­
cients An for a given density, is sufficient for the deter­
mination of the solution for any value of a, the parame­
ter a describing the deviation of the system from the 
hard-sphere one. This method is thus, in principle, 
both simpler and more general than the usual numerical 
iterative solutions of the PY equation,!4 which require 
carrying out the computation for a definite value of QI. 

In addition, the present method allows the detailed in­
vestigation of the behavior of the perturbation series, 
which is impossible in the numerical solutions of the PY 
equation by iteration methods. Such an investigation, re­
ported in Sec. III, has shown that the series (20) con­
verges very slowly, except for small values of (]I. Hence 
the practical use of our method is limited, for a given 
density, to the values of a smaller than some limiting 
value am' for which the perturbation series is still rapid­
ly enough convergent. To this limiting value corre­
sponds the respective limiting value um/kT of the poten­
tial u(r)!.kT, for which the behavior of the square-mound 
system still reminds one of the hard sphere behavior. 
The very slow convergence of the perturbation series for 
a> am seems to suggest that the system loses its "hard" 
characteristics for u < urn' 

The square-mound interactions are not very realistic 
ones. However, the method of solution of the PY equa­
tion for these interactions, presented in this paper, en­
abled us to show clearly that, whereas it is well known 
that quite serious changes in the longer-ranged attrac­
tive tail, 5 as well as in the outside region of the repul­
sive core,9 may be treated as small perturbations, even 
relatively small changes of the interaction potential r or 
rather of the Mayer function fer) = a(r) - 1, associated 
with it-cf. Ref. 12 J far inside the repulsive core strong­
ly perturb the properties of the system,!S 
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We consider the problem of solution of some functional equations occurring in the theory of extended 
hadrons. By means of stochastic methods solutions of these equations are obtained in the form of a 
contractive (Markov) semigroup in Hilbert space. Analytic continuation to a unitary group implementing 
time evolution is performed. The problem of unitary implementability of Lorentz and gauge symmetries. 
essential for physical interpretation, remains unsolved. 

I. INTRODUCTION 

The theory of extended hadrons, extensively studied 
recently,I-s is based on an extended position operator 
X(~) depending on internal parameters ~. Such an ap­
proach raises some difficult problems, which follow 
from the requirements of Lorentz and reparametriza­
tion (gauge) invariance of the theory. 

This paper is devoted to mathematically rigorous in­
vestigation of functional equations occurring in the 
theory of extended hadrons.1,s In general such equations 
are highly complicated,2 and it is hopeless to solve 
them. So, we consider only simplified equations, which 
in the above-mentioned models, hold in a special nonco­
variant gauge.1 In such a case we are able to solve 
these equations by means of stochastic methods.4 - 6 We 
apply the theory of Markov processes with values in in­
finite-dimensional spaces. 5,6 This allows us to solve 
the second order functional equation 

- d~ iJ!t(X)=Ho( X, {j~ ) iJ!t(X) (I.1) 

where X belongs to the Schwartz space 5' of tempered 
distributions. If the operator Ho is positively definite in 
Hilbert space L ~ with 11 as the Gaussian measure on 5', 
then the solutions of Eq. (I.1) have analytic continuation 
in time to solutions of the Schrooinger equation. Then, 
we show how the functional equation with interaction H 
=Ho+ V can be solved by means of the Feynman-Kac 
method.4 ,7 

Comparing with the Kaku and Kikkawa paper,t we can 
see that the transition function of the Markov process 
determined by Eq. (I.l) coincides with the Green's func­
tion in Ref. 1 describing a propagation of free string. 

We do not consider here the problem of Lorentz and 
gauge invariance of the theory. These symmetries 
should be unitarily implementable, if this theory is to 
describe extended particles. There are serious diffi­
culties on this way. We discuss briefly this problem in 
the last section. 

II. WIENER PROCESS WITH VALUES IN 5 ' 

It is known4 that the transition function p (to, x, t, r), 
r C R", of the Wiener stochastic process is a solution of 
the equation 
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with initial condition 

P XEr, 
rp t (x) = X r(x) =) , 

o 0, xiro 
(ILl) 

We will show that the transition function of Wiener pro­
cess with values in 5' is a solution of an analogous 
functional equation. The Wiener process Wt with 
values in 5' is a stochastic process with Gaussian dis­
tribution of differences Wt - Ws E 5' (t> s) with mean 
zero and covariance 

E[(WtW - Ws(~»)(Wt' (~') - Ws' (~'))l 

= min(t - s, t' - s')o(~ - n, 
[>s, t'>s' . 

So, the candidate for the transition function 

(II.2) 

P w(t, Y, t', r) is the Gaussian measure with mean Y and 
covariance t' - t 

Pw(t, Y, t', r)" J rc 5' Il t ,- t(dY'- Y) . (II.3) 

Let us introduce the Banach space 8 of functions F: 
5' - C continuous under the norm I iF 11= SUPYE 5' IF(Y) I in 
the weak topology of 5'. Then we can prove 

Theorem 11.1: Pw(t, Y, t', r) is a transition function of 
the Markovian contractive semigroup T~ in B defined by 

TfF(Y) = Is,F(Y')Jlt(dY'-Y), t >0, FE8 , (II.4) 

i.e., 

(i) T:Tf = T:+t , 

(ii) Tfl = 1 , 

(iii) lim II T~ F - FH = 0 . 
t -+ + 0 

(II. 5) 

Proof: Tf is a contraction semigroup in 8 because 

I JvF(Y')ll t (dY'-Y) I 
.oS 1 supIF(Y') I Il t (dY'-Y) = supIF(Y')1 

Property (i) is equivalent to 

lrllt +s·(dY'-y) = lr 15' Jlt(dY'-Z)ll s (dZ-Y) • (n.6) 

This equation can be checked by means of the Fourier 
transform 

15' exp[ i(Y', h») Mt +s(dY' - y) 

= exp[ -(t+ s) 1 h2
( ~)d~)exp[ i(Y, h») 
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and 

Is. Is' exp[ iCY', h)] J.Lt(dY'-Z)J.Ls(dZ - Y) 

= Is' exp[ - t I h2(~)d~) exp[ i(Z, h)] J.Ls{dZ - Y) 

= exp[ - t Ih2Wd~] exp[ - s Ih2(~)d~) exp[ iCY, h)] 

So, Eq, (II .6) follows. The second equality in the for­
mulas (II.5) is trivial, because the Gaussian measure 
is normalized Is.J.L/dY)= 1. Let us consider now (iii): 

I TiF(Y) -F(Y) 1= I I.r.(F(Y') - F(Y))J.Lt(dY· -Y) I 
~ isy(o) IF(Y') - F(Y) I J.Lt(dY'- Y) 

+ Is' - S00) I F(Y') - F(Y) I J.Lt(dY'- Y) , 

(11.7) 

where the ball Sy(O) 8 is defined by 

here II lin are seminorms defining the topology of 5. 
From the continuity of F we get that for each "- there 
exists 0 such that Y' E Sy(6) implies IF(Y')- F(Y) 1< "-. 
The second term in Eq. (II.7) is smaller than 

Now, if t - 0 it goes to zero, because the measure of a 
set lying outside the ball Sy(R) goes to zero if the radius 
R goes to infinity. 8 This completes the proof. 

Equations (II. 5 ) are equivalent to the following proper­
ties of the transition function (II.3): 

1. P w(t, Y, t', r) is a measure on a u-algebra of sets 
re5'. 

2. J 5 .Pw(T,Z, t', r)P w(t, Y, T, dZ)= Pw(i, Y, t', r) for 
arbitrary t ~ T ~ t'. This is the Chapman-Kolmogorov 
equation. 

3. Pw(/,Y,t',5')=1 
(11.8) 

4. Pw(t,Y,t,r)=Xr(Y) 

The transition function P w fulfills a functional equation, 
which is a generalization of Eq. (11.1). First, a precise 
definition of the infinite-dimensional Laplace operator is 
needed.5,6 We define the functional (Frechet) derivative 
F' (X) in the point XES' as a linear functional belonging 
to 5' and fulfilling the equation (if this limit exists in the 
norm topology of !3) 

lim (l/s)[F(X + sll) - F(X») = (F'(X), h) • (II.9) 
S -:'-0 

Second order derivative is defined as an operator from 
5 to 5' obtained by differentiation of the right-hand side 
of Eq. (11.9) 

lim (l/s)[ (F'(X + sg), h) -(F'(X), h)J= (F"(X)g, It); (II.10) 
s ~o 

here the limit is taken in the 5' weak topology. The only 
way to obtain a scalar from an operator F"(X): 5 - 5' is 
to take its trace in the Hilbert space L2 of square inte­
grable functions [ if the range of F" (X) is contained in 
L2]. We can prove now the following: 
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Theorem 1I.2: For a dense in B set of functions 
k 

F(Y)=6 ajexp[i(Y,hj )], hj E5: 
j~l 

(i) The function 'Pt(Y) = T~F(Y) is differentiable over 
t>O. 

(ii) It is twice Frechet differentiable and the second 
Frechet derivative q-;'(Y) is a trace class operator in 
L2. 

(iii) rpt(Y) fulfills the functional equation 

-d 
dt rpt(Y) = D2rpt(Y) 

where D2rpt(Y) ~f - Trrp;'(y) 

with initial condition rpo(Y)=F(Y). 

(n.ll) 

Proof: It is sufficient to restrict ourselves to F(Y) 
= exp[ i( Y, h»). Then 

rpt(Y) = T~ F(Y) = I F(Y +Y')J.Lt(dY~ 

= exp[ iCY, h)] exp[ -t(h, h)] (II.12) 

So, 

~ TiF(Y)=-(h,h)TiF(Y) , 

(F'(Y),j) = i(j, h)exp[ iCY, h)] exp[-t(h, It)] , (n.13) 

(F"(Y)g,j) =-(j,h) (g,h)exp[i(l',h)] expl-t(h,h») . 

(II.14) 

The bilinear form (II.14) is continuous ing andf in the 
L2 norm If li= If2md~, because 

I(F"(Y)K,j)I~ Ih Ii If I L I KI L 

and defines a bounded operator on L2. Let us compute 
its trace: 

TrF"(Y) = 6 (F"(Y)e., e.) 
i" 

=~ - (h, e;)(e ;,h) • exp[ i( Y, It)] exp[ -t(h, h)) 
• 

=-(h,h)exp[i(Y,h))exp[-t(h,h)). (n.15) 

Comparing (11.15) and (II.13), we obtain that the equation 
(d/dt)rpt(Y) = Trrp;'(Y) is fulfilled. 

Rem ark: T~ is a contraction semigroup in B, so it 
can be extended from a dense set on the whole space B . 
However, TiF will not fulfill Eq. (II.11) if F does not 
belong to the domain of the operator D2, i.e., if the 
second order Frechet derivative does not exist or if it is 
not a trace class operator. Necessary and sufficient 
conditions for existence of the trace were given by 
Gross.5 

III. MARKOVIAN CONTRACTIVE SEMIGROUPS IN 
HILBERT SPACE 

In physical applications we should find solutions of 
functional equations in Hilbert space. The Banach space 
in Sec. II (treated as a linear vector space) may be con­
sidered as a dense subspace of the Hilbert space L ~ of 
square integrable functions with regard to a Gaussian 
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measure J.L on 5'. A Markovian contractive semigroup 
defined in B need not be a contraction on L ~ (in the L ~ 
norm II II,,), e.g., the semigroup defined by Eq. (n.4) is 
not a contraction in L ~. A sufficient condition is given 
by the following: 

Theorem III.1 (Sin on9
): Markovian semigroup ful­

filling [in addition to Eqs. (ll.5)] the condition 

Ti 1 = 1 

is a contraction in L~, Le., 

IITtFII,,"; IIFII" ' 

(nI.1) 

(nL2) 

The semigroup (ll.4) does not fulfill this condition. 
This can be shown as follows: 

~ «TW)t I F) = ~ (1 T W F) 
dt t , dt' t 

=(I,D2TfF) =(D2t l, T~F), (m.3) 

where the operator D2 was defined by Eq. (n.ll). The 
Hermitian conjugated operator D2t can be computed on 
the dense in L ~ set of functions depending on finite num­
ber n of variables Xj = (X, hj) (here the h j EO: 5 form a 
complete orthonormal set in L2). Let us still fix the 
Gaussian measure J.L by its covariance 

E[X(f)X(g)J = JX(f)X(g)JJ.(dX) = (f, B-lg) , (mA) 

where B is a positive definite operator in U. Now, D2t 
is given by the formula 

(D2t FI> F
2

) 

= (FI> D2F2 ) 

= - J J.L(dX)F1 (X) TrF~'(X) 
" =- J J.L(dX)F 1(X)6 (hk,F~/(X)hk) 

k = 1 

= (41Tr n/2
(detB)l/2 J F 1(xP "" Xn)( - t a~~ 

XF2(xI>" .,x)exp [-{ .~ bijXIX1]dXl '" dXn 'l It J _ 1 

f I( n 82 n 8 In) 
= ))' -a-:r+ L blkXI-8-+zLbij m X k k,l=l X k 1=1 

XF1(Xl , ••• , Xn)} F 2(XI>"" xn)(41Tt n 12(detB)l/2 

(m.5) 

here blJ = (hi' BhJ). From Eq. (m.5) it follows that D2t I 
'* 0, so from (Ill.3) (Tr)t 1 '* 1. However, if we take the 
Hermitian part A of fJ2 (this is the Umemura Lapla­
cianlO

) 

AF(X) = - TrF"(X)+ HEX, F'(X» , (m.6) 

then Al = At 1 = O. In such a case the condition (m.1) will 
be fulfilled for a semigroup TtF(X) = CfJt(X), solving the 
equation 

(llI.7) 

The solution of Eq. (llI.7) can be constructed by means 
of a stochastic process, which is a solution of a sto­
chastic equation4

,6 for random variable X t 

dXt = - ~ BXtdt + dWt ; (m.8) 
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here H't is the Wiener process. Equation (m.S) can be 
solved in elementary way. The result is 

X t =e-B(t -to)/2 X+ J/ e-B(t -s)/2dW
s 

• (m.9) 
o 

X t given by Eq. (m.9) is a Gaussian process (it is an in­
finite dimensional counterpart of the Ornstein-Uhlen­
beck velocity processll), because differences of Wiener 
process have Gaussian distribution. The mean and co­
variance can be computed from the formula (m.9) 

m=Elxt ]=e- B<t-to)/2X, (III.10) 

(T2 =E[ (XtW - m)(Xt(e) -111)J 

=E[ jOt e-B<t-S)/2dW (t e-B(t-S') /2 d W.] 
to s Jt o S 

=B-l(I_ e- B(t - to»o(~ _ ~') • (m.ll) 

The transition function, being the transition amplitude 
to find X t in r if it was in X at time to, is given for 
Gaussian process by the Gaussian measure J.L~ - to.x with 
mean m [(m.IO)] and covariance (T2 [(m.ll)] 

(m.12) 

It follows already from the proof of Theorem n.l for 
Wiener process that P has the properties (ll.B) of a 
transition function. We can further show the following: 

Theorem III. 2: 

(m.13) 

defines a Markovian semigroup in B. The function 
CfJt(X) fulfills Eq. (m.7) with initial condition fPto(X) 
=F(X) for F{X) being linear combination of expl i(X, hJ)]' 

Proof: A transition function always defines a Marko­
vian semigroup.4 It remains to show that Eq. (m.7) is 
fulfilled. The proof goes similarly as in Theorem II.2. 
We take F(X) = exp[ i(X, h)]; then 

and 

CfJt(X) = TtF(X) = exp[ i(X, e- BH-to)/2h] 

X exp[ _ (h, B-l(l _ e- BIt- to»h)] 

:, TtF(X) = {_ (i/2)(BX, e- B(t- to) 12h) _ (h, e- B(t" to)h)} 

x exp[ i(X, e" B(t- tol 12h)] 

x exp[ - (h, B- l (l _ e" B(t" tol)h] 

Computation of TrCfJ~'(X) gives 

TrCfJ~' (X) = - (h, e- B(t- to) h) exp[ i(X, e- B(t" to) / 2h)] 

x exp[ _ (h, B-l(l _ e- B(t- tol)h] • 

Finally 

(BX, CfJaX» = i(BX, e- B(t- to) 12h) exp[ i(X, e- B(t-to)/2h)] 

x exp[ _ (h, B-l(l _ e- B(t- to»h)] 

So, the equation 

:, CfJt(X) = TrfP~'(X) - HBx, fP~(X» 

is fulfilled. 

Theorem 111.3: The Markovian semigroup T t [Eq. 
(m.13)] is a contraction in L!. 
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Proof: follows from Theorem m.1, because 

d (t ) d dt Ttl, F = dt (1, TtF) = (1, ATtF) = (A1, TtF) = O. 

Therefore, T/1 = const= 1. 

Theorern 111.4: The semigroup Tt has the form T t 
= e- tLl. with A as a self-adjoint positive definite opera­
tor. This semigroup can be analytically continued to a 
unitary group U t = eitLl., fulfilling the Schrooinger equa­
tion 

(1II.14) 

Proof: The semigroup (1II.13) is self-adjoint, be­
cause its infinitesimal generator A [(1II.6)] is sym­
metric,- Now, the Hille-Yos~da theorem12 implies that 
T t = e- tLl., where l, is a self-adjoint positive definite gen­
erator of T t • So, l, is the self-adjoint extension of A 

[(1II.6)] to all F such that limt _o(l/t)(Tt -l)F exists 
(we shall further identify A and l,). From positive de­
finiteness of 3. follows the possibility of analytic con­
tinuation. 

IV. QUANTUM MECHANICS OF EXTENDED 
PARTICLES 

Due to Theorem lllA we can continue analytically 
Eqs. (m.12) and (1II.13). We can see that e (t - to) x 
P(-ito,X,-it, r) plays the role of the Green's function, 
but now it cannot be written as a denSity times 
Lebesgue measure as in the usual quantum mechanics 
of particles with finite degrees of freedom. A special 
choice of B in Eq. (IlIA) will relate our Green's func­
tion (1II.12) with that of the string model,l Let us as­
sume that the internal parameter 0.,,; ~.,,; 1T; then L2 
should be replaced by L~o,'l' Let us choose B = ~ (_ d 2

/ 

d ~;')1 12+ 1 and hn(~) = 1T- 1 12 exp[ 2in~] as an orthonormal 
basis in Lfo •• l' We can write then P(- ito, X, - it, r) in a 
formal way as an infinite product 

P(- ito, X, - it, r) 
~ 

~ 

= II exp[ ~ im(t - to)] II exp[ t mx;'] 
m=l m=l 

x j II dx~ exp[ - t mx~2 ] ~ i sin[ m (t - to)] 
~ (4 )-1/2 

m=l m 

[ 
m 

X exp - 4i sin[ m (t - to)] 

x (cos[ m(t - to)] (x! + X~2) - 2xm x~) ] • (IV .1) 

The density function in the formula (IV .1) coincides 
with the Green's function for strings in Ref. 1. How­
ever, it can be easily seen that we need not assume 
that we have a string. It is sufficient that B have the 
same spectrum as an oscillator consisting of positive 
integers. In particular, in the three-dimensional case 
we get a similar Green's function with nw [we have put 
w = 1 in Eq. (IV .1)] replaced by n1w1 + n2w2 + n3 w3 • 

We can still perturb the Hamiltonian A of a free ex­
tended particle by an external potential V(X, t), which 
causes deformation of the particle. The wavefunction 
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then fulfills the equation 

. a 
- Z at CPt (X) = (A+ V(X, t)if't(X) . (IV .2) 

Solutions of this equation can be obtained by means of 
the Feynman path integral (see Ref. 7 for the standard 
procedure). In particular, the fundamental solution of 
Eq. (IV .2) fulfilling the initial condition if' to (X) = Xr(X) 
has the form 

P v( - ito, X, - it, r) 

= J exp[ i}/o V(X(T), T)dT]Xr(X(t»IJ.~ Ht-to).X(dX(·» , 

(IV .3) 

where the measure IJ.~Ht-to).x is analytic continuation of 
the measure IJ.~ -to.x appearing in the formula (111.12). 
The "paths" X(T) in the integral (IV.3) are paths in the 
space 5', because XES'. Again e(t - to) 
P v(-ito, X,-it, r) plays the role of the retarded Green's 
function [P~(t - to, X, r)] for the theory with interaction 
and fulfills the equation 

( - i :t -A - V(X, t)} P~(t - to, X, r) = - io(t - io)Xr(X) . 

(IV A) 

We are interested in computation of the transition am­
plitude from one configuration cp~n(X) of the extended 
particle (cpln is the state in t= - 00 when interaction is 
turned off) to another if'~ut(X), when i - + 00. This ampli­
tude is defined by (cf., e.g., Ref. 13) 

s= lim (",out, CPR) 

= lim jlJ.(dX)cpout(t,X)CPR(t,X) , (IV .5) 
t-~ 

where cP R(i, x) is the retarded solution of Eq. (IV .2) 

if'R(t, X) = cpln(t,X)+ i J dt'V(X', t')CPR(t',X') 

x P :(t - t', X, dX') . (IV .6) 

It can be shown similarly as in the conventional quan­
tum mechanics that the transition amplitude (IV .5) can 
be written by means of the Green's function in a simple 
form (this formula can be easily checked straightfor­
wardly in perturbative calculation) 

S= (cpout, cpln) + j lJ.(dXJ dt1di2<p°ut(Xl' i l) 

XKx t P:(i2 -tl>Xl>dX2 )Kx t cpln(X2 ,t2) , (IV.7) 
- l' 1 - 2' 2 

where Kx. t = ia/at+ A, Rx•t = - ia/at+ A, and the func­
tional derivative of a measure is defined in the same 
way as the derivative of a function: 

( OX lJ.(dX), h\ = lim .!. [1J.(d(X + sh)} - lJ.(dX)] 
/j 'J 5-0 S 

- l' .!. [ lJ.(d(X + sh)} ] (dX) 
- 1m (dX) -1 IJ. • 

5-0 S IJ. 

Here 1J.«d(X + sh»/IJ.(dX) denotes the Radon-Nikodym 
derivative. 

The formula (IV. 7) provides us with the Green's func­
tion formulation of the scattering problem. By means 
of this formula multiple scattering (nth order term13

) on 
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an external potential can be computed. Such calcula­
tions have been performed in the interaction picture14,15 
for four-dimensional position Xv and external field 
v (X) = expl ikvXt (0)] leading to the n-point Veneziano 
amplitude. However, this is beyond the scope of this 
paper. 

V. FINAL REMARKS 

After solution of the problem of time evolution of an 
extended object one should answer the question of Lo­
rentz invariance of the theory. We could follow Refs. 
1, 16 for the construction of generators of the Lorentz 
group. However, this construction works only in 26 
space-time dimensions. This is the essential stumbling 
block of any, so-far proposed, model of field theory of 
strings. 

It may be that this difficulty is related to another 
problem, which remained unsolved. Namely, any theo­
ry of extended particles should be invariant under a 
change of internal parameters. One expects that this 
(gauge) symmetry will be unitarily implemented in Hil­
bert space of solutions of the Schrodinger equation. It 
seems possible that Lorentz invariance lost by special 
choice of gauge15

,l can be restored by the action of uni­
tary operators of gauge transformations. This problem 
is now under investigation. 17 Our stochastic approach 
can be helpful in the problem of gauge symmetry, be­
cause the infinite-dimensional SL(2, R) invariance16 is 
an intrinsic property of infinite dimensional Wiener and 
Ornstein-Uhlenbeck processes (see Hida's lectures18 

for the finite-dimensional case; cf. also Ref. 19). 
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It is proposed that counting experiments in quantum physics should be analyzed in terms of point 
processes (QPP) defined in the framework of quantum probability theory. A coincidence approach is 
developed for a class QPP called the regular QPP. A counting formula is derived which determines 
completely the counting statistics of a regular QPP by means of a pair of "generators." 

1. INTRODUCTION 

The classical theory of counting or point processes 
has been successfully applied to a variety of phenome­
nal which involve a random sequence of events in time 
or a randomly located population. In particular, it 
forms the basis for many of the investigationsl-7 of 
counting experiments, where the random arrival times 
of a beam of elementary particles are observed by a 
system of detectors. The central objective of such in­
vestigations is to derive an expression (referred to as 
the counting formula) for the probability p((t, t+ T], fII) 
that 111 counts occur in the interval (t, t + TJ. One is 
thus led to the analysis of a situation where the detec­
tor (or a system of detectors) performs continuous ob­
servations on the system in the interval (t, t + TJ. 

It is well known8 that in quantum theory the statistics 
of successive observations exhibits nonclassical fea­
tures like the so called "interference of probabilities." 
Recent investigations9• 10 have led to a framework of 
quantum probability theory well suited to the analysis 
of statistics of successive observations in quantum 
theory. In this paper we undertake a study of point 
processes in quantum probability theory as a possible 
framework for analyzing counting experiments involving 
elementary particles. 

We define a quantum point process (QPp) in such a 
way that it bears a close anology with classical point 
processes (CPP). We show that the so-called quantum 
stochastic processes (QSP) investigated by Davies,11-13 
are nothing but a certain restricted version of QPP in 
a SchrOdinger picture formulation. We study a class of 
QPP called the regular QPP for which the counting sta­
tistics can be determined by a coincidence approach as 
for the regular CPP.14 In particular, we show that a 
regular QPP can be characterized by a pair of "gener­
ators" and obtain a general counting formula in terms 
of these generators. We also make a few remarks on 
the physical interpretation of the formalism. 

2. CLASSICAL POINT PROCESS 

In this section we briefly outline the coincidence ap­
proach to classical point processes.14 We shall only 
consider CPP defined on the real line R, which shall 
be taken to be the time axis; B (R) denotes the a-algebra 
of all Borel sets in R. If (n, [1', [.L) is a probability space 
then a CPP may be defined15 in terms of a function 

~: B(R) x n-z+, 
where Z+ is the set {a, 1, 2, ... } of all nonnegative inte-
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gers; the function HA, w) is required to satisfy the fol­
lowing properties: 

(i) For each A E: B(R), ~(A, 0) is a Z+ -valued random 
variable on (n, [1', I-l); 

(ii) For each WE: n (except maybe a set of measure 
zero), ~(', w) is a Z+-valued measure on B(R). 

In order to be able to extend ihis definition to quan­
tum probability theory we have to characterize the ran­
dom variables HA,') in terms of their inverse maps. 
We hence define a CPP as a collection of random vari­
ables {NA I A E: B(R)} , which satisfy the following prop­
erties (CP1) and (CP2): 

(CP1) for each A E: B(R), NA is a map 

N A: B (Z+) - [I' , 

where B (Z+) is the set of all subsets of Z+. In order to 
be the inverse map of the random variable HA, .), NA 
has to satisfy16 the following: 

(a) NA(cp) = cP; 

(b) NA(Z+} = 0; 

(2.1) 

(2.2) 

(c) If {Xi} is a denumerable collection of mutually 
disjoint subsets of Z+, then 

NA(Xi)n NA(Xj)=rp, 

for all i, j and 

NA(y Xi) = ~ NA(Xi)· (2.3) 

(CP2) (a) For each mE: Z+ and a denumerable collec­
tion {A /} of mutually disjoint sets Ai E: B(R), 

NyAi({m}} = E~i=m[~ (NAi({m i}»]. 
(b) If AnE: B(R) and An ~ rp, then 

NA ({O})tO. 
n 

(2.4) 

(2.5) 

We thus see that a CPP on R is nothing but a family of 
Z+ -valued random variables which is indexed by the 
Borel sets B(R) in such a way that a realization of the 
process is also a measure on (R, B(R». 

Just as in the case of a classical stochastic process, 
a CPP can also be characterized by its finite dimen­
sional distributions, such as 

Pr(Au k 1 ;A2 , k 2;··· ;An k r) = I-l~ i~l NAI({ki})~' (2.6) 

which gives the joint probability that k i counts occur in 
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the time period Ai' These joint probability distribu­
tions satisfy15 the following relations: 

(C1) For every permutation (i 1'~' ' .. ,ir ) of 
(1,2, ... , r) , 

Pr(A u kl;Az, k 2;·· . ;Ar' k r) 

(2.7) 

(C2) t pr+ 1(A u k 1 ; ••• ;A i_l' k i _1;A u k i ;Ai+1' k i+1;"') 

kj=O 

=Pr(A l , k l;··· ;A i_l , ki-[;Ai+l' k i +l ;"'); (2.8) 

(C3) ~Pl(A,k)=l; (2.9) 
k=o 

(C4) whenever A l ,A 2 , .,. ,Ar are mutually disjoint, 
then 

(a) p/U Ai' k) = ~ Pr(Au k l ;A2, k 2;· .• ;Ar' k r), \~=1 k1i'···+ll r=1l 

(2.10) 

and 

(b) PT+l(~l Ai' k ;Au k l ;A2, k 2; .• , ;A" kr ) 

=0", Pr(Al,kl;A2,k2; .•. ;Ar,kr)' (2.11) 
L...- i =1 ki,k 

where 

\ 0 when~;~lki*k, 

( 1 when ~;"l k i = k . 

(C5) whenever An ~ cp, 

(2.12) 

It is shown by Moyap7 that a set of joint probability 
distributions {Pr} that satisfy (Cl)-(C5), characterize 
a unique CPP. 

A majority of the theoretical investigations of count­
ing phenomena in physics2

-
5 are concerned with obtain­

ing an expression (counting formula) for the probability 
p« t, t + T], n) that n counts occur in the interVal (t, t + T]. 
Such a counting formula is usually obtainecf,6,7 in terms 
of the so-called "exclusion" and "coincidence" prob­
ability denSities, which in turn can be easily speCified 
by the phySical model under consideration. It has re­
cently been shown by Macchi/4 that for a class of C PP, 
which may be called the "regular CPP," both the ex­
clusion probability densities (EPD), and coincidence 
probability densities (CPD), exist and characterize the 
process completely. In order to define these CPD and 
EPD, we first define the coincidence probability 
Hr(AuA2' . 0 • ,Ar) and the exclusion probability 
Pr(AuA2' 0" ,Ar), for a mutually disjoint collection 
of sets {Al'A2' " 0 ,Ar} by the relations 

and 
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In (2.14) we have assumed that the counting experi­
ment is performed over the whole of the time axis R, 
The CPD h/tv t2 , ••• , tr ) and the EPD Pr(tlO i2 , ' •• , ir) 
can now be defined by the formulas 

hr(tlO t2 , ••• , tr ) 

= lim Hr((t v t 1 + 7 1],(i2, [2+ 7 2], •.• ,(ir' tr+ 7 rD . (2.15) 
Ti---)o-Q T 11 2 ••• Tr ' 

and 

Pr(tv t2 , ••• , tr) 

. P «t vii + 7J,(t2' t2+ 7 2 J,· .. ,(I" tr + TrD (2.16) =llm r • 
Ti---""o T1 7 2 ••• Tr 

For a regular CPP, both hr and fir exist and satisfy the 
following relation,14 

00 1 00 foo 
hT(tlO i2, •.• , tT) = ~ .1T!~ .. , -ro dli ld6z ' •• de} 

x Pr+j(tlO ... , tro liu ... , e) . (2.17) 

For the so-called" completely regular CPP ," Macchi14 

has also shown that the relation (2.17) can be inverted 
to yield the formula 

We would like to emphasize that for a CPP both flr and 
'fir are symmetric nonnegative functions. This sym­
metry property [as well as the consistency relations 
(Cl)-(C5») is essential for the derivation of (2.17) and 
(2.18). 

From the definitions (2.13) and (2.15), it is clear that 
hT(tv t2, ••• , tr) is the joint prob'lbility denSity that one 
count occurs around each of the instants ti (i = 1, 2, ... ,r), 
with nothing being speCified about the rest of the dura­
tion of the experiment. Similarly, PrU l , t2 , ••• ,I r) is 
the joint probability density that one count occurs 
around each of the instants tj (i = 1, 2, ... ,r), and no 
count occurs in the rest of the duration of the experi­
ment. Hence a counting formula can now be written in 
terms of the EPD as follows: 

1 [t+T ft+To 
p((t,t+T],n)=( '" Pn(llO •.. ,ln)d/l···dln . 

n .. t t 

(2.19) 

In obtaining (2.19) the absence of any multiple occurance 
of counts as implied by the regularity of CPP is crucial. 
Also, for a completely regular CPP, the relation (2.18) 
can be used to rewrite (2,19) in terms of CPD alone, 
viz. 

ro ( III ft+T ft+T 
P«(t,t+TJ,n)=L:~ '" dll"'dl n 

j ~O J. t t 

xf~'" fro del'" de j 
_OCI "00 

(2.20) 

One of the most commonly encountered CPP in physics 
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is the so-called doubly stochastic (or conditioned) Pois­
son process; the CPD of the process are specified as 
the correlation functions of a random intensity function 
I(t), i.e., 

hr(tv i 2 , ••• , tr) = (J(tJI(t2)'" I(tr»' (2.21) 

From (2.20) and (2.21) we obtain the relation 

p«(I, 1+ T], n)= «W"/n! )e- w>, (2.22) 

where 

f
t.T 

W = I(t')dt' . 
t 

The counting formula (2.22) is nothing but the well­
known Mandel formula2 which describes the statistics 
of photon counting experiments as per classical theory. 

3. DEFINITION OF A QUANTUM POINT PROCESS 

In this section the formal definition of a QPP is ob­
tained on the basis of an analogy with a CPP. For this 
we need to survey briefly the framework of quantum 
probability theory. The basic idea'o is that to each 
event (or what is sometimes called an experimentally 
verifiable proposition), there is associated an experi­
mental procedure, which in general alters the state of 
the system and is completely characterized by a "mea­
surement transformation" or "operation." It can then 
be argued from very general empirical considerations 
that the space of events in quantum theory should have 
the structure of the sel of jJosiiille elements in the unit 
ball of an ordered Banach algebra. This constitutes a 
major departure from the framework of classical prob­
ability theory where the space of events has the struc­
ture of a Boolean (J -algebra. 

In the present investigation we restrict ourselves to 
the standard Hilbert space formulation of quantum theo­
ry, for which case, the structure of the space of events 
has been analyzed in detail in Ref. 10. If V is the 
Banach space (under the trace norm), of the set of all 
self-adjoint trace-class operators in a Hilbert space N, 
and V· is the closed cone of positive operators in V, 
then the space of events 0 is the set of positive, norm 
nonincreasing, linear operators on V (also called the 
set of operations), Le., C Cc 0 is a mapping 

c: V-V 

such that 

(01) C is linear; 

(02) If v c: V· then [ (v) c V· also; 

(03) Tr[c (v)] ~ Trn, 

for all 11 r:: V· . 

(3.1) 

One of the special features of the quantum-event-space 
o is that it has a subset L (consisting in general of 
more than one element), of maximal elements which 
have the propertylO 

(3.2) 

for all v c V·. On the other hand, there is a unique null 
element 8 given by 8(1)=0 for all v. 
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In 0 the conjunction of two events C" c2 is given by 

(3.3) 

and is noncommutative in general. It clearly corre­
sponds to the experimental procedure where the sys­
tem is subjected to the sequence of experimental pro­
cedures {c" c2 } in that order. 

A sequence of events {c: i} is said to be a disjoint se­
quence of events if 

6 Ci EO, 
I 

where the lhs is assumed to converge in strong topolo­
gy. For a disjoint sequence {c,} of events, the disjunc­
tion is defined by the relation 

(3.4) 

By a quantum probability space we mean an ordered 
pair (0,11) where 11 is a "state" or a "measure" on 0, 
i. e., 11 is a mapping 

11: 0-[0,1]' 

which satisfies the following: 

(QS1) 11(8) = 0; 

(QS2) JJ.(O = 1, 

for all ~ E L; 

(QS3) If {G i } is a disjOint sequence of events, 

~yCi)=~ Il(c i )· 

(3.5) 

(3.6) 

(3.7) 

A random variable X (or an instrument or observable) 
with value space R is a map 

X: B(R)-O 

which satisfies the following: 

(Q01) X(1)) = 8; 

(Q02) X(R) c L; 

(3.8) 

(3.9) 

(Q03) If {E.} is a sequence of mutually disjoint ele­
ments of B(R), then {X(E i )} is a disjoint sequence of 
events and 

(3.10) 

NOW, in order to define a QPP, we have to suitably 
generalize (CPl) and (CP2) to the quantum probability 
framework. (CP1) can be immediately generalized to 
the quantum case by considering {N A} to be quantum 
random variables with value space Z., which satisfy 
(Q01)-(Q03). As regards (CP2), we note that (CP2a) 
expresses the fact that, given a disjoint covering {A j } 

of A c B(R), the event that 117 counts occur in A can be 
expressed as a disjunction of all the events of the fol­
lowing type: 117, counts occur in All and m 2 counts 
occur in A2 and .. " where L117i = 117. While generaliz­
ing this to quantum theory, we have to keep in mind the 
order in which the conjunction of events is conSidered, 
for this reflects the order in which the events occur. If 
A"A2 c B(R), we shall write 
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whenever 

(3.11) 

The preceding remarks suggest that for a QPP, it is 
natural to postulate a condition analogous to (CP2a) 
whenever {Ai} is a collection of sets such that 
A, > A2 > A3 > .. '. Finally we shall generalize (CP2b) 
in an obvious way and include a continuity requirement 
also in the definition of a QPP. 

A QPP may thus be defined as a collection of quan­
tum random variables {N A I A E: B (R)}, which satisfy the 
following conditions (QP1) and (QP2): 

(Qpl) Each NA is a mapping 

NA : B(Z+)-O 

which satisfies 

(a) NA(</J) = e; 

(b) NA(Z+) E: L:; 

(3.12) 

(3.13) 

(c) If {EJ is a sequence of mutually disjoint subsets 
of Z+, then {NA(X i )} is a disjoint sequence of operations, 
and 

(3.14) 

where the rhs is assumed to converge in the strong op­
erator topology. 

(QP2) (a) If {Ai} is a sequence of elements of B (R) 
such that A, > A2 > A3 > .. " then 

(3.15) 

where on the rhs, the product is taken in such a way 
that NA/{m i }) precedes (is to the left of) NAi+I({m i+,}). 
The rhs is also assumed to converge in the strong op­
erator topology. 

(b) If (t, s 1 is an interval in R, then both the maps 

t - N It,S](Z+) 

and 

s - N,t,s](Z+) 

are continuous in the strong operator topology. 

(c) If An+A or AntA, then 

s-lim NAn (E) = NA (E), 

for all E c B(Z+). Also 

N,,({O})=1 , 

where 1 is the identity operation. 

(3.16a) 

(3. 16b) 

It is clear that a QPP as defined by (QP1) and (QP2) 
is a natural generalization to quantum theory of a CPP. 
It may be noted that since B(R) is generated by inter­
vals, it is sufficient to consider random variables N A 

where A is an interval (like for example (t, s J); all 
other NA can now be obtained by using (QP2). At this 
juncture, we would like to point out that the so-called 
"quantum stochastic processes" investigated by 
Davies,"-'3 are nothing but a certain restricted version 
of a QPP as defined above, but considered instead in 
the Schrodinger picture. We shall elaborate on this 
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connection in the Appendix. 

We now make the following identifications: 

N (t. t']({O}) = 5 I, t'; (3.17) 

Nu,t,](Z+)=T I•t,. (3.18) 

From (QP2) we can conclude that both {SI,t.} and {Tt,t'} 
are strongly continuous inhomogeneous semigroups 
(usually referred to as "propagators") of positive con­
traction operators in L(V, V); in particular, they satis­
fy the relations 

T t,. t"Tt,t·=Tt,t'" 

for f"?c I' :::0 f; 

s-limS t, t'= s-lim T t. t,=1 . 
t' ........ t t'--t 

(3.19a) 

(3.19b) 

(3.20) 

Relations analogous to (3.19) and (3.20), have been re­
ferred to as generalizations of the Chapman-Kolmogo­
rov relation by Davies. ll It should be emphasized that 
these relations are a natural generalization to quantum 
theory, of the consistency condition (CP2a) for the ran­
dom variables of a CPP, and as such have nothing to do 
with MarkoviCity.'8 

4, QUANTUM COUNTING FORMULA 

In this section we undertake a general analysis of 
QPP which leads us to a quantum counting formula valid 
for a large class of such processes. We first recall 
that if A E: B(R) then NA({m}) corresponds to the opera­
tion that In counts occur in the period A. We should 
remark at this juncture that in all our analysis up to 
now (and also in what follows) we have been employing 
the "Heisenberg picture" of evolution, as is the stan­
dard practice for a theory of stochastic processes. 
Here, of course, there is an added complication that 
our observables {NA } are indexed by Borel subsets 
{A} of the time axis. Thus, under a time evolution 
(which includes any possible change in the nature of 
measurements performed, as well as the evolution of 
the system), the observable NA will evolve into NA+t 
where A + t = {x I (x - t) c A}. 

If Ar > Ar_I> ••. > A" then we can write down the joint 
probability Pr(A" 1II,;A2' 111 2;" • ;Ar> II/T) that 1111 counts 
occur in A, and 1112 counts occur in A2 and ... IIIr 

counts occur in Ar with no lIIeasurement beim; per­
formed in the interl'ening periods as follows: 

(4.1) 

where the order of factors in rhs is as indicated. The 
joint probability Pr can be written for any {AJ but it 
will not have the physical interpretation given above 
unless Ar>A r_1 

> ... >A,. 

In what follows we shall consider only those states {J.p 

which are specified by a "density operator" p (Le., 
p E: V and Trp= 1), in the following sense: 

(J.p(G)=Tr[C(p)] 

for all C EO O. For a state specified by the density op-
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erator p, we can write Eq. (4.1) in the following form: 

(4.2) 

The joint probabilities (4.2) exhibit all the typical 
features of "interference of probabilities"'o that is 
characteristic of quantum joint probability distribu­
tions. They are not symmetric in general; Le., (C1) 
or (2.7) is not satisfied. Also, because the operations 
N A .({m i}) do not in general satisfy the "repeatability" 
pr~perty, (C4b) or (2.11) is not valid any more. Finally, 
the property (C2) or (2.8) is satisfied only when i=r+ 1, 
otherwise we have inequalities like 

(4.3) 

in general. The relations which continue to be valid in 
quantum theory also, are the following: 

(Q3) whenever Ar>Ar_, > ... >A" 

p,(U Ai' 111)= 6_ /Jr(A" Ill,; . .. ;Ar> IIl r); 
i=l L;mi- m 

(Q4) If An + 0, then 

p, (Am 0) t 1. 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

The fact that the joint probability distributions (4.2) in 
quantum theory are not symmetric and exhibit non­
classical features as in (4.3), lead us to suspect that 
CPD and EPD (which are after all derived from Prj may 
exhibit similar nonclassical features. This would imply 
that the classical relations (2.17) and (2.18) [which were 
essential for the derivation of counting formulas like 
(2.22)] will not be valid in quantum theory. Before dis­
cussing these questions we should characterize a class 
of QPP for which CPD and EPD are well defined. Based 
on the pioneering work of Davies" on Q / P, it is possi­
ble to conclude that the CPD and EPD exist if certain 
conditions are imposed on the process. However, as 
our discussion in the Appendix shows, Davies' assump­
tions are extremely restrictive and do not certainly ex­
haust all the situations where the CPD and EPD exist. 
We shall instead consider the general case for which 
the coincidence approach is applicable. 

We define a QPP to be re.li7ilar if it satisfies the fol­
lowing conditions (R1) and (R2): 

(R1) s_lim Nu , t+Tl('~+"{O, 1}) = d; (4.8) 
1->-0 I 

(4.9) 

exists, and J t e L +(V, V), for each I. 

The coincidence probability Hr(A" A 2 , ••• ,Ar) can be 
defined when Ar > A r_, > .•. > A" by the formula 
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(4.10) 

Hr is the joint probability that one count occurs in each 
of the Ai' with the additional speci/ication that no 
measurement is per/armed in /Jetween Ihe jJeriods Ai' 
For a regular QPP the CPD exist and are given by the 
relation 

(4.11) 

whenever tr > I r_, > •.. > I,. Again these CPD are the 
joint probabilities that one count occurs around each of 
/ i Il'itll no meas1Irement being per/armed in the res/ of 
the d1lra/ion. They are also not symmetric in general. 
This is quite unlike the CPD in classical theory, which 
are actually obtained by summing over all the possibili­
ties in the intervening periods. In quantum theory, be­
cause of the interference of probabilities we have re­
lations like (4.3), which show that summing over all the 
possibilities for measurements performed in the inter­
vening periods does not lead us to Simple quantities like 
Itr as given by (4.11). In fact the joint probability den­
sity Tir that one count occurs around each Ii with the ad­
ditional condition that continuous observations are per­
formed in the intervening periods, and the number of 
counts may be anything (Le., the measurements a~e 
nonselective), is given by 

hr(t"t 2"",/r)=Tr[J t N(t t l(Z+)J t ···Jt p] r r-l, r r-l 1 

=Tr[JtT t tJt .. ·Jtp]. (4.12) r r-l, r r-l 1 

In quantum theory Tir oF h" in general. The above dis­
cussion also shows that, quantities like /J«( I, 1+ T], III), 
hr and the EPD Pr(t" 12 , ••• , tr) which refer to situations 
where continuous observations are performed over a 
finite interval, cannot be expressed in terms of 
{hr(t" 12 , ••• , Ir)} alone; in other words, the CPD given 
by (4.11) do 1101 characterize a QPP completely. 

We shall now calculate the EPD and show that they do 
determine the counting statistics. For a regular QPP, 
it follows from (CPl), (CP2), and (R2) that the joint 
probability Pr(i" 12"", Ir) that one count occurs around 
each of the ti and no count occurs in the rest of the in­
terval (i, 1+ T] is given by the formula 

Pr(t" 12"", Ir) 

= Tr[NCtr .t+ Tl ({o}) J tr N ur _,. trl ({O}) 

xJ tr_,'" JtjN(t,tll({O})P] 

= TrlSt t+TJt St t J t ... St t p], 
r' r r-l, r r-l ' 1 

(4.13) 

for 1 + T> 1 r > / r-1 > ... > 1, > t. The condition (R1) that 
we imposed on a regular QPP, rules out multiple 
occurrences of events. In fact, since 

N (I, t+T /Z+ "-. {O, 1}) = ~2 N(t, t+Tl({m }) , 

the condition (R1) implies that 

s_limN(t,t+Tl({m})= e, (4.14) 
1-0 T 

for III ? 2. 

For a regular QPP we thus have the following relation: 
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(4.15) 

Equation (4.15) is the generalization of (2.19) to the 
case of a regular QPP, where the EPD Pr as given by 
(4.13) are not symmetric and are meaningful physically 
only when tr>tr_1 

> ••• >t
1 

>t. From (4.15) and (4.13), 
we can write down a counting formula in terms of J I and 

St,t" 

The conditions (R1) and (R2) also imply a general re­
lation between J t and the generator J I of the semigroup 
{S I, I'}' In order to derive this, we start from the re­
lation 

T I, t+T = N (t, I+Tl(Z+) ="[;0 N It, t+Tl({m}) . (4.16) 

Now, using (3.17), we get 

(T t, t; -I)p=( St, t~T -I)p + Nit, t+;l({l}) P 

+ N (t. t+Tl(Z+ -......... {O, 1 }) p. 
T 

(4.17) 

Taking the limit T - ° and using (R1) and (R2), we first 
obtain that 

(4.18) 

where D( ) denotes the domain of the operator and r t is 
the generator of the semigroup {T t, t'}, From (4.17) we 
also get 

rtp=JtP+jtP, 

in D(jt). Now since 

Tr[ T t, t+T p] = Tr[N <t, t+rl(Z+)p] = Trp, 

because of (QP1b), we obtain 

(4.19) 

(4.20) 

(4.21) 

for all pc D( jt). We thus obtain the following relation: 

Tr[Jtp] = - Tr[ jtp] 

for all p E: D( jt). 

The semigroup {St t'} can be formally written in , -
terms of its generator J t as 

Stl't2=Texp[[lt2jtdt] , 

(4.22) 

(4.23) 

where the rhs actually stands for the strong limit of a 
sequence of terms19

,20 and T is the time-ordering op­
erator which orders the operators in chronological or­
der from right to left. For a regular QPP it is not true 
in general that the generators r t and jt are densely de­
fined for all t. However, in order to derive the count­
ing formula we will now consider only those regular 
QPP for which these generators are densely defined. A 
set of regularity conditions on the propagators {T t, t'} 
~nd {S t, t'} can be obtainedl9

,20 which ensure that r t and 
J t are densely defined for all t. 

Then we can substitute (4.23) in (4.13) and (4.15) and 
obtain the relations 
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Pr(t 1> t2 , ••• , tr) 

= Tr [T ~JtJt2 ••• Jtrexp ~t+T jt· dt ' fp ], (4.24) 

and 

[ 
) W+TJ dt')" ft+T I ] 

p«(t, t+ T], n)= Tr T) t n;' exp t jt,dt' \ p . 

(4.25) 

Equation (4.25) is the quantum counting formula for a 
regular QPP and it is remarkable that it looks quite a 
bit like the classical Mandel formula (2.22). 

We have therefore shown that for a class of regular 
QPP there exist the "generators" J tEL +(V, V) and jt 
which generates a strongly continuous (inhomogeneous) 
semigroup of positive contraction operators in L(V, V); 
the "generators" satisfy the relation (4.22). The count­
ing formula is given by (4.25) in terms of the "genera­
tors." Conversely, given the "generators" J t E: L+(V, V) 
and jt which generates a strongly continuous semigroup 
of operators in 0, then we can construct a regular QPP 
via the identification 

and verify that the counting statistics of this process is 
given by (4.25). The preceding analysis can be general­
ized to situations where the counts occur at different 
"locations" of a compact Hausdorff space X; then we 
have to consider J t as a "bounded stochastic kernel" in 
the manner discussed by Davies. 11 

A wide variety of regular QPP can be constructed by 
suitably choosing {J t} and {jt} which satisfy the above 
conditions. For example the class of regular QPP dis­
cussed by Davies ll (see also the discussion in the Ap­
pendix) correspond to the choice 

(4.26) 

where R t is the unique operator in B +(H) defined by the 
relation 

Tr(R t p) = Tr(J t p), 

for all p e V 

(4.27) 

In the general case {jt} are unbounded operators. We 
refer the reader to the extensive literaturel9 ,20 on the 
study of evolution equations in a Banach space, for a 
study of sufficient conditions that a set of operators 
{jt} generates a contraction semigroup. We now con­
sider the question as to whether a QPP can be shown to 
be regular if certain conditions are imposed on the 
semigroup {St,t'} and {Tt,t'}' We first assume that the 
condition (R1) is satisfied by the QPP. It can then be 
shown, (following closely the line of argument outlined 
in Sec. 4 of Ref. 11), that the condition (R2) is also sat­
isfied (Le., the QPP is regular), if D(rt) = D(jt) for 
each I. 

5. DISCUSSION 

In conclusion we would like to make a few remarks on 
the phYSical interpretation of the above formalism. We 
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have considered a situation where the detector is per­
forming continuous observations on the system. From 
the general principles of quantum theory we know that 
each act of observation transforms the state of the sys­
tem and hence the counting statistics is best discussed 
in terms of the measurement transformations corre­
sponding to events where a certain number of counts 
have been recorded in an interval of time. We are thus 
led to the study of point processes in the framework of 
quantum probability theory. By imposing the require­
ment of regularity, we rule out the occurrence of multi­
ple counts and also require that the operation J t, which 
specifies the counting rate at t, is well defined; Tr[J t p] 
is the probability density that a count is observed 
around t. For a regular QPP the counting statistics is 
determined by J t and a semigroup of operations {S t, t' } . 

St, t' is the operation corresponding to the event that no 
counts are recorded when continuous observations are 
made in the interval (t, ['l· Our discussion shows that 
a regular QPP is best specified in terms of the "gener­
ators" {J t } and {J t }. Now, if the evolution of the sys­
tem during the period when it is not subjected to ob­
servation, is given by a one-parameter group of unitary 
operators {U (t)}, then we can write 

(5.1) 

and 

(5.2) 

where J and J are the "generators" in a Schrodinger 
picture description. Of course, such a relation is valid 
only when the nature of the measurement performed by 
the detector does not change with time; otherwise we 
shall have to include the effect of such a change also, 
in the specification of the time -dependence of J t. If 
(5.1) and (5.2) are satisfied then we have the following: 

(i) The nature of the measurement performed by the 
detector is completely characterized by J and J. 

(ii) The statistics of counting, given by (4.25) together 
with (5.1) and (5.2), depends not only on the initial 
state p of the system but also on its dynamics as char­
acterized by U(t). 

Finally there remains the question as to whether J t 

and it can be "derived" by assuming a particular form 
of interaction between the detector and the system. 
This is of course the well-known problem of measure­
ment in quantum theory with the added complication 
that J t and Jt are related to measurement transforma­
tions that arise when continuous observations are made. 
However, one can consistently adopt the "operational" 
viewpoint that the measurement performed by the detec­
tor is to be characterized directly by means of the 
measurement transformations N (t, t<Tl({m}) (or the "gen­
erators" {J t} and {it}). After all, what is always ob­
served is the counting statistics and this is completely 
determined once such an association is made. 

ACKNOWLEDGMENTS 

The author is deeply indebted to Professor L. Mandel, 
Professor E. C. G. Sudarshan, and Professor E. Wolf, 
for patiently explaining to him several aspects of the 

2144 J. Math. Phys., Vol. 18, No. 11, November 1977 

theory of counting processes. He is grateful to the 
members of the Department of Theoretical Physics, 
University of Madras for their advice and encourage­
ment. 

APPENDIX: "QUANTUM STOCHASTIC PROCESSES" 
OF DAVIES 

In this Appendix, we briefly describe the connection 
between the "quantum stochastic processes" investi­
gated by Davies ll

-
13 and regular QPP. Davies considers 

essentially a family of instruments (random variables) 

[t: 8(z+) _ 0, 

for each I:' 0 which satisfy [apart from the usual rela­
tions (Q01)-(Qo3)1, the following properties: 

(i) [O{ {O~)" I; (A1) 

(ii) For each I> 0 

{- U(Z+)p is continuous; 

(A2) 

Let {U(t)} be a one-parameter group of unitary oper­
ators characterizing the evolution of the system while 
it is left unObserved. We now define the random vari­
ables {N u , t+TJl by the relation 

N (t, t+TJ({1II Dp 
(A3) 

From (i)-(iii) we can easily show that the random vari­
ables {IV (t, t+TJt satisfy (QP1) and (QP2). Also a com­
parison of (A3) with (501) and (5.2) show that {C} are 
the random variables corresponding to {N (I, t<T J} in a 
Schrodinger picture description of the evolution. We 
again emphasize that a Heisenberg picture setting is 
more suitable for a study of stochastic processes in 
both classical and quantum probability theories as we 
will be able to accommodate any general time-evolution. 

Let Bo(R) be the subset of 8(R) consisting of qJ, all the 
intervals {( I, 1+ T l} and also every countable union of a 
disjoint sequence of such intervals. From (i)-(iii) it is 
possible to show that the set of random variables 
{NU,tHJt given by (A3), can be extended [by using (QP2)1 
into a set {NA I A c Bo{R)} of random variables which 
satisfy (QP1) and (QP2). We define a "restricted quan­
tum point process" (RQPP) as a collection of random 
variables {NA I A (- Bo(R)} which satisfy both (QP1) and 
(QP2). From our discussion it follows that a QSP as 
defined by (i)-(iii), corresponds to a RQPP. It is of 
course an open question as to whether a RQPP can be 
extended into a QPP (as defined in Sec. 3) and also 
whether such an extension would be unique. 

In order to characterize the process {C} in terms of 
"generators" Davies imposes the following conditions: 

(D1) (Assumption of bounded interaction rate) 

(A4) 

where K is a finite constant. 
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(D2) The semigroup of operators {5 t }, given by 

(A5) 

are such that they transform pure states into pure 
states. From (Dl) and (D2) Davies shows, in particular, 
that 

and 

s-lim [T(Z·",{O,l}) e, 
'T 

s-lim C({l}) =J, 
T-O T 

where J E L +(V, V). 

(A6) 

(A7) 

From (A6) and (A7) it follows that the corresponding 
RQPP determined by {N(t, t+Tl} is regular, Le., it satis­
fies the conditions (Rl) and (R2). However, we would 
like to emphasize that the condition (D2) is extremely 
restrictive and is not motivated by any physical consid­
erations. In fact, for the case of the photon counting 
problem, it can be shown21 that the counting formula de­
rived from (4.26) [which one obtains on the basis of 
(D2)], does not bear any resemblence to the well-known 
Glauber-Mandel formula3

,4 or its generalizations. 5 It 
would be of interest to consider more general semi­
groups {5 t}, which do not transform pure states into 
pure states only, and construct a general class of reg­
ular RQPP. 
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The gravitational influence of a beam of light of variable 
flux 
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An exact solution is obtained for the Einstein field equations of a columna ted. time varying beam of light. 
The beam is circular in cross section. infinite in path length. and is considered in the geometrical limit. The 
beam is described in a retarded time coordinate system. The flux density is dependent on the radial 
coordinate and on the retarded time. The solution is sufficiently general so as to describe a single pulse of 
light traveling through a vacuum. It also allows the description of acceleration fields which propagate in 
the direction of the beam at the speed of light. Geodesics are considered in order to test the interpretation 
of the solutions and the stability of the time varying beam. 

INTRODUCTION 

The present paper is a sequel to one published several 
years ago. 1 In that paper (here quoted as I) an exact so­
lution is presented for a beam of light in general rela­
tivity. The beam was of constant circular cross section. 
It had an energy density which was constant in time but 
which could vary spatially within a cross section of the 
beam. 

The current work extends the above ideas to a beam 
which varies with time. An exact solution is again ob­
tained. The search for an exact solution was prompted 
by difficulties in trying to visualize the nature of a light 
beam and its field. It seemed apparent that a beam of 
variable flux density and cross section should be easily 
described in the retarded time metric of I. In addition, 
perturbations of the solution in I resulted in equations 
that implied trivial solutions if only variable energy 
density was incorporated. Finally, an attempt to find a 
Jean's instability in the first-order solutions resulted 
in failure. This oddity appeared logical in that light, 
although material in nature, is nonmassive and cannot 
be said to behave like a beam of dust or steel. Speci­
fically, the beam of light does not ring when struck. The 
sum total implied that the field would share the beam's 
Simplicity of description. 

This paper presents the field equations and solution 
pertinent to this problem. The general solution is found 
to have a matter dependent part and a part which de­
scribes an acceleration field imposed along the axis of 
the beam. The basic form of the geodesics is not dis­
cussed in this paper since they are similar to those of 
Paper I. Geodesics are considered only to illucidate the 
nature of speCific questions unique to this discussion. 

1. THE BEAM METRIC 

The analysis of this paper is similar to that of Paper 
I. A beam of light of circular cross section of radius R 
is propagating along the longitudinal axis, Z, of a cylin­
drical coordinate system. The beam is directed toward 
positive Z values. It is considered in the geometrical 
limit; as such, there is no diffraction at the edge of the 
beam and all of the beam's rays are strictly parallel to 
the Z axis. The path length of the beam is infinite with 
both source and absorber infinitely far away. Hence the 
graVitational field of either region may be neglected in 
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our calculations. 

The energy density, p, of the beam is still chosen to 
be independent of the azimuthal coordinate, 8, and de­
pendent on the radial coordinate, r. In addition, we 
wish to make the source of the light beam time depen­
dent. This will result in an observer seeing a time de­
pendent energy density. Since the beam is propagating 
along the z axis one would expect a z dependence in the 
observed energy density. In Paper I we found that the 
rays of the beam are unaffected by the gravitational field 
of the beam. They continue to travel parallel to the z 
axis at the unique speed of light. In a retarded time 
metric this implies that a cross section of the beam in 
the azimuthal plane can be parameterized solely by the 
retarded time t. We will assume that this result will be 
maintained in the variable flux problem. Therefore the 
energy density, p, in the current problem will be a func­
tion of r and t, but not of z. Essentially this says that 
each observer will see the same beam cross section at 
the same retarded time independent of his position along 
the z axis. This assumption will be later subjected to a 
check when we examine null geodesics to see if the beam 
maintains its unique speed and collinearity. 

Within the above framework we include a further vari­
ation. We will allow the beam radius, R, to vary with 
time. This will allow a sausage shaped beam, and in the 
extreme case where R is equal to zero during different 
time intervals, a string of beads of light separated by 
vacuum results. 

The gravitational influence of the beam shares with the 
beam density the property of being dependent only on y 

and t. In the same fashion as was previously discussed, 
no observer situated on the z axis is unique. He sees 
the same beam density and the same gravitational effect 
that any other observer sees at the same retarded time. 
Hence the gravitational metric is independent of z. The 
retarded time metric used is a form of Vaidya's New­
tonian metric2 discussed in r. In this case, the space­
time interval 

(1) 

is given by the metric components 

(2) 
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where f, ct, A, and S are functions of r and t. All other 
components are zero. We could transform r and t in the 
form 

t'""t'(r,t), r'''''r'(r,t) 

so as to simplify the metric components. The first 
transformation would be unwise in that we would jeopar­
dize the ability of the time coordinate to parameterize 
a cross section of the beam. As for the second, it would 
seem advisable to maintain a form of the metric which 
would result in a solution somewhat similar to that in I. 
By not specifying the radial coordinate too precisely at 
this time, we leave open its choice until the field equa­
tions are to be solved. We will assume that S goes to 
zero as r goes to zero or the nature of the azimuthal 
coordinate would change. 

The contravariant metric tensor is the same as that 
given in I, Eq. (8), with S replacing r in the g22 compo­
nent. 

The Christoffel symbols are determined by the rela­
tion 

r;k= ~gil(glj.k+glk.j -gjk, I)' 

For the metric of Eqs. (2) we find 

r o = aa 
00 at' 

1 af r 1 = __ eon 
00 2 ar ' 

r 1 _ 1 act ,,-n 
03 - 2" ar e , 

(3) 

The Ricci tensor is obtained from the Christoffel sym­
bols by the relation 

The nonzero components in our case are 

alt aa 1 as alt 
- ar ar - 5 ar ar ' 

R 1 a2 
Q 1 a2s 1 as a Q 

01 = '2 arat + 5 arat - 25 Fit ar 
1 aa a.\ 1 as alt 

-"2arat-5atat' 
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act aA 1 as aa 
-atat-5atat' (4) 

2. FIELD EQUATIONS 

The energy-momentum tensor, Tik' given in Paper I, 
Eq. (25), is for directed light radiation with a local en­
ergy denSity p. As in Paper I, the current beam has all 
of its flux directed in the positive z direction. Hence we 
obtain the same energy-momentum tensor. The only 
nonzero component of this tensor, Eq. (27) (of I) is 

(5) 

where p and f are now functions of rand t. The trace 
Ti i = 0 as expected for null radiation. 

Since the trace of the energy-momentum tensor is 
zero, the Einstein field equations with the cosmological 
constant set to zero are given by 

Rik= - C~4G)Tik' 
We scale the energy density as in I by the relation 

47TG m=--cr p . 

Using this relation and Eqs. (4) and (5) in the field 
equations, we obtain 

Se-2~ [a 2S 
+ (aa _ alt) as] =0 

&;;:2 ar ar ar ' 

8
2
a +.!. 82S +.!. (8a)2 _ alt aa _ .!. as alt =0 

8r 2 5 ar 2 2 ar ar ar 5 a r ar ' 

1 a2 a 1 a2s 1 as act 
2" arat +5 arat - 2S at ar 

1 a a a A 1 as a.\ _ 0 
- "2 ar at - 5 ar at - , 

eon [a2f +.!. as af _ (~+ alt) af + (aa)2 ] 
&;;:2 s ar ar 8r ar ar ar f 

(6) 

(7) 

(8) 

(9) 

(10) 

_ 2[a21t +.!. a
2s + (alt)2 _ aa alt _.!. as aa]_ 

ap: Swat at at 5 at at -4mf· 

Note that af jat does not occur in these equations. 

The nontrivial part of Eq. (7) may be rewritten 

e~-" ~ (as e"-~) = 0 . ar ar 

This may be integrated, 

a5 e"-~=F(t) 
ar ' 
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where F is an arbitrary function of t. Equation (8) may 
also be rewritten. Its nontrivial part gives 

1 ~-'" 0 (s -~ oe"') - 0 5 e or e or - . 

We may integrate this and find 

Se-~oe"'/or=J(t) , (13) 

where J is an arbitrary function of t. We now consider 
the combination of field equations 

en /S 2 Eq. (7)+ en -", Eq. (8) - Eq. (9) . 

This results in the equation 

.!. oa (oa + ~ oS) = 0 . 
2 or or r or 

Two solutions are possible, 

or 

00' 4 oS 
ar -- 5 or 

oa = 0 . 
or 

Equation (14) integrates to 

a = log[ C(t)/s41 , 

(14) 

(15) 

where C is an arbitrary function of t. The metric com­
ponent determined by a then reads 

/[03 = C(t)/S4 . 

As noted in the paragraph following Eqs. (2), S goes to 
zero as l' goes to zero. As such, this solution for a re­
sults in a fourth order pole in the metric. As discussed 
in I, such singularities are unacceptable. They result 
in unphysical solutions which have essential singulari­
ties. This leaves us with Eq. (15) which implies 

a = a(t) . (16) 

This in Eq. (12) implies 

aS e-~=K(t), 
or 

(17) 

where K is an arbitrary function of t. Equation (16) may 
be used to simplify the field equation (10), 

1 ( 02S as 0-\)_0 
5 i)rot - or at - . 

We may integrate this with respect to time, 

(18) 

where L is an arbitrary function of r. Comparing Eqs. 
(17) and (18) we find 

K(t) = L(r). 

That is, 

(19) 

where c is a constant. 

We now consider the choice of coordinates more care-
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fully in the hope of illuminating the remaining field equa­
tion. Consider a circle around the z axis formed by 
varying 8 at constant r. The three-dimensional metric 
tensor gives the proper length, dl. In the plane of the 
circle dl is given by 

dl 2 = en dr2+ S2d82• 

The circumference of the circle is 217S. The radius of 
this circle is 

J eAdr. 

Since space-time in a local region is flat, the ratio of 
these two should be equal to 217 for small r. Hence, 

217S=217 Je~dr, r small . 

We may differentiate this and find 

oS -L 1 
or e - , r small. 

This implies that the constant in Eq. (19) is equal to oneo 
Equation (19) becomes 

as -~_ 1 
(1r (' - • (20) 

Using Eq. (16), the remaining field equation, Eq. (11) reads 

e_2A (02/ +.!. oS 0/ _ (1-\~) 
01'2 S or or or or 

[
0

2
::\ (OA)2 1 02S] 

- 2 fii2 + at + 5 fii2 = 4111/. (21) 

The above equation does not simplify using Eq. (20), We 
now impose coordinate conditions, For simpliCity in the 
resulting equations we choose 

S(r,I)= r. (22) 

This satisfies the condition on S for small r. Substitut­
ing this in Eqs. (20) and (21) gives 

::\=0 (23) 

and 

(12/ 1 0/ 
-2 + - -(1 - 4111(1', 1)/=0. 
or I' I' 

(24) 

Note that a no longer appears in this equation, The 
only condition on a is Eq. (16); hence, a is an arbitrary 
function of time. Since it determines the metric com­
ponent g03 we may redefine I such that a equals zero 
without affecting the retarded time or modifying the 
quantity /. Our resulting metric comes from this and 
Eqs. (22), (23), and (24); namely, 

ds 2 = / dt 2 + 2dt dz _ dy 2 _ Y 2d82 , 

where 

02
/ 1 0/ 

-00 +--
0 

-4m(r,t)t=0. 
r- y y . 

(25) 

These are the same equations found in I with the sole 
addition that III is a function of t as well as r. 

3. GEODESIC EQUATIONS 

USing Eqs. (3) and the final metric form, Eq. (25), the 
nonzero Christoffel symbols may be written, 
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1 _ 2 _.!. r 22 - -r, r 12 - , r 

The geodesic equations are given by the expression 

dv k 

- + r~ VkVI=O ds Ii , 

where v k is the 4-velocity of a test ray or particle. 
Combining Eqs. (26) and (27) we obtain 

dVo 
-=0 
ds 

dv
I 

+ .!. a f vOvo _ rv2v 2 = 0 
ds 2 ar ' 

dv2 2 _ + _ V I V 2 =0 
ds r ' 

The first of this set has the solution 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

where A is a constant. Equation (30) is in a standard 
form and has the integral 

(33) 

where h is a constant and may be interpreted for nonnull 
geodesics as angular momentum per unit mass. To han­
dle the remaining two equations we multiply Eq. (29) by 
VI and Eq. (31) by va. Then subtracting the first from 
the second we obtain 

By using Eqs. (32) and (33) we get 

dv3 1 d(V I )2 A2 [af af ] h2 
A - - - -- + - - VI + - VO +::3 VI = 0 . 

ds 2 ds 2 ar at r 
(34) 

The quantity in the bracket may be rewritten as a total 
derivative with respect to s since f is a function of r 
and t 

d f = a f VI + a f vO. 
ds ar at (35) 

In Eq. (34) this makes each term a derivative with re­
spect to s, 

dv3 1 d(VI)2 A2 df h2 dr-2 
A-----+-- ----=0 

ds 2 ds 2 ds 2 ds . 

In this form we may immediately integrate and obtain 

(36) 

where B is a constant. Using Eq. (25) one may check 
that the above relation is the contraction of the 4-velo­
city with itself, or the line element in 4-velocity form. 
As such, the constant B is determined, 

{ 
0, null trajectory, 

B= 
1 , nonnull traj ectory . 
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(37) 

One further integral of the geodesiC equations remains. 
We may rearrange Eq. (31) so as to emphasize a total 
derivative with respect to s, 

dv3 (a f af ) 1 af _ + VO _ VI + _ VO ___ (VO)2 = 0 . 
ds ar at 2 at 

Using Eqs. (32) and (35) 

dv
3 

+ A d f _.!. A 2 a f = 0 . 
ds ds 2 at 

This does not have a simple integral with respect to s. 
The first two terms may be integrated, but the last term 
may only be written formally, 

v3=D-Af +~A2 f :{ ds, (38) 

where D is a constant of integration. This may be sub­
stituted in Eq. (36) to obtain an expression for VI, 

VI=± (-B+2AD-A 2 f _h2 /r2+A3 f :{ dSr/2 (39) 

In summary, the geodesic equations are given by 

v2 =h/r 2
, 

v3=D-Af +~A2 f :{ ds, 

(40) 

(41) 

(42) 

VI =± (- B+ 2AD _A2 f - h2/r2+A3 f :{ dSr/2, (43) 

where A, B, D, and h are constants and B equals zero 
or one for null or nonnull trajectories, respectively. 
One may check that this reduces to the geodesic equa­
tions of I in which f is independent of time. As in Paper 
I, we will assume that a light ray or particle may pass 
through the beam without interaction. Hence all geo­
desics will be continued indefinitely. 

4. ACCELERATION FIELDS 

The simplest solution of the field equations results if 
the scaled energy density, m, is identically zero. Equa­
tion (24) becomes 

a
2 
f +.!. a f = O. 

a;;:r r ar 

If f is to have no singularities of a logarithmic nature, 
then f is an arbitrary function of time, though positive 
definite, and independent of the radial coordinate. 

To investigate such a field we may use the geodesic 
equations. With f independent of r, Eq. (35) reduces to 

af _ 1 df 
at - A ds . 

This in Eqs. (42) and (43) results in 

v3=D-~Af 

and 
(44) 

(45) 

In this situation VI is independent of f; therefore, it is 
independent of the retarded time. Only v3 changes with 
the retarded time. 
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To investigate this more fully consider a particle 
which is at rest at t equal to zero. In Eq. (44) this gives 

1)3 (0) = D - ~ A f (0) = 0 . 

This determines the constant D, 

D=~Af(O), 

which in turn determines l,3, 

11
3 = ~ A(f(O) - f(t». 

As f increases with time, 1)3 becomes negative and the 
particle accelerates toward the negative z axis. If f 
then decreases to the previous value, f(O), 1)3 comes 
back to zero. At all times 1)3 matches f in its time de­
pendence. If we consider a set of particles all initially 
at rest, the relationship of a given particle to its neigh­
bors is not changed with a change in f. The same con­
clusion results for particles not initially at rest. Light 
is a special case. Light rays moving parallel to the z 
axis are the only ones of interest since Eq. (45) (with 
B = 0, h = 0) states that the radial speeds are unaffected. 
Forward rays are given by A = 0; rearward rays are 
given by D = O. The rearward rays are affected in the 
same manner as any particle trajectory. However the 
forward rays are unaffected by changes in f. The re­
tarded nature of the coordinates is preserved. These 
results are consistent with f representing a true ac­
celeration field. The field is homogeneous in the azi­
muthal plane, propagates at the speed of light along the 
z axis, and is directed toward increasing values of z. 

The condition placed on f in I was that at r = 0, f = 1 
[Paper I, Eq. (42)1. This would not hold in the above 
discussion. But an acceleration field is not considered 
to be physical because it cannot be detected by a set of 
neighboring particles or null rays. As such, we may 
transform the coordinates so as to absorb this nonphys­
ical result. In so doing the field f becomes equal to 
one. The solution is then Minkowski space-time which 
is consistent with the absence of matter. 

5. TIME DEPENDENT MATTER SOLUTION 

A solution f of the field equation, Eq. (24), is generally 
a function of rand t. The only place in which time en­
ters this homogeneous operator on f is in the scaled 
energy density, /II. For each time t, f satisfies the 
equation for In at that time. This means that f follows 
m in its time dependence. Though the solution must be 
continuous in r, it may be discontinuous in t. This oc­
curs because t denotes a wavefront of the beam; hence, 
III may be discontinuous in this variable. The discon­
tinuity in f follows immediately from Eq. (24). In terms 
of physical considerations one should not expect the 
gravitational effect of a given cross section to outdis­
tance the cross section itself. With the source of the 
beam being infinitely far away, the entire gravitational 
field wavefront has had time to become a plane wave. 
Both the beam and the gravitational field propagate at 
the speed of light, hence they stay together. There is, 
however, some surprise that the gravitational influence 
does not have a tail. The field f is dependent only on 
the current time and not on those times previous to or 
after this. The field then acts as a plane wave. This is 
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somewhat similar to the plane wave appearance of the 
Schwarz schild field of a particle which is moving past 
an observer at nearly the speed of light. 

Because of the above considerations, variations in the 
beam which are impossible to solve in other cylindrical 
problems can now be handled simply and analytically. 
For example, the radius, R, of the beam may be a func­
tion of time, R(t). This includes beams in which R os­
cillates with time between two fixed values of r. This 
would describe a sausage shaped beam. It also includes 
cases where R(t) is equal to zero for finite time inter­
vals. These would include individual pulses of light 
separated by vacuum. The considerations of the pre­
vious section on acceleration fields would apply here. 

As an example of a solution of Eq. (24) we consider a 
beam of light whose radial extent is nonzero but depen­
dent on time. Its energy density within this radius is 
dependent only on time. The solution may be taken from 
the time independent case given in I, 

f =1
0
{2111(t)1/2 r ), y <R(t) 

= 10{2111 (t)1/2 R(t) 

+ 2111(t)1/2R(t)11{2m (t)1/2R(I) log (R~t))' y> R(t) , 

(46) 

where 10 and 11 are modified Bessel functions of order 
zero and one, respectively. 

In short, the field differs from that caused by massive 
bodies. The field of a massive object envelopes the ob­
ject like a peach surrounds its pit. The field in our 
case envelopes and travels with a cross section of the 
beam much like the caramel in a caramel cream. 

To investigate this field further we look at the geodesic 
equations. In Eq. (42) we are left with an integral which 
is not readily accessible to integration. One way to in­
vestigate this equation is to compare u3 at the current 
time t to ug at a previous time to' If f changes with 
time we may say that the value of f currently observed, 
by a test particle or ray, is accumulated from changes 
along a geodesic from a previous value f(ro' to) 

To simplify this further we assume that the trajectory 
is such that the radial coordinate, r, remains constant. 
Hence 

(I df 
f(r,t)=f(r,to)+)1 ds ds. 

o 

In addition we may use the simplification of Eq. (35) as 
discussed in Sec. 4; namely, 

df=A af . (47) 
ds at 

Using this in Eq. (42) we obtain 

[ Jldf J rldf 
v 3(r,t)=D- AfUo)+A I dsdS+tA)1 dsds, 

o a 

which reduces to 
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This may be integrated 

v3(r, t)=v3(r,to) - iA(f(r, t) -f(r, to». 

The same analysis applied to Eq. (43) yields 

vl(r, t) = vl(r, to)' 

Since VI is initially zero, we obtain 

(48) 

(49) 

(50) 

The first case to consider is that of a test ray of light 
traveling parallel to and in the same direction as the 
light beam. In this case both B and h are zero. When 
these are substituted in Eq. (43) we find that A is equal 
to zero. By Eq. (29) the radial acceleration is now zero, 
and by Eq. (48) the component v3 is unchanged. Hence 
the ray of light is unaffected by the time dependence. 
Applying this to the beam itself we see that it is in equil­
ibrium under self-gravitation. This result maintains the 
conclusion of Paper I. In addition, it means that unlike 
massive beams, no pinch or Jean's instability results 
from a sausage shaped beam. 

The next simplest case to consider is a set of parti­
cles which are initially at rest. They are distributed 
with different distances, r, from the axis but at the 
same axial coordinate, z. We have found that the time 
dependent metric does not affect the radial component 
of the 4-velocity. Hence the particles may be held at 
their initial radial distances by rockets to offset the 
radial acceleration of the beam. This ploy will not mod­
ify the questions of interest. In this situation the initial 
values of v3 are all zero. The change in v 3 is given by 
Eq. (48). If m has a net increase during this time inter­
val interior to r, the field solution I at r grows in mag­
nitude. The particles are attracted axially into the re­
gion of increased m with those farther out having the 
greater resulting speeds. If, with further changes, m 
returns to its previous distribution the particles will 
come to rest. However, since f is a function of r they 
do not come to rest at the same axial coordinate. Using 
Eqs. (47) and (48) the particles undergo a displacement 

t 

z-zo=-i 1 [/(r,t)-/(r,to)]dt, 
to 

(51) 

which is a monotonically increasing function of r for 
increasing 111. 

This effect can be further studied by observing an 
initially circular orbit around the beam in the azimuthal 
plane. Of the initial 4-velocity components only V O and 
v2 are nonzero. However, as with the particles at rest, 
only the z component changes with time. With an in­
crease in m the circular orbit changes to a helix which 
spirals toward the negative z axis. If, at a later time, 
I returns to its previous initial value the helix closes 
and returns to a circular orbit. The same may be 
stated if circular null orbits occur. 

In all of the above cases particles and light rays are 
attracted toward the section of increased m as it comes 
upon the geodesic. As this section of increased m 
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passes, the geodesics are again attracted toward the 
departing section. This is consistent with the Newtonian 
attraction of two bodies. It also is consistent with the 
result of Tolman, Ehrenfest, and Podolsky3 in that the 
net acceleration is zero. However we have the simplifi­
cation that the three-dimensional potentials are not 
necessary. The effect is a contact acceleration within 
a given two-dimensional azimuthal cross section. 

One result seems to contradict the conclusions of Pa­
per I. In that paper null helical trajectories can always 
occur with a backward moving spiral. Forward spiral­
ing trajectories are restricted to sufficiently high ener­
gy densities. In the current paper we may start with a 
circular null orbit if we have a sufficiently high energy 
density. If the beam intensity decreases, a helix de­
velops from the circular orbit. This is a forward spi­
raling case. If this were extended to its logical conclu­
sion, we could have a beam of low density with a notice­
ably forward spiraling null geodesic. By moving in the 
direction of the beam's flux at the z component of the 
geodesic velocity, we transform to a new frame. In 
this new frame the helix is closed up to a circle. This 
new frame would share the same form of the metric as 
the preceding. But the energy density of the beam is 
Doppler shifted to a lower value. The net result is that 
any beam which changed its energy density with time 
could have light orbiting in closed circular trajectories. 
This would be true even if the beam were of very small 
energy density, say that of a flashlight. Obviously this 
does not occur in nature. 

The paradox is resolved if we consider motion with 
respect to a material observer and not with respect to 
the coordinate system. We use an observer who is at 
rest at the same value of r as the circular orbit. The 
only geodesic equation of interest is that for the z com­
ponent of the 4-velocity. We use this in the form of Eq. 
(51) which compares changes from one beam cross sec­
tion to another. This result is independent of the value 
of A and hence independent of whether we talk of the ob­
server or the null trajectory. The observer shares the 
axial motion of the helix. Hence they stay together and 
the observer will continue to see a null Circular orbit. 
This is not to say that the change in beam intensity is 
not detectable. An observer who was initially at rest at 
a different radial coordinate will see a helical trajec­
tory develop from the above changes. In fact, an ob­
server on the z axis will see a rearward spiraling tra­
jectory in keeping with the results in Paper 1. 

6. THE GENERAL SOLUTION 

The solution of the preceding section is not the most 
general. The general solution of Eq. (24) is 

I(r, t)G(t) , (52) 

where I is as given in the preceding section and G is an 
arbitrary function of time. This function G may be dis­
continuous but it must be positive definite. It results in 
an acceleration field which propagates with the beam 
along the beam axis. As such, this is similar to the 
section on acceleration fields. 

To show the acceleration effect we consider the case 
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where m is independent of time; hence, f= f(r). As 
before, we consider particles which are initially at rest 
and are kept at their radial positions by rockets. The 
argument leading to Eqs. (48) and (50) remain the same 
with f(r)G(t) substituted for f(r, t). We now obtain the 
relations 

v1(r,t)=0, 
and 

v3(r, t) = -1 Af(r)[ G(t) - G(to)]' (53) 

If only the acceleration field, G(t), were present we 
would inquire about the z component of the 4-velocity 
as seen from an underlying Minkowski space. Here we 
apply the same method in a curvilinear space and hence 
inquire into proper velocities. 

The proper distance along the z axis is given by 

dl = ( g 00)"11 2 dz , 

or in our case 

dl = (j(r)G(t)r I/2 dz . 

The quantity A for a particle at rest is given by Paper 
I, Eq. (22) to be 

A = [f(r)G(to)r I/2 
• 

These last relations in Eq. (53) give 

dl 1 G(t) - G(to) 
ds =- !(r)[G(t)G(toWf 2 f(r)[G(t)-G(to)]=- [G(t)G(to)1If 2 ' 
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This is independent of the radial coordinate. All parti­
cles obtain the same proper velocity under the influence 
of G. Hence G(t) is an acceleration field which may be 
superimposed on the actual metric. As before, we may 
neglect its contribution since its effect is the same on 
all particles, 

In conclusion, we have obtained a general solution for 
a time dependent, columnated beam of light. As men­
tioned in I, the beam density needed to obtain physically 
measurable effects appears to be prohibitive. How­
ever, as in the last paper, the interpretations of the 
solution are particularly satisfying. Specifically, the 
solution itself has an amazing simplicity for a problem 
of this generality. 

A system of linearized equations and some solutions 
are expected to be published soon. 
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field equations in curved space-times. I. The 
Klein-Gordon equation in stationary space-times 
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In stationary space-times Vn X R with compact space-section manifold without boundary Vn, the 
Klein-Gordon equation is solved by the one-parameter group of unitary operators generated by the energy 
operator i -IT -I in the Sobolev spaces H'( Vn ) X H ' - I

( Vn ). The canonical symplectic and complex 
structures of the associated dynamical system are calculated. The existence and the uniqueness of the 
Lichnerowicz kernel are established. The Hilbert spaces of positive and negative frequency-part solutions 
defined by means of this kernel are constructed. 

INTRODUCTION 

Let Vn +1 be a globally hyperbolic, (n+ I)-dimensional 
Lorentzian manifold of class C~ with metric tensor g of 
the same class. 

By definition, thejree scalar neutral physical field of 
mass m > 0, in this space- time is described by the 
Klein-Gordon equation 

where tl.n+1 is the Laplace-Beltrami operator of Vn+1 

and u is a real distribution. 

(1) 

For Eq. (1), and in a neighborhood n of each point of 
Vn+l> the existence of two unique fundamental solutions 
is well known. 1

-
4 The propagator G of the equation is 

then the distribution kernel defined as the difference of 
the two fundamental solutions. 

The Cauchy problem for Eq. (1) and for the spacelike 
hyper surface ~ is solved in n by the following expres­
sion3,5: 

(2) 

where Ox = ° /oyX, {yX} are local coordinates of the point 
y of Vn+1 and {d~~ (y)} the components of the surface vec­
tor of ~. 

Moreover, with Eq. (1), is canonically associated a 
skew-symmetric 2- form acting on its solutions; the 
local definition of this 2-form is 

(3) 

Expressions (2) and (3) are independent of the choice 
of the spacelike hypersurface ~. 

The primary elements required for the development of 
the standard quantization program for the field des­
cribed by Eq. (1) are: (a) a suitable definition of the 
positive and negative frequency-part solutions, u~ and 
u 8 of the real solution u of Eq. (1); (b) a Hilbert struc­
ture on the space of these solutions constructed con­
sistently with (a). In other words,6,7 Eq. (1) must pro­
vide a suitable real Hilbert structure on the space of its 
real solutions, and a suitable complex structure opera­
tor, orthogonal in this space. 
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This work deals only with points (a) and (b) and not 
with the quantized field. 

Lichnerowicz, in his program3
,5,B of quantization of 

free fields in curved space -times V n+l' has set forth a 
method to introduce the elements (a) and (b), which may 
be summarized briefly as follows: In the Minkowski 
space-time ]\I1 n+

1 
elements (a) and (b) are usually ob­

tained by the Fourier transformo9,lO In a general curved 
space-time V n+1' this transform is not avilable. How­
ever a method lacking the Fourier transform may be 
sought to obtain these elements. To this end, consider 
the following two properties of the distribution kernel 
G1 (or tl. 1 , D1"") inMn+l [which is real, symmetric, 
and a solution of Eq. (1)) : 

(i) the fundamental convolution relation 

G(x;x')= f
C

{G1(X;y)ox G1(x',y) 

_G1(x' ,y). Ox Gl(X;y )}d~XCV) , 

is satisfied. 

(ii) the operator J between real solutions of Eq. (1), 
locally given by 

(Ju )(x') = fc{u (y)oXG1(X 1;y) 

(4) 

(5) 

is a complex-structure operator on a real space of real 
solutions of Eq. (1), which satisfies 

b(JV;Ju)= b(u; v) , 

and the expression 

{u;v} =b(u;Jv), 

is a scalar product in that real space. 

(6) 

The usual positive and negative frequency-part solu­
tions of the real solution u of Eq. (1) in Minkowski 
space-time are given here by the expressions 

u@=i(I+iJ)u, u8=i(I - iJ)u, 

and the usual complex Hilbert structures of the spaces 
of frequency solutions are given here by the scalar pro­
duct deduced by linearity from expression (6). 

The Lichnerowicz method consists of seeking a distri-

Copyright © 1977 American Institute of Physics 2153 



                                                                                                                                    

bution kernel Cl [which is, symmetric, real, and a 
solution of Eq. (1)] in the space- time Vn+ I with proper­
ties (i) and (ii) (obviously, these properties are formul­
able in V n+l ) , and of obtaining elements (a) and (b) in the 
same way as in the Minkowski case, mentioned above. 

The main goal of the present work is to prove the ex­
istence and the uniqueness of the distribution kernel Cl 

in the case of stationary curved space-times, Vn+l = Vn 
xR, with close (Le., compact and without boundary) 
space section Vn and to construct the Hilbert spaces of 
positive and negative frequency solutions following the 
foregoing Lichnerowicz method. 

The mathematical treatment of the problem is greatly 
simplified, and the physical interpretation of the results 
is made possible, provided some metric conformal to 
the quotient metric (see Sec. 1) on space- section mani­
fold Vn , is introduced from the start. The interest of 
such a metric in general relativity has already been re­
marked upon in literaturell

-
13 concerning problems lying 

far afield from the present one. 

The solution provided for the problem has its source 
in physics: Stationary space- times admit time transla­
tions (in an adapted atlas) as a symmetry group, where­
by the energy of the solutions of the Klein-Gordon equa­
tion may be considered. The Klein-Gordon equation is 
written in the Schrodinger form (i-lao - H) / = ° with f 
=' (u; 0ou) as unknown, and solved in the Sobolev space 
HI(Vn) X H°(Vn) (which is endowed with the scalar pro­
duct of the energy), by the group of unitary operators 
generated by the Hamiltonian H. With the help of the 
power operators y-K (constructed by a method similar 
to that used by Seeley to construct complex-power oper­
ators of elliptic pseudodifferential operatorsI4•15) scalar 
products for which H is self-adjoint, are introduced on 
the spaces HI x HI-I, and the Klein-Gordon equation is 
solved by the group of unitary operators generated by 
the Hamiltonian H, in these spaces as well, wherein it 
defines an infinite-dimensional Hamiltonian system. 
Following Segal6•7 a canonical complex structure can be 
determined on these spaces, from which the construction 
of the Cl kernel follows. Under certain specified con­
ditions, it will be unique. 

An analogous theorem of existence and uniqueness of the 
Cl kernel in stationary space-times has been estab­
lished independently and simoultaneously by Chevalier.16 

In his work, the Klein-Gordon equation is taken as an 
ordinary first-order differential system 0o/=A/ with 
unknown/: (u; anu) where (an) is the normal derivative 
to the space section Vn• The semigroup theory of oper­
ators is used to solve the system on the Banach spaces 
HI x HI-I. Operator A generates a semigroup of class 
Co (Hille- Yosida theorem). The construction of the Cl 

kernel follows from the existence and the properties of 
the square root of the operator _A2. However there are 
differences in the choice of certain technical elements 
between the Chevalier work and ours; namely, the 
metric induced on the manifold Vn is used by Chevalier 
in place of the above-mentioned conformal metric; in 
the Cauchy problem the normal derivative (an) replaces 
the time derivative (ao) used in this paper and any parti­
cular scalar product on HI x H I- I is preferred to the en-
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ergy scalar product employed here. 

We believe that the choice of technical elements 
made in this paper makes it possible to obtain the 
results of the Chevalier work in a simple way. Ad­
ditional results are also given (the infinite-dimen­
sional dynamical system determined by the Klein­
Gordon equation is studied, the power operators T-K 
are constructed, the compactness of the operator T is 
exploited to give series expansions for the C and Cl 

kernels). 

In Minkowski space-time, Rideaul7 has given an un­
iqueness theorem for the Cl kernel, using the Fourier 
transform. The conditions for the uniqueness of the 
Cl kernel in the theorem of Chevalier and in the theo­
rem presented here are the same, and are generaliza­
tions of the conditions given in the Rideau theorem. 

From the construction of the fundamental solution of 
the Klein-Gordon equation in Minkowski space-time, 
given in Ref. 18, it is possible to obtain simultaneously 
a construction of the C and Cl kernels in the space­
time. E. Combee 9 has proved that this method can be 
generalized to construct these kernels in static space­
times such that the Killing trajectories are geodesics. 

Combeeo has also proved the local existence of the Cl 

kernel in static space-times. The Klein-Gordon equa­
tion is now written as o;u + Bu = 0, where B is a self­
adjoint positive operator in L 2(L;), L; being some open 
set of the space manifold. This equation may then be 
solved as a first- order differential system in the Hil­
bert space Hl(':,) xL 2(:0), by a group of unitary opera­
tors in this space. The propagator of the equation is 
given by the kernel of the operator B- I /

2 sin(tB I /
2
), and 

the Lichnerowicz kernel is given by that of the opera­
tor B- 1 / 2 cos(tB1I2). 

In a work to be published in collaboration with Combet 
the existence and uniqueness of the C1 kernel in any 
space- time will be considered. The Fourier integral 
operators technique will be employed. We will use the 
results contained in the work of Hormander and Duis­
termaae1 on the parametrix of the hyperbolic equations 
and some remarks of Segal on the same problem in 
Minkowski space- time. 

A large number of references concerning the problem 
of field quantization in curved space- time is given in the 
Fulling thesis.22 At present, a considerable effort is 
being devoted to this problem (Parker 23• 24 Hawking, 25.26 
Ruffini et al.,27-29 B. deWitt,30, Deser and Zumino,31 
Zeldo ·vich,32. 33 etc), mainly in relation with matter 
creation in expanding universes, physical phenomena in 
the neighborhood of black holes and supersymetries of 
the gravitational field. 

1. THE KLEIN-GORDON EQUATION IN STATIONARY 
SPACE-TIMES 

(a) Let Vn , n *2 be a compact manifold of class C~ 
without boundary, and v" XR be a stationary space- time. 
On the charts of any chosen adapted atlas, with coordin­
ate functions x"', a=O,l, ... ,n (x i ,i=l, ... ,n local co­
ordinates in Vn and XO = t, canonical coordinate on R) the 
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metric tensor components g ",8 (x') are independent of 
time, and the components of the Killing vector field 
satisfy 

~",=go",' I ~ 12=g"'8~"'·~8=goo)0. 
We suppose the Vn x {t} submanifolds to be space like 

(Le., gOo> 0), and we endow them with the Riemannian 
manifold structure defined by the following metric, con­
formal to the quotient metric 

Y/J= I~ 12/(""2)(g/J_I~ 1-2g0 / g0 }). 

In the case n = 3, several authorsll
-

13 have pointed out 
the physical interest of this metric. In this work it ap­
pears as a valuable tool for detecting the essential fea­
tures of the problem. 

(b) The local expression of Eq. (1) is 

where 
a 

g=det(g",8) and a",= ax'" 

In order to rewrite Eq. (1) in a convenient way, we 
introduce the following notations: 

1 
N= - [2L(V)- divvl , VO 

(7) 

(8) 

(9) 

where A: is the Laplace-Beltrami operator on Vn de­
fined by the {Yii} metric tensor; L (V) is the Lie deriva­
tive with respect to the vector field Von Vn , Y = det(yu) 
and -ry = a2 Jg . 

A straightfoward calculation from Eq. (7) leads to the 
following expression for the Klein-Gordon equation: 

a~u(t) +Na t u(t) + Mu(t) = O. 

It will be convenient to rewrite it in differential- sys­
tem form 

( 
0 I) T-1 -

-1\11 -N 
(10) 

2. THE r 1 OPERATOR 

The functional framework to deal with Eq. (10) is that 
of Sobolev spaces HI(Vn) of the Vn manifold. 34. 35 

M is an (elliptic) second-order differential operator in v". 
therefore it is a continuous operator from HI(Vn) toHI-2(Vn): 

N is a first- order differential operator and is therefore 
a continuous operator from HI(Vn) to H I-1(Vn). 

Let us recall that the C~ (Vn) space is the projective 
limit of the HI(Vn) spaces and :D'(Vn) is their inductive 
limit. 

Relative to the scalar product 

(u;v)o=fvnu .'f).v°7)(Y) , U,VE:C~(Vn)' 
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(11) 

where 7)(Y) = -ry dx1" • • ·"dxn ; the completion of the 
C~(Vn) space is identical with H°(Vn)' Consequently, the 
latter space becomes a Hilbert space with the scalar 
product (11). 

A straightforward calculation from expressions (8), 
(9), and (11) allows us to prove 

Proposition 1: (i) Ker M = {O} . 

If u, V E: H2, then 

(ii) (Mu;V)o=(u;Mv)o' 

(iii) (Mu;u)02:0, (Mu;u)=O=u=O, 

(iv) II(M- >..1)"1110::::: I>.. 1-1 for >..<0. 

If u , V E: HI, then 

(v) (Nu; v)o+ (u;Nv)o= o. o 
From (i) and (ii) of the preceding proposition and the 

general theory of elliptic operators on a manifold, the 
operator 211 is an isomorphism between HI+2 and HI 

whose inverse operator 211- 1 is a pseudodifferential oper­
ator of order -2. 

The complex poweres 211 1
, l E: C of the operator M ex­

ist/5
• 36. 37 since it is an invertible operator of positive 

order and its resolvent operator satisfies the inequality 
(iv) of Proposition 1. The MI operator is a toplinear 
isomorphism between H r and H r

- 2Re 
(I). Therefore, the 

expression 

(12) 

is a scalar product in the HI space, and defines the top­
ology of this space. Thus the expression 

(13) 

where 111' VI E: HI+1 and 11 2 , V2 E: HI, is a scalar product in 
the space HI+1 x HI, and defines its topology. 

Theorem 2: (i) The operator r 1 is a top linear iso­
morphism between HI+1 x HI and HI x HI-1 with inverse 
operator 

T=( _~IN _~r1) . 
(ii) In HI x W, and relative to the scalar product (13), 

T-1 is a skew-adjoint operator with domain H2 XHI. 

(iii) T is a compact operator in HI XH 1
- l . 

(iv) Rc p(T- l ) , R- {O} C p(T). 

(v) If >..E: R- {Or, then 

U (T"1_>"I)-111 1•0 ::::: I>.. 1-1, II(T->..1)"IIII.o::::: I>.. 1-1. 

Proof: (i) Let U=(1I1;u2)c.H I+1 XHI. From the follow­
ing obvious inequalities; 

fI T -IU lit 1-1 ..,; II u211~ + 2 II ulll~+1 + II NU 2 IILI 

+ 2 II MU 1 11 1- 1 ·11 NU 2 11 1- 1 , 

fI NU211~_1 :::::K II U 2 II~, K c. R 

II MU111~_1 + II NU211~_1 2: 211 MUI 11 1- 1 • II Nu2 11 1_1 , 

we find a real constant K' such that 
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II r-1U II~. 1-1 "" K' II U 1I~+I. I , 

This inequality proves the continuity of T -1. The con­
tinuity of T follows by a similar argument on T or by a 
we 11- known corollary of the open mapping theorem. 38 

Clearly T·T- 1 =T- 1 ·T=I. 

(ii) Let v=(V 1 ;v 2)cH2 XHl; from expression (12) and 
(v) of Proposition 1 we obtain 

(T -IU, V)I. 0 + (u ; T -IV )1.0 = [(u 2 ; V1)1 - (Mu 1 ; v 2 )O - (Nu 2 ; v 2 )O] 

+[(U 1 ;V 2 )1- (u 2 ;Mv 1)o- (u 2 ;Nv 2 )oJ. 

(iii) From the Rellich theorem ,34. 35 the inclusion map­
ping HI+l x HI X H I-1 is compact; T is continuous from HI 
XH I-1 to Hl+l XHI, therefore, T is compact in HI XH I-1. 

(iv) The spectrum of T -1 (and thus that of T) is the 
same in all the HI x H I-1 spaces. The zero point belongs 
to the continuous spectrum of T .. The assertion then 
follows from (ii). 

(v) By (ii) we obtain 

II (r- 1 
- X 1)u II i. 0 = II r-ll,l II i. 0 + X 2 II u II i. 0 2: X 2 II u II i. 0 • 

The assertion then follows from (iv) and a similar argu­
ment on T instead of T- 1

• 0 

3. r- 1 OPERATORS 

In this section we introduce the complex- powerl5• 37. 39 

operators of the T-l operator [of the (_ T -1) operator]. 
By means of these powers, we provide the HT x HT'-1 

space with a scalar product compatible with its topology. 
This space then becomes a Hilbert space, and T- 1 is a 
skew-adjoint operator in it. 

(a) For Re(l) < 0, the (T- 1)1 operator is defined14• 15 by 
the Dunford formula 

(14) 

where r= ]_00; - E] U C(E) U [- E; _00[, and C(E) is a 
circle with center at the origin and radius E, such that 
it does not contain points of t he spectrum of T -1. 

From (v) of Theorem 2, integral (14) converges in 
norm in HI x HI-I. A simple calculation gives 

(T-l)l= (- A(X)(N+X) -A(X)\ 

A(X)M - XA(X) ) , 

where 

A(X) = [M + ">eN + X2]-1 . 

Expression (14) then becomes 

(r- 1 )1=-R(l)(..:'M ~)+R(I+1)I, 
where 

(15) 

Now, we can adapt to the R (l) operator the process de­
veloped by Seeleyl4.15 for proving the pseudodifferenti­
ability of certain elliptic pseudodifferential operators. 
Most importantly we obtain39 
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Theorem 3: For Re(l)<O, R(I + 1) and R(l) are two 
pseudodifferential elliptic operators of order I, 1 - 1, 
respectively. 0 

Corollary 4: The (T- 1)1 operator given by expression 
(14) is continuous from HT X Hr-l to Hr-Re(1l xHr-ReO)-I. 

The complex-power operators (T- 1)1 of any order, are 
now defined in the usual fashion. 15. 36, 37 

Definition 5: For IcC, we set 

(r-l)I=(r-l)k.(r-l)1-k , 

with k an integer and -1 :oS Re(l) - k < 0. 0 

By standard techniques we can provel5
• 38 

Theorem 6: The (T- 1 )1 operator is a toplinear iso­
morphism from HT XHT-1 to Hr-Re(1) xH r - ReO )-1 and 
(T-1)S .(T-1)1=(T-1)s+I, l,seC. 0 

We shall write T- I instead of (T-l)l. Proposition 8 
below will justify this new notation. 

From Theorem 6 if follows that the expression 

{ u' vl = (T- I+IU' T- I+1V) , r I, 1 .. 1 , 1,0 , (16) 

u, v e HI x H 1-1, is a scalar product defining the topology 
of HI x HI-I, and from (ii) of Theorem 2, we obtain 

Theorem 7: In HI x H I-1 equipped with the scalar pro­
duct (16), the T -1 operator is skew-adjoint with domain 
H /+1 X HI. In general, 

{rr u; 1!} /'/-1 = {u; (- T)Y vL, 1-1 

with u, v e D( TT), r c C . o 

(b) Balakrishnan has defined37 complex powers of cer­
tain operators on Banach spaces by means of an ex­
pression different from (14). We shall next prove both 
definitions coincide and a proposition that we shall need 
later. 

Proposition 8: If -1 < Re(l) < ° , 
(r-l)1 = sin1T(-l) l+~Il-I-l(T+ !J./r1Td ll. 

1T 0 

(17) 

Remark: This expression is the Balakrishnan defin­
ition of the T -I operator. 

Proof: The change X- Il= X-I in expression (14) leads 
to 

(18) 

where f(1l)=]0;-1/E] UC(l/E)U[-l/E,O[. The integral 
on C(E) in expression (14) tends to zero when E - 0, be­
cause 11(r-l- XI)- I I1 T,r-l < K, for Ix I "" E and -1 < Re(l) 
< 0. Then in expression (18) the integral on the circle 
C (1/ E) tends to zero when E - 0. Thus 

21T (r-l)l= I-~ (1IlIei.r l-1(T- 1lI)-ITdll 
o 

-1-~ (1IlIe iT I-1(T- 1lI)- ITdll 
o 

= - 2i sin1T(-l) J~ 1l-I-l(T+ 1lI)- ITd ll· 
o 

o 
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Consequently 

Proposition 9: 

(_ T2)1/2 = Tl/2 • (_ T)1/2 . (19) 

Proof (Also see Chevalier16
): From expression (17) 

we obtain 

= V2 (_ ~)1/4. 

The last equality is by definition. Operator (- T2) is 
bounded self-adjoint positive in the space H' XHl-1 and it 
therefore has a unique positive t power, here defined by 
the Balakrishnan formula. Relation (19) follows from 
the squares of this realtion. 

4. SYMPLECTIC AND COMPLEX STRUCTURES 
ON SPACES OF REAL SOLUTIONS 

(a) Let{ V(t)} (or{ VB}) be the one-parameter group of 
unitary operators in HI x H' - 1 generated by T- ' . 

The expression 

u(t')=V(t'-t)u(t), U(t)EH'xH'-', 

solves the Cauchy problem for the equation and Cauchy 
data in H' xH'-'. We can then regard H' xHI

-
I as a Hil­

bert space of solutions of Eq. (10). 

Since T- 1 is a real operator, V t is also a real opera­
tor. 

For r>l, the restriction to yrxyr-I of the unitary 
group { V t} coincides with the unitary group of opera­
tors in yrxyr-I generated by T- ' . Moreover, 

Proposition 10: (i) In the spaceX"'C~(Vn)XC~(Vn), 
the bounded operator T- 1 generates a uniform one­
parameter equicontinuous group which coincides with 
the restriction to X of the unitary group {V t}. We des­
ignate it, too, by {V t}, and we have dk/dtkVt=T-kVt in 
the sense of the uniform topology on the space of bound­
ed linear operators on X, Lb(X;X). 

(ii) In the space X' "'O'(Vn)x 0' (Vn), the bounded oper­
ator T- 1 generates a uniform one-parameter eqUicon­
tinuous group whose restriction to HI xHI - 1 coincides 
with the unitary group {V t }. We designate it, too, by 
{V t}, and we have dk / dt!'V t = T-kV t in the sense of the 
uniform topology on the space of bounded linear opera­
tors on X', L b(X'; X'). 

Proof: (i) The set of operators {(I _n- 1T- 1 )-m, n =±1, 
±2,"', m = 0,1,"'} is equicontinuous in X because 
II(I _n-1r1)-mull, ,'-1 "" II U II and the topology of X is de­
fined by the set of norms {II II, ,1_ 1. Now by a theorem 
from Yosida,38 p. 246, T- 1 is the infinitesimal genera­
tor of an equicontinuous group for class Co, given by 

Vt=s-lim[exp(-nt)exp(nt(I _n-1T- 1)-1)J. (20) 
n- OO 
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Here s-lim means strong limit; the convergence, for 
t in bounded sets of R is uniform. T- 1 is bounded in X 
and Lb(X;X) is complete; thus the convergence in ex­
pression (20) is uniform on bounded sets of X [Le., it 
converges in the Lb(X;X) space] and uniform for t in 
bounded sets of R. Expression (20) can thus be differ­
entiated, with respect to t, an arbitrary number of 
times, precisely by differentiating each term of the 
sequence. 

(ii) The space X' is the inductive limit of the space 
H' XH'-1 which are barreled and bornological. Thus X' 
is also a barreled and bornological space. The set of 
operators{(I-n- 1T-1)-m, n=±1,±2,"', m=O,l,."}is 
bounded in L(X';X') for the simple convergence topo­
logy; by the Banach-Steinhauss theorem (X' barreled), 
this set is equicontinuous in X'. Thus, T- 1 is the in­
finitesimal generator of an equicontinuous group of 
class Co of operators in X'. The restriction of this 
group to HI XH' - I is obviously the unitary group {Vt }. 

T- 1 is bounded in X', and L b(X' ; X') is complete because 
X' is bornological and complete. The final part of the 
statement follows from this and from an argument simi­
lar to that used in (i). 0 

(b) From the Lagrangian density, 

L(u)=V Au'VAu-m2u 2, m>O, 

we obtain (1), as Lagrange equations, and 

T"B(u) = 2v"u' vBu _g"BL(u) , 

as the components, in natural frames, of the energy­
momentum tensor. Here V"=g"B VB and VB are covari­
ant derivatives in Vn+ I' 

Let u, v be two real solutions of Eq. (10) in Coo(VnxR) 
and let ~ be a spacelike hypersurface of V nX R. The 
following two quantities: 

(21) 

(22) 

are independent of the choice of the spacelike hyper­
surface ~. Expression (21) is the definition of the 
energy40 associated with a solution of Eq. (1) in a sta­
tionary space-time. Expression (22) is a bilinear 
skew-symmetric form defining the weakly-symplectic 
structure41 of the dynamical system described by Eq. 
(10). 

With ~ '" V nx{t}, a straightforward calculation leads to 
the following 

Proposition 11: Let u '" (u 1; u2), V'" (VI; v2 ) be two ele­
ments in HI XHo. Then: 

(i)K(U)=(U;U)l,O' K(Vtu)=K(u) , 

(ii) b(u, v) = (Tu, V)l ,0= (u l ; v2 )0 - (u 2 ; vJo - (N u1 ; v1 )o , 

(iii) b(Vtu, Vtv) = b(u; v). 0 

(c) Following Segal6 (see also Chernoff and Mars-
den41

), let us consider the unitary part J of the polar 
decomposition42 ,43 of T in the real Hilbert space H' 
XH' -\ 
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J=T(_T Zr ,/Z =T'/Z o (_Tt'/2. 

Proposition 9 justifies the second equality. 

The proofs of the following two theorems are straight­
forward. 

Theorem 12: On each real space HI XHI - 1 of real 
solutions of Eq. (10), the operator J defines a complex 
structure, i. e., (i) J is a toplinear automorphism of 
HlxHI

- 1; (ii)J z =_1; (iii) UtJ=JUt . u 

Theorem 13: On the real space HI XHI - 1
, 

(i) The skew-symmetric form wl(u; u) ={Ju; uL ,1-1 is 
strongly symplectic. 41 

(ii) The skew-symmetric form b I(U; v) ={ Tu; v} ',I -1 is 
weakly symplectic. 41 

(iii) The restriction of WI to the HI + 112 X HI -1/2 sub-

space is b l +1 / Z ' [J 

A uniqueness theorem for the operator J now follows. 

Theorem 14: On the real Hilbert space HI XHI 
-1 of 

real solutions of Eq. (10) there is a unique complex 
structure operator J' satisfying: (i) J'T = TJ'; (ii) 
wj(u;J'u»O if u*O. HenceJ'=J. 

Proof (also see Chevalier16 and Combet'9): From (0 

(J -JJ')(J -J') = O. 

But (1 -JJ') is bound-symmetric, and from (ii) it has a 
strictly positive lower bound; then for c < 2111 -JJ' 11~,'1 -1 

the series 

c L [1 - c(1 _JJI)J"= (1 _JJ,)-l 
n=O 

converges in norm in H' XHI 
-1 to the inverse of (1 -JJ') 

which is a bounded positive symmetric operator. (See 
Ref. 43, pp. 263.) Hence J =J' . 0 

5. G AND G 1 KERNELS 

(a) Let us write ui = UrI = JU to 

(

Ui1(t) U;2(t)) 

U1(t) = U~l(t) U~2(t) , 

and a similar matrix expression for U t · ui/t) and Uij(t) 
are continuous operators from C~(V n) to C~(V n) because 
they are continuous from HI (V n) to HI + j -i (V n) for any l. 

From the kernels theorem, these operators determine 
the regular44

•
45 distribution kernels CL(t), cij(t), de­

fined by linearity and contunity from the expression 

(C ij(t); <p ® ~)v nXv n = -(U;j (t)<p; 1f;)o , 

where <p, Ij;ECOC(Vn), and similarly for Cij(t) and Uij(t)· 

Proposition 15: The mapping Cl;('), 

R-C(Vn)0 D'(Vn) , 

I-Gij(t) , 

is of class C~. The same is true of the C jj (·) mapping. 

Proof: From Proposition 10, the mapping UL(-):R 
- Lb (COO(V n); C~(Vnl) is of class C~. The proposition now 
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follows by using the isomorphism Lb(C~(Vn); C~(Vn) 
""C(Vn)®D'(Vn). LJ 

Let <p be a mapping in C OC(R2; COO(V;)). 

Corollary 16: The mapping on R Z with values in C de­
fined by 

(t'; t) - (Gij(t' - I), <p(t ' , mv xv 
n n 

is of class C~ and the Leibniz formula 

a~,(CL(t' -I); <p(t', mv xv 
n n 

follows. Similar properties hold for the G iJ (.) mapping. 

Let Ij; be a mapping of C1R; COO(Vn). 

Corollary 17: The mapping on R2 with values in COO(V n) 
defined by 

(t', I) - (G l)t' - t); ~(t', mv x V 
n n 

is of class Coo, and the Leibniz formula for derivatives 
with respect to L or t' holds. [j 

(b) Let cP be a mapping in COC«(V nX R2). Then, the 
mapping <p on R2 with values in C~(V~) canonically de­
termined by cP is in C1R2

, C~(V;). Conversely, let <p be 
a mapping in the latter space. Then the mapping ~ on 
(V nXR)2, with values in C canonically defined by ~ is in 
C

OO

«(VnxR)2). From this, andCorollaries16and17, we 
obtain 

Proposition 18: For <p E D«(Vnx R)2) the expression 

(fJD; cp) = 1 CJ~': GL(t' - t); ~o ® \0 r$(t', 0\ dhil' , 
R2 , g g '/ v n x V n 

(23) 

defines a regular distribution kernel on VnxR. Locally 
we have 

tliW' e; t~) = a~, bi~(t' 1;'; to . 
The same statement holds for the CiJ(t) and fJ~j kernels. 

U 

The uniqueness of the solution of the Cauchy problem 
for Eq. (10) lsee expression (2)J means that the fJ~2 ker­
nel is the propagator of that equation. 

(c) We shall see that the kernel G 1 '= fJ;~ satisfies the 
properties required in the Introduction. Also see Chev­
alier 16 and Combet. 19 

Proposition 19: The kernel G' is symmetric and the 
kernel G is skew-symmetric. Both are real. 

Proof: The operators VI' t E R, are real; the kernel 
C ' and G are thus also real. The relation V:* = -U:' t 

and T- 1U t =U tT- 1 yield, in particular 

W;2(-t)<P; Ij;), = - (<p; U~1(t)ij;)0 

U~l (t) = -U;2(t)M , 

<P, if! E COO(Vn). Therefore, 

W;2(t)<P;MIj;)o = (<p, UL(-t )M~·)o, 

thus (Gi2(t)' =G;2(-t). (' stands for transposed kernel). 
Using this relation in definition (23) of the C 1 kernel, 
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we can find the symmetry of this kernel. Similarly we 
can find the skew-symmetry of the G kernel. [J 

From the relations 

we obtain, in particular 

(24) 

A A d d2 
(I0M)G: 2(l'-t)+ (I iSlN) dt G: 2(1'-tl+ dt2G :2(t ' -t)=o, 

where the time derivatives are taken in the sense of 
Proposition 15. Then, 

(25) 

Proposition 20: The kernels G and G' are solutions of 
the Klein-Gordon equation in a distributional sense, 
i.e. , 

«~n+I _m 2 )®J)G ' =O, «(I®(~n+l-m2»G'=O 

and a similar expression with G in place of G I. 

(d) Let 

(_T2)I/2=~ ;) 

be a matrix expression of the operator (_T2)1/2 on 
every HI XHI 

-I space. Then 

J=(MA-~NC MB~:D) 
Let if, 13, ... ,M, . .. be the regular kernels on V n de­

termined by the A, B, ... ,M, . " operators. Given 
regularity, the convolution (*) of a finite number of 
kernels, in the sense of Volterra-Schwartz,45 pp. 114-
120, included amongA,B, ... ,M,GL(t), Gij(t), is well 
defined and associative. 

Relations U1(t) = U(t)J =JU(t) and UW' -1')·U1(t1 - t) 

= -U(t" -t) give, in particular, 

1 A A d A 

G 12(1' - t) = G 12(t ' - 1)* M *B - dt
' 

G 12(t' - t) * D, 

G (t"_t)=C I (t"_t,)*..E.... C 1 (t'-t) 
12 12 dt' 12 

- d~ G ;2(t" - t'l * G;2(t ' - t) . 

The former expression yields the C ' kernel. The latter 
relation is the fundamental Lichnerowicz relation (4). 

The first proof of this result in static space-times 
has been given by Com bet. 2,19 We have thereby proved 

Proposition 21: The calculated distribution kernel G' 
on a stationary space-time, satisfies the conditions re­
quired in the Introduction. Conditions for uniqueness 
are given in Theorem 14. The complex structure op-
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erator J [expression (5) J is given by the following ma­
trix of kernels: 

6. POSITIVE AND NEGATIVE FREQUENCY SPACES 

On the complex space H' xH I 
-I of solutions, let us 

consider the operators8 

EB=W+iJ),6=W-iJ). 

Then 

Proposition 22: (i) EB and 6 are complementary pro­
jectors on H'xHI - 1 and 

e,u,=U t ·e,6·U t =U t ·e. 
(ii) If h EH'xHI - 1 is real, 

[] 

2{eil;eh} 1,1-1 = 2{6h;6h}/,I_I ={h; h}"I-I' [] 

By definition the closed subspaces 

Ef=e(H' XHI- 1
), E~=6(HI XHI- 1

) 

are the Hilbert spaces of positive and negative fre­
quency parts respectively. 

7. THE SPECTRUM OF THE ENERGY OPERATOR 

In this section we find the Fourier expansion for fre­
quency solutions and kernels G, G' , analogous to that 
given in the Minkowski space by means of the Fourier 
transform. 

Basically we have exploited the compactness property 
of the inverse H- l of the energy operator H = i-IT- 1. 

See Theorems 2 and 7. 

(a) Let us write Eq. (10) in the Schrodinger form 

.!. dd u(t) = Hu(t), H=C'T- ' . 
t t 

(26) 

H is the Hamiltonian operator1I of the dynamical system 
defined by Eq. (10) and HI xH' - I is its "phase space." 
By Theorem 7, H is self-adjoint in H l xJt-l with re­
spect to the scalar product (16), and by Theorem 2, H- l 

is compact. Therefore, the spectrum of H is real, 
countable, and does not have any finite accumulation 
point; the proper subspaces are of finite dimension, 
and there is an orthogonal basis of HI xH' - l formed by 
eigenfunctions of H. 

Proposition 23: Let lp, p E Z be any eigenvalue of H. 
The eigenspace E IP is a subspace of finite dimension of 
C"'(Vn)xC"'(Vn). -lp is also an eigenvalue of H. Complex 
conjugate elements of an orthonormal basis of E IP form 
(in HI XH' - I ) an orthonormal basis of E IP' 

Proof: (i) Let {up} be an orthonormal basis of HI 
XHI - l such that, 

Hup= [pup, lp E R, P E Z 

with up=- «Up)l; (Up)2)' Thus 

Carlos Moreno 2159 



                                                                                                                                    

(M + ilpN -l!)(Up)2 = 0, (Up)2 = ilp(up), 

Since (up), and (Up)2 are in the kernel of an elliptic dif-
ferential operator, both are in C~(V n)' 0 

(ii) Clearly we have: Ifiip= -lpfip and (up; Uq)1 ,1-' = Opq. 

(b) Let Yo = ~ Vlp up + ApUp ) , Ap , Ap E C, p, pEN be, any 
element of HlxHI-'. The solution of Eq. (26) correspo­
ding to the Cauchy data Yo at time t = 0 is given by 

y(t) = ~ (e i IptAp up + e-ilptApUp) , (up""up)' 
p> 0 

Thus the evolution operator V I takes the form 

VI=~ (e-ilplup0up+eilptup®Up) , 
p> 0 

(27) 

where the series converges in the strong topology on 
bounded linear operators in HI x H I-' . 

(c) Let us write 

yE!"(t) = 6 eilplAp Up, ye(t) = 6 e-ilpIApUp, 
p>o p>o 

y'(t) = i(ye(t) - y!lJ(t» . 

Thus we obtain y'(t) = fl'(t)yo, where 

fl'(t) = -i ~(e-ilptup®up - eilptup®Vp) , 
p>o 

and the convergence is just as in expression (27). 

Proposition 24: Jup = -isgnlp' up . 

Proof: 

(T-')up = ilp Up = (-T 2 )up = ~2 Up. 
p 

(28) 

(29) 

(30) 

From the spectral theorem and the uniqueness of the 
positive square root of a positive self -adjoint operator. 
we obtain 

( 2) 1/2 1 -T up = T4T up . 

The proposition now follows. 

The next proposition is now obvious. 

Proposition 25: We have fl'(t) = V'(t) and expressions 
(28) and (29) give the frequency solutions defined in 
Proposition 22. U 

(d) A simple calculation on expressions (27) and (30) 
shows that 

G (t'-t)=I" I (e-ilpt(u) ®eilpl'(u) 
12 L.J P PIP 1 

p> 0 

_eilpl(up)10e,'pt'(Up)l) , 

Gi2(t' - t) = ~ lp(e-ilpl(up)1 ® eilpt' (up), 
p> 0 

+eilpl(up)10e-ilpt'(Up),) , 

where the series converges in D'(Vnx V n) for fixed t and 
i'. 

The function 

fp = eilp(') (Up) I 

is in C«>(VnxR). By Proposition 18, the series 

G = i~ lpUp0 fp -fp01p) , 
p>o 
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- -
G 1 = ~ lpUp ® fp + fp 0 fp) , 

p> 0 

are convergent in D'«(VnxR)2) and define the propagator 
and the Lichnerowicz kernel of the Klein-Gordon equa­
tion. 

8. CONCLUSIONS 

The space-times considered in this paper are station­
ary V n x R with compact space-section manifold without 
boundary. 

In any adapted atlas, the Klein-Gordon equation be­
comes a time-independent evolution equation in spaces 
H' XlI'-I. The complex powers of the T- ' operator have 
been defined. By means of these powers, a scalar pro­
duct compatible with the topology has been introduced in 
the lIIXHI -' space. The energy operator lI=i-1T- 1 is 
self-adjoint in this space relative to the said scalar 
product. The Klein-Gordon equation has then been 
solved by the one-parameter group {VI} of unitary oper­
ators generated by T- ' in the Hilbert space III XlII-I. In 
the spaces C~(Vn)xC«>(Vn) and D'(Vn) X D'(Vn) this group 
is uniform equicontinuous. On each space lI' xlIl- 1 a 
canonical complex structure has been defined. These 
structures have been Simultaneously defined by a unique 
distribution kernel G\ which satisfies the Lichnerowicz 
requirements. The Hilbert spaces of frequency solu­
tions have thus been constructed by means of this ker­
nel. 

The spectrum of the energy operator H=i-1T- I is real 
and symmetric with respect to the origin of R. The only 
nonvoid part of the spectrum is the point spectrum, and 
it is countable, with no finite accumulation point. This 
property has been exploited to give the definition of fre­
quency solutions in a form similar to that given in the 
Minkowski space by means of the Fourier transform. 
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A note on the range of the applicability of the 
Ornstein-Zernike theory in the van der Waals model 
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We show that the condition determining the range of the applicability of the Ornstein-Zernike theory 
obtained previously by Hemmer for the van der Waals model is too strong. The weaker condition obtained 
by us is in agreement with the existing results for different physical systems, and it requires the 
temperature to satisfy the following inequality: (T- Tc)/Tc> (yd)6, where I'd denotes the ratio of the short­
range part of the potential to the range of the long-range part and T, is the critical temperature 
predicted in the van der Waals model. 

I. INTRODUCTION 
In this paper we consider the van der Waals model 

of a fluid in which the interparticle potential if>(r) is 
separated into a short-range repulsive part and a long­
range attractive part, 1 

(L 1) 

where if>hc(r) is the Short-range part of the potential (of 
range d) while if>attr(r) = - y3rp(yr) is the long-range part 
of the potential of range 1'-1. It is a well-known fact that 
the I' - 0 limit of the van der Waals fluid pressure p is 
given by the following equation of state1

,2: 

(1. 2) 

where phc is the pressure of the hard core flUid, p is 
the number denSity, and ¢(k) denotes the Fourier trans­
form of the long-range part of the potential. The nota­
tion used in this paper is exactly the same as that in­
troduced in Ref. 1, 

The problem of determining the region near the criti­
cal point in which the two-particle correlation function 
can be approximated by the Ornstein-Zernike (0. Z.) 
function has been discussed for different physical sys­
tems. 3-7 The common conclusion obtained as a result 
of this analysis is that the O. Z. theory holds whenever 
the following condition is fulfilled: 

(» 1\ (1. 3) 

where r 1 denotes the range of the interparticle potential 
(measured in proper units) and (2 = (T - Te)/Te. 

The above problem has been also investigated by 
Hemmer l in the frame of the van der Waals model. The 
condition for the range of the applicability of the O. Z. 
theory was found to be 

E >'yd (1.4) 

which disagrees with the previous results (1. 3) in the 
sense that it represents a much stronger requirement 
(we always consider the 1'- 0 limit). It appears however 
that this exceptional status of the van der Waals model 
is apparent and results entirely from disregarding the 
behavior of the hard core system near the critical point 
of the fluid. We thus show that also in the van der Waals 
model the condition (1. 3), i. e. , 

E» (yd)3 (1. 5) 

determines the range of the applicability of the O. Z. 
theory. This is done in Sec. II where the first two terms 

in the ~ = (yd)3 expansion of the two-particle correlation 
function g(r) in the far range (i. e., for r= 0(1'-1» 
are considered and then the condition (1 0 5) is recovered. 
In Seco III we analyze the contributions to the two-parti­
cle correlation function which are of an arbitrary order 
in ~ and we outline the proof of the validity of condition 
(1. 5) for the general case. 

II. THE ~ EXPANSION NEAR THE CRITICAL POINT 
AND THE O.Z. THEORY 

We are interested in the behavior of the two-particle 
correlation function g(r) in the far range [r = 0(1'-1) 1 in 
the vicinity of the critical point. We shall always 
approach the critical point along the critical isohore 
in the one-phase region and the parameter E defined as1

: 

z -() (ilP) ~((JphC) ( = 1 + 1)if> 0 = - -' - - T - T c 
op T op T 

(2.1 ) 

will measure the distance from the critical point. 

In this section we consider the first two terms in the 
~ expansion of ,i{(r) , i. e., 1.[(1) and ,i{(Z). As is shown in 
Ref. 1 these two terms are given in the I' - 0, E - 0 
limit by the following expressions (we always use the 
Fourier space representation): 

-(l)(k) 6k B T 1 
,i{ ~ I;Y; (0) I k 2 + 6(2 , (2.2) 

-(2)(k)"" [9k T(01)j2 J2arctan(k/2 Y6E) 1'3 
,i{ BOp} T 7Tk(k2 + 6(2)2 (2.3) 

+18kBTDG:~)Jw +16(2)2 - ;6J' 

where 

(
1')3 2/ ¢(k) 

D = - 2; k B T1) dk 1 + 1)¥ (k) " 

If near the critical point we disregard the behavior of 
the hard core system represented in (2.3) by the func­
tions 1), (01)/OP)T' and (i]21)/ap2)T' then for the wave vec­
tors of the order of ( (k = qE) we obtain in the I' - 0, 
(- 0 limit the following result: 

(2.4) 

(2.5) 

Thus the conclusion derived in Ref. 1 is that the second 
order terms are small in comparison with the first 
order term (O.Zo theory) if (1.4) is satisfied. 

It appears however that the above line of reasoning is 
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misleading because the function 

(~\ =(EiphC\ -2 [(OPhC) _ J0 2P;C) ] 
Ap JT Op ) T Op T ~ Op T 

(2.6) 

vanishes at the critical point. This follows from the 
equations determining the critical point 

(~) =0, (,02~\ =0 
op T op J T 

for the van der Waals equation of state (1. 2). 

The function (07)/cP)T enters into (2.3) through the 
fluctuation-dissipation theorem when considering the 
lowest order term in the y expansion of the Fourier 
transform of J.L~c, 

I dr exp(zk2• ry) .r dRexp(ik3, Ry)J.L~C(O, r, R; p) 

=Idr I dRJ.L~C(O,r,R;p)[1 +y(ik2·r+ik3,R)] 

- y2 i I dr .r dR [k~r2 + k;R2 + 6(k 2 , r )(k3 • R)] 

x J.L~C(O, r, R; p) + oV). (2.7) 

Since this lowest order term vanishes at the critical 
point and the linear terms also vanish for the symmetry 
reasons B then the first nonvanishing term is propor­
tional to y 2t 2 (after the change of variables k = qd. Thus 
near the critical point one has to use the expression 
proportional to y2E2 instead of (o7)/oP)T. This means 
that, since the functions 7) and (A27)/Op2)T have finite 
limits at the critical point while D _y3E in the y - 0, 
E - ° limit, the first term on the right-hand side of (2.3) 
is small in comparison with the second term. 

Now the condition for jf(2) to be small in comparison 
with g(!) reduces to the condition for the second term on 
the right-hand side of (2.3) to be small in comparison 
with (2.2) and this exactly takes the form (1. 5). 

III. THE GENERAL CASE 

According to Ref. 1 the two-particle correlation func­
tion g(r) is represented by the sum of all distinct irre­
ducible generic 2 -graphs. After the renormalization to 
all orders in the density is performed! each graph can 
be built from: 

(a) two dotted root points 

(~} 11 lines 

representing the functions i1~c, n? 2, 

(b) k (kOo, 0) dotted field points 

::~}n lines 

representing the functions iT;c, n? 3; 

(c) p (p"" 1) chain bonds-c-representing the functions 

- ¢(k) 
C(k) = - kET +$(k)iT~C(k) 

It is easy to check that the Fourier transforms iT~c have 
finite limits at the critical point when y - 0, E - 0, and 
k = qE except iT~c which is proportional to y2E2 in the 
above limit. Moreover C _E-

2 and each wave vector inte­
gration appearing in the graph gives, after the change of 
variables, a factor y3E3. It is also shown in Ref. 1 that 
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the nth order terms in the ~ expansion of g(r) are rep­
resented by the graphs in which there are n chain bonds 
more than the number of the dotted field pOints. 

In this section we compare the y and E dependence of 
the expression represented by the graph of an arbitrary 
order in ~ with the 0, Z. function. We shall show that if 
condition (1.5) is satisfied then the 0. Z, function rep­
resents the dominant contribution to g(r) in the limit 
y-O, E- 0. To this aim we apply the induction. It is 
shown in Sec. II that the second order terms are small 
in comparison with the O.Z, term if (1,5) is satisfied; 
now we assume that the 11th order terms are small in 
comparison with the 0. Z, term if (1. 5) is satisfied and 
we prove that it is also true for the terms of order 
11 + 1, There are two methods of constructing the graph 
representing the term of order (11 + 1) out of a given 
term of order 11: 

(I) We start from the graph representing the 11th order 
term and we add to it one new chain bond in such a way 
that both ends of it are attached to the same dotted 
point; 

(II) we start from the graph representing the nth order 
term and we add to it k (k? 0) new dotted field points 
and k + 1 new chain bonds each of them joining two dif­
ferent dotted points. 

An example of the method I is shown in Fig. 1 for the 
case 11 = 2. In this method one gets the additional factor 
y3E3 from the new wave vector integration and, in the 
most divergent case, the factor E-4 from the two new 
chain bonds appearing; thus finally we obtain y3/E. This 
means that since the nth order term was small in com­
pariSon with the 0. Z. term, then the term of order 
(n + 1) obtained in the above way is also small in com­
parison with the 0, Z. term when (1. 5) holds. 

In method II one can have a priori infinitely many 
ways of constructing the new graph. However in our 
analysis we shall consider only those graphs which rep­
resent the most divergent in E expressions, i. e., the 
ones in which the root pOints are connected with the rest 
of the graph by the single chain bonds. This is schemati­
cally shown in Fig. 2. If it is not the case and a given 
graph contains a dotted root point not representing the 
function iT~c, then this graph is replaced by another one 
in which the root point is replaced by the field point 
connected with the root point by a single chain bond. An 
example is shown in Fig. 3. In this way we obtain the 
graph representing an expression which is more diver­
gent in E but of the same order in ~. The observation 
that greatly Simplifies the problem is the following; 
Since in each order we take into account only the graphs 
representing the most divergent terms then it is enough 
to consider only the cases for which k ~ 2 (k is the 
number of new dotted field pOints). All the other situa­
tions (k ~ 3) require the addition of at least k + 2 new 
chain bonds in order not to violate the rules of construct-

FIG. 1. 
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FIG. 2. 

ing the new graphs and thus lead to the graphs repre­
senting the terms of at least order n + 2. The proof of 
the above statement is based on the fact that the addition 
of each new dotted field point means the addition of iL~c, 
n'" 3. Now it is easy to see that the addition of only one 
new dotted field point implies the addition of at least two 
chain bonds, and the addition of two new dotted field 
pOints implies the addition of at least three chain bonds; 
an example is shown in Fig. 4, and, consequently, the 
addition of three new dotted field pOints implies the 
addition of at least five chain bonds. This proves our 
statement for k = 3 and simultaneously for k > 3. 

In order to prove the sufficiency of condition (1. 5) we 
have to count the powers of y and E which are obtained 
in each of the possible ways of generating the n + 1 order 
graph from the nth order graph according to the general 
method II. However, to simplify the calculation we 
shall use the parameters y3 IE and E instead of y and E. 

In this case, to prove our hypothesis, it is enough to 
show that each of the above ways gives additional non­
negative powers of E. 

Let us consider the graph of order n and let r n be the 
E power of an expression represented by this graph in 
the y - 0, E - 0 limit enhanced by 2, i. e., we consider 
the E power relative to the O. Z. function (_E-2

). In Sec. 
II we showed that r 2 ? O. According to our method we 
assume that r n ? 0 and we want to show that r n+1 ? O. To 
this aim we prove a stronger condition, namely that 

(3.1) 

where nn is the number of the dotted field points repre­
senting the functions iY~c in a given graph of order n. It 
is easy to check (Ref. 1) that r 2'" tn2. Now we assume 
that r n '" tnn and we prove that r n+1 '" tnn+l. 

This program will be realized by considering sepa­
rately each way of constructing the new graph according 
to method II. 

(1) We add one chain bond joining two dotted field points 
and 

(a) none of the joined dotted field pOints represented 
the function ~c; thus we get the factor y3E3E-2 = (y3/E)E2 

which means that r n +1 = r n + 2, rln+1 = rln and we see that 
r n+1 '" tnn +2 = tnn+1 +2", trln+l; 

(b) only one of the joined dotted field points repre­
sented the function iY~c, 

1':9?--C.~~~: ~ ~ .:O:-c.~f-'~·,--c.---;O:'l 
~ c,-::;r. "~c,::::~o:.-- '. 

FIG. 3. 
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FIG. 4. 

and 

(c) each of the joined dotted field points represented 
the function il~c, 

( 3) -1/3 
y3E3E -2( y2E2r2 = ~ E -10 /3, 

and 

n=n +2 -rn+!"'trln+J+ 
n M +1 

r n+1 =rn - ¥} 
(2) We add one chain bond joining a dotted field point 
with a dotted root point and then we replace the dotted 
root point by the dotted field point connected with the 
new dotted root point by a single chain bond (to get the 
most divergent in E expression). 

(a) the joined dotted field point represented the func­
tion j1~c, 

y3E3E-2(y2E2)-I(y2E2)E-2 = y3 IE, 

and 

rn+!=rn} - r > ~n ' rl
n 
= rln+! n+1 - 3 n+1> 

(b) the joined dotted field point did not represent the 
function j1~c, 

y3E3E-2y2E2E-2 =( y: r / 3 E8 / 3 , 

and 

rn+l=rn +t} 
rl =n -1 -rn+I"'trln+I ' 

'1 1'1+1 

(3) We add one dotted field point and two chain bonds in 
the following way: We "cut" one of the chain bonds exist­
ing in the graph by putting a dotted field point inside it 
and a new chain bond starts from this new dotted field 
point joining it with: 

(a) a dotted field point representing /1~c, 

y3E3E-4(y2E2) (-/E2)-1 = Y IE 

and 

rn+!=rn} 
- > ~ , rl =n r n +1 ~ 3

n
n+I' 

n n+l 

(b) a dotted field point not representing iI~c, 

and 

rn+l=rn+ t ! 
- > ~ , r'1+1:;"'- 3 (In+u 

nn=rln +I -1 

(c) a dotted root point and then we replace this dotted 
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~c _:./c~: c---;o: 
~ ~c~ ' .. 

FIG. 5. 

root point by the dotted field point connected with the 
new dotted root point by a single chain bond (to get the 
most divergent in E expression) 

y3E3C4(y2E2)2 c 2 = (~y /3 E'O /3, 

rn+1=rn +.If! 
- r "+1"" tnn+l" 

nn=nn+l -2 

(4) We add one chain bond joining two dotted root points 
and then we replace each of the dotted root pOints by the 
dotted field point connected with the new dotted root 
point by a single chain bond (to get the most divergent 
in E expression), 

( 
3)7/3 

YE
3

E-
6
(YE

2f= : E'O /\ 

and 

r n+1 = rn + *} 
n =n -2 -rn+1?-tnn+l. 

11 "+1 

(5) We add the structure shown in Fig. 5 to the dotted 
root point, 

Y3e3E-6(YE2)2=(:3Y/3 E'O /\ 

and 

rn+1 = rn + *} 
n =n -2 -rn+1""tn n+1' 

n "+1 

(6) We add two dotted field pOints and three chain bonds 
in the following way: We "cut" one or two chain bonds 
existing in the graph by putting two dotted field points 
inside them and then we add one chain bond joining those 
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two new dotted field points 

y3E3C6(~E2)2 =(~r /3 E'O / 3 

and 

Our analysis which is based on the counting of the 
powers of y and E shows that for all the graphs of the 
order n +1 obtained above, condition (3,1) is satisfied, 
Thus, near the critical point, the first term in the ex­
pansion of the two-particle correlation function is domi­
nant in comparison with aU the other terms if (1. 5) is 
satisfied, This means that in the van der Waals model 
of a fluid close to the critical point we can use the 
Ornstein-Zernike function as long as the range of the 
potential )1-' is so large that condition (1. 5) is satisfied. 
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Under suitable conditions, an infinite direct product 0" U" (t) of continuous unitary one-parameter groups 
U" ( t) is again a continuous unitary one-parameter group. This question is discussed here in terms of the 
generators A" of U,,(t). It is shown that the generator A of 0" U,,(t) has a total set of product vectors in 
its domain of definition. As examples, the particle number, energy~momentum, and angular momentum 
operators in non-Fock direct product representations of free fields are investigated. The spectra of these 
operators are determined. 

1. INTRODUCTION 

Infinite direct products of unitary groups emerge in 
a quite natural way in quantum field theory. Consider, 
for example, a free field represented in the Fock space 
J, and let 1I,J;=1 be a partition of momentum space into 
disjoint subsets In. If In denotes the "restricted" Fock 
space of particles with momenta in 1m the total Fock 
space J may be written as an incomplete direct product l 

of the spaces In. One can easily see that the free time 
evolution U(t) in} becomes an infinite direct product 

(1. 1) 

of the free time evolutions Un(t) in J n' The same de­
composition applies to space translations and to gauge 
transformations of the first kind. It also holds true for 
spatial rotations if the subsets In are rotationally 
invariant. 

Besides this, by taking suitable infinite direct 
products of the restricted Fock spaces In one also 
obtains new (non-Fock) representations which permit 
the solution of simple "infrared-divergent" models 
of quantum electrodynamics. 2-4 However, as soon as 
one leaves Fock space, the existence and unitarity of 
an operator like (1. 1) can no longer be taken for 
granted. This problem has been investigated recently 
by one of us 5; conditions have been formulated in 
terms of the unitary operators U nU) which guarantee 
that the infinite direct product (1. 1) again defines a 
continuous unitary one-parameter group. 

A different approach has been adopted by Streit, 6 

who has given equivalent conditions in terms of the 
infinitesimal generators An of the unitary groups Un(t), 
rather than of the groups themselves. Such conditions 
are particularly useful and transparent if, as usual, 
these infinitesimal generators have a direct physical 
interpretation. In Ref. 6 the discussion was restricted 
to the particular case where the operators Un(t) are 
exponentials of Schrodinger position or momentum 
operators, in which case (1. 1) leads to Weyl operators 
in direct product representations of the canonical com­
mutation relations. Actually, however, the results of 
Ref. 6 are completely general,7 applying to arbitrary 
one-parameter groups after suitable reformulation. 
Such reformulation is presented here in Sec. 2 (Lemma 
1), which also serves to collect-and to prove if nec­
essary-further general statements about infinite direct 
products of unitary groups (Lemmas 2-6), 
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The results thus obtained are applied in Sec. 3 to 
energy-momentum, angular momentum, and particle 
number operators for free quantum fields represented 
on an infinite direct product of restricted Fock spaces. 
The spectra of these operators are also investigated in 
detail. Such applications, besides illustrating the gen­
eral theory, have been important for the discussion of 
the infrared problem in Refs. 2-4. 

2. DIRECT PRODUCTS OF UNITARY GROUPS AND 
THEIR GENERATORS 

We consider a sequence {H,J:I of separable Hilbert 
spaces and a family Un(t), tE.E, n=1,2,' ", of (strong­
ly) continuous unitary one-parameter groups on H n' 

Accordingly, Un(t) can be written as 

Un(t) = exp(itAn) = J exp(it,\) dEn('\) 

with the self-adjoint generator An of Un(t) and the 
spectral resolution En('\) of An. With Cf!n E.H n and II Cf!n II 
= 1 for all n, we denote by H =O n(/-l", Cf!n) von Neumann's 
incomplete direct product of the Hilbert spaces H n with 
reference vector q, = On Cf!n 0

1 

The following lemma is an immediate generalization 
of results of Ref. 6. It is obtained by replacing the 
Weyloperators Wv(svt) , the generators s'//v, and the 
spectral resolutions Sv J ~ dEv(O considered in Ref. 6 
by Un(t) , Am and J ,\dEn(,\), respectively. 

Le mma 1: The infinite direct product On Un(t) is a 
continuous unitary one-parameter group on 0 n(H m Cf!n) 
if and only if there is a product vector >¥ =;» nif!n E:9 n(/-l", Cf!n) 
with II if!n II = 1 for all nand 

(i) ~1(if!mAnif!n)l<oo, 
n 

Moreover, >¥ may be chosen to satisfy 

(iii) (En(E) - En(- E»1/+, = if!n 
for almost all n, with E"> 0 arbitrary but fixed. 

Proof: See Ref. 6, Corollary 10 The proof given there 
is not entirely complete since 

(2,1) 

-corresponding to Ev Xv of Ref. 6-might be zero for 
finitely many values of n, For such n we replace (2.1) 
by an arbitrary if!~ *- 0 from D A , the domain of definition 
of Am in order to obtain a nonnzero q,' = On q,~. The 

Copyright © 1977 American I nstitute of Physics 2166 



                                                                                                                                    

transition from <J!~ to normalized <J!n = <J!:/II <J!~ II leaves 
properties (i)-(iii) unaffected and with l}r' also l}r=0 n<J!n 

belongs to 0 n(Hm CPn). 

With the mean-square deviations IlwnAn of An in the 
state <J!n defined by 

condition (ii) may also be replaced by 

(ii)' 0 (Ilw An)2 < <x), 

n n 

(20 2) 

which is equivalent to (ii) if (i) holds true. Condition (ii) 
is replaced in Ref, 6 by 

(2.3) 

which, requiring <J!n Ec D A2 rather than <J!n EO D A , is 
stronger than (ii). The pnroof of Lemma 1 is insensitive 
to this detaiL 6 

Since DAis dense in H n' it is always possible to 
choose the nreference vector q, =0 nCPn so that CPn ED An 
for all n. Lemma 1 applied to q, then yields a sufficient 
condition for the existence of 0 nUn(t). For a necessary 
condition involving the reference vector q, see the theo­
rem in Sec. 4 of Ref. 6. 

Lemma 2: If U(t) =0 n Un(t) exists as a continuous uni­
tary one-parameter group on 0 n(H", CPn), then 

k 

U(t) = s-lim 0 Un(t) 0 II. 
k - 00 ":::1 

for all t. 8 

Proof: See Ref. 5, or Ref. 6, Lemma 5. 

Lemma 3: Any 'l! =:)9 n<J!n fulfilling conditions (i) and 
(ii) of Lemma 1 is contained in the domain of definition 
D A of the generator A of U(t) =0 nUnU) = exp(itA). Ex­
pectation value and mean-square deviation of A in the 
state 'l! are given by 

(2.4) 

(ll'l-A)2", IIA'l!112 - ('l!, A'l!)2 =.0 (llwnAn)2. (2.5) 
n 

Proof: Let A (k) be the generator of U(k)(t) 

'" (0~=1 Un(t»:)9 11. Since U(k )(t) is the product of commut­
ing unitary groups Un(t)0 II. (n = 1, ... , k), A (k) is the 
closure of 2: ~=1 (An 0 Ill. 8 Conditions (i) and (ii)' of Lemma 
1 imply that A (k)'l! is a Cauchy sequence, since (with 
j < Id 

2 k 

+ ~ [lIAn<J!nI12 - (<J!n, An<J!n)2]- 0 
n:::j+l 

if j, Il- 00. By Lemma 2, exp(itA (k» converges strongly 
to exp(itA) for all t. Hence, by Theorems VIII. 21 and 
VIII. 26 of Ref. 9, A is the strong graph limit of A (k ) . 
Since 'l! E D A (l<l for all k and A (k)'l! converges strongly, 
we conclude that 'l! E D A and A'l! = s-limk ~..A (k)'l!. Equa­
tions (2.4) and (2.5) are then proved by direct 
computation. _ 
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With Lemma 3, it is easy to find a dense set of vec­
tors X in D A with 

AX = s-limA (k)X 
k- ~ 

which implies 

(X, AX) = lim (X, A (k )X) and Ilx A = lim Ilx A (k) . 

Namely, take 'l!=0n<J!n as in Lemma 3, let >J1'=0n<J!~ with 
<J!~ E DAn for all n and <J!~ = <J!n for almost all n, and take 
for X any finite linear combination of vectors l}r' of this 
form. Since DA is dense inHm the set of all such X's 
is dense in H =@ntHn, CPn)' 

The case of a 0 nUn(t) not unitary on 0 ntH n CPn) 
but only on 0':/(Hn, CPn), constructed from the weak equiva­
lence class of 0 nCPn, 1 might be of physical interest since, 
roughly speaking, product vectors in 0':: tH m CPn) and in 
o ntH m CPn) differ from each other by "divergent phase 
factors" only. By means of a "renormalization" 

(2.6) 

with suitable real constants an, such phase factors may 
be incorporated into 0 nUn(t) so that the "renormalized" 
product U(t) =0 ntJn(t) is unitary on each incomplete di­
rect product 0 ntH m cp~) contained in 0 ~ (Hn, CPn) and thus, 
in particular, on 0 n(Hm CPn) itself. This follows imme­
diately from: 

Lemma 4: There exists a sequence {an}'::l of real 
numbers so that aU) =0 n Un (t) exp(- itan ) is a continuous 
unitary one- parameter group on 0 n(H", CPn) if and only 
if 

Proof: See Ref. 5, Theorem 2.5. 

If suitably rewritten, the previous statements con­
cerning 0 nUn(t) hold true for 0 nUn(t) also. Applying, in 
particular, Lemma 1 to the "renormalized" product 
0 nan(t), we obtain: 

Lemma 5: There exists a real sequence {a'}'::l which 
renders U(t) =0 nUn(t) exp(- itan) a unitary one-parameter 
group on 0 n(H", CPn) if and only if 0 ntH m CPn) contains a 
product vector 'l! =0 n<J!n with II <J!n II = 1 for all nand 

.0 (ll"'nAn )2 '" B [lIAnM2 - (<J!n, An<J!n)2] < 00. 

n n 

Proof: Necessity follows from condition (ii)' for the 
"renormalized" generators An =An - am since (Il .. An)2 

2 • n 
= (ll.nAn) • Vice versa, take 

(2.7) 

then conditions (i) and (ii) of Lemma 1 are satisfied for 
the generators An, which proves sufficiency. • 

Remark: The choice (2.7) for an is not the only pos­
sibility. Another sequence, {ad-'::1> serves the same 
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purpose if and only if5 

[In particular, QI~ = ° for alln is a possible choice if 
and only if2:nl(l/!n,Anl/!n)l<oo, so that Lemma 5 leads 
back to Lemma 1. 1 

A sufficient criterion for the existence of 0 J}n(t) 
[or, in case Qln=O, of®nUn(t)] is given by: 

Lemma 6: If there is a sequence {Qln~';:l of real num­
bers and a product vector >II =@ I/! E@ (II CfJ) III/! II 
= 1 for all n, such that n n n "' n' n 

6 (I/!m IAn - Qln II/!n) < 00, 
n 

then U(t) =0 nUn(t) exp(- itQln) exists as a continuous uni­
tary one-parameter group on @n(Hm CfJn). 

Proof: See Ref. 3, Lemma 4. 

3. PHYSICAL APPLICATIONS 

We now return to the example mentioned in the Intro­
~uction. There we have defined restricted Fock spaces 
J n and unitary operators Un(t) = exp(itHn) implementing 
the time evolution of a free field in] n' We note that 
Hn is positive for all 11 so that Lemma 6 provides a suf­
ficient condition under which 

exists as a continuous unitary one-parameter group on 
II =(;9 nO n' CfJn), namely 

there is a product vector >II =@n<Pn c II with 
4ine DHn , 114'nll = 1 for alln, and Ln(<Pm Hnl/!n) < 00. 

(3.1) 

This condition is also necessary due to Lemma 1, con­
dition (0. If UH (t) exists, we denote its generator (the 
Hamiltonian) by H. It is positive because it is the limit 
of 

k 

H(k) =6 (Hn 0 11) 
"=1 

in the strong resolvent sense, and H(R)? ° since Hn? ° 
for all n (cf. Theorems VIII. 21,24, and 33 of Ref. 9). 
If, as usual in relativistic theories, the Hamiltonian is 
required to be bounded from below, it is useless to look 
for phase factors exp(- itQln) in order that [iH(l) 
=@nexp[il(Hn- Qln)] might beco~e a unitary group with 
a" renormalized" Hamiltonian H as generator. Namely, 
consider a product vector >II =@n<Pn as in Lemma 5 which, 
according to the remark following that lemma, satisfies 

Then either L n(l/!n, Hnl/!n) < 00, in which case the "unre­
normalized" Hamiltonian also exists, or 2: n(<Pn, Hn<Pn) 
diverges. In the latter case, let 

>lIN =(~ W) @( @ <Pn\. 
n=l 1 n>N 1) 

with wn being the normalized Fock vacuum in]n' Then, 
by (the "renormalized" version of) Eq. (2.4), 
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_ N 

(>lIN,H>lIN) =-6 Qln+6 «l/!n,Hnl/!n)- Qln) 
n=l n>N 

N 

=6 (I/!m Hnl/!n) - Qln) - 6 (<Pn, Hn<Pn)· 
n n=1 

The first term is finite and the second goes to - 00 with 
N - 00, so that the "renormalized" Hamiltonian if is 
not bounded from below. 

The same reasoning also applies to the particle num­
ber operator N which we define, with the number oper­
ators Nn in] m as the generator of UN (t) =@ exp(ifN). 
A "renormalized" N (with 2: n I Qln I = 00) thus cnannot ben 
interpreted as a particle number operator. However, 
if N itself exists on II =v./ nO n' CfJn), then Lemma 1, con­
dition (iii) with E: < 1 and the known spectrum properties 
of Nn imply that II contains a product vector >II =® nl/!n 
with I/!n = exp(ii3n)wn for almost all n. This, in turn, im­
plies that II =@nOm CfJn) =0 nO n' <Pn) and the Fock space 
] =@ nO n' wn ) belongs to the same weak equivalence 
class,l which means that the representation of the 
CCRs on II is unitarily equivalent to the Fock represen­
tation. 10 With similar methods, a corresponding result 
for infinite direct products of SchrOdinger representa­
tions was obtained by Chaiken. 11 If we are dealing with 
massive particles, the same arguments are applicable 
also to the Hamiltonian, since then there is a mass gap 
in the spectrum of each Hn and we can choose E: to be 
smaller than this mass gap. Thus the free Hamiltonian 
cannot exist in non-Fock direct product representations 
of the type studied here unless the particles considered 
have zero mass. 

As far as the momentum operator P is concerned 
[again considered as the generator of (9 n exp(iaP n) with 
the momentum operators P n in] n 1, we may exploit the 
spectrum conditions in] n which imply I P ni I ~ Hn for 
each component P ni of Pn. By (3.1) and Lemma 6, then, 
P exists when H exists. On the other hand, P may ex­
ist even if H does not, as the following example shows 
(cf. also Ref. 12). Consider particles of arbitrary mass 
III ". 0, and take the subsets In of momentum space to be 
invariant under the reflection p - - p. The (four-dimen­
sional) spectrum of the Fock space energy-momentum 
operator Pn={PmHn} in]n contains all finite sums of 
one-particle energy-momenta p ={p, (p2 + 1/1

2)1 /2} with 
pc In. Therefore, in particular, it contains some point 
qn ={O, En} with En ~ Eu, where Eo -: 0 is chosen indepen­
dent of n. Denote by En(t.) the spectral measure cor­
responding to the four-dimensional spectral represen­
tation of Pn, i. e., 

and choose a reference vector q, =0; nCfJn' II CfJn II = 1, which 
satisfies 

with four-dimensional spheres t.n of radii 1/n2 centered 
at qn' Then 

(CfJm IPniICfJn)~ 1/n2 

for each component P ni of P no and thus P exists by 
Lemma 6. On the other hand, H cannot exist since any 
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vector 'lI =® .I/Jn fulfilling condition (iii) of Lemma 1 
satisfies (CPn, 1)n) = 0 for almost all n if E < Eo, and thus 
cannot be strongly equivalent to <I>. Although for this 
example "renormalized" Hamiltonians ii still exist 
(e. g., for an = En), one may easily modify it so that not 
even ii's may be constructed. 

In order to discuss the angular momentum operator, 
we assume that the subsets In are invariant under ro­
tations. Then there exist continuous unitary represen­
tations Un(A) of SU(2), the covering group of the rota­
tion group, in each restricted Fock space] n' The cor­
responding angular momentum components Lni (i = 1, 2, 3) 
generate the one-parameter subgroups Uni(t) 
=exp(itLni ) of Un(A) on]n. In this case we can prove 
that 0 nUn(A) exists on H =0 nO m CPn) as a continuous 
unitary representation U(A) of SU(2) if and only if the 
infinite products 0 nUni(t) define three continuous uni­
tary one-parameter groups on H. It is even sufficient 
to assume this for o JJni (t) , where Uni(l) = Uni(t) 
X exp(- ita ni ) with suitable real constants ani' (Thus, 
again, "renormalized" angular momenta need not be 
considered at all.) Morevoer, if one of these conditions 
is satisfied, then the reference vector 1'9 nCPn is strongly 
equivalent to a product vector 0 nan with U n(A)an = an for 
each n. The proof of these statements is given in the 
Appendix. 

The previous results imply that particle number and 
angular momentum operators, if existing on H 
=® nO m CPn), have the same spectrum as the correspond­
ing operators on Fock space. The same will now be 
shown for the energy-momentum operator P ={p, H}. 
[Note that Up(a) =exp(- iaP) =0 n exp(- iaPn) and UH(t) 
= exp(itH) =0 n exp(itHn) commute. J Only massless par­
ticles need be considered, as remarked above. The 
Fock space spectrum of P then consists of the closed 
forward light cone V •. The generators aoB - aP of 
space-time translations UH(aO)Up(a) into timelike or 
lightlike directions (i. e., a~ - aZ

? 0) are easily seen to 
be positive (cf. the previous argument for H or Ref. 3). 
This implies that the spectrum of P is confined to V •. 
It remains to be shown that, vice versa, any /J c V. 
belongs to the spectrum of P, and it suffices to consider 
the case /J '* O. Any such P is a sum of two lightlike 4-
vectors !Ji={Pi, IPilL i=1, 2, which may be interpreted 
as energy-momentum 4-vectors of single particles. If 
Pi (- Ini' the 4-vector j)i belongs to the spectrum of the 
energy-momentum operator Pni in] nj' First assume 
111'* liZ, decompose the space-time translation 
operators 

U(a) = exp(iaP) = UH(a O) Up(a) =0 nUn(a) 

(with (/ ={a, ao}, uP = aoB - aP) in the form 

U(a) = Un1 (a)0 Unz (a)(5 (0 Un(a~, 
ntnl,n2 J 

and denote the energy-momentum operator onH' 

(3.2) 

=0 ~O n' CPn)13 corresponding to U'(a) =0 ~Un(a) by P'. 
Since (3.2) implies that the spectrum of P is generated 
by adding the spectra of P"1' P nz , and P' (cf. Ref. 9, 
Theorem VIII. 33), the proof is complete if we show 
that {a, o} belongs to the spectrum of P' ={p', H'}. It 
suffies to prove that 0 belongs to the spectrum of H', 
since the spectrum of P' is also confined to V •. Con-
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sider, therefore, exp(itH') =0 ~ exp(itHn). By Lemma 
1, there is a vector \f1 =0~l/Jn EH' with III/Jnll = 1 and 
"[; ~(I/Jn' Hni/J.) < 00. For N:> 1lt, n2 , define \f1N EH' by \f1N 
= (0 ~"'N wn) 0 (0 n)N I/Jn) with the vacuum states wn in J n' 
With Hnwn = 0 we get ('lIN' H''lIN) =2;n>N(l/Jm Hnl/Jn), which 
converges to zero for N - 00. Together with the positi­
vity of H' this yields the desired conclusion. If 111= nz, 
(3.2) has to be replaced by U(a) = Un1(a) 0 (0n#nlUn(a)). 
In this case, p=Pt +/Jz belongs to the spectrum of Pnl' 
and the rest of the proof goes through as above. We 
will finally show that, if P exists in H =0 nO n' CPn), its 
spectrum is purely continuous unless 0 nCPn is weakly 
equivalent to the Fock vacuum n=0 nwn • Thus, in par­
ticular, translation invariant vectors do not exist in 
non-Fock representations of the type considered here. 
To prove this we need the following lemma: 

Lemma 7: Let V1 and Vz be unitary operators on HI 
and H 2, respectively. Suppose that multiples of 1/1. E H 1 
are the only eigenvectors of V1. Then every eigenvector 
I/J of V = V10 V2 in H =H1 0 H2 is of the form I/J = 1/1. 0 % 
where 1/J2 is an eigenvector of V2 • 

Proof: We assume that VI/J= exp(ia)l/J, II¢il = 1, and 
use the standard diagonal expansion14 

1./!=6>C;cp/0 cp/ 
i 

with orthonormal systems {cp/}t and {CPi~t inHI and 
H 2, respectively, and lI. i ? O. For every bounded opera­
tor T onH we have (¢, V*TVI/J)=(~), T¢). In particular, 
if T = 7i 0 11. this implies 

611./(CP/, VtT1VICP/)=611./(CP/, T1CP/), 
i i 

or 

Tr( vt TI V1 W1) = Tr( T1 Wtl 

with 

Wt =611./ I cph(cp/ I. 
i 

As T1 is arbitrary, (3.3) leads to 

V1 WI vt =6 lI. i
2

1 VI cp/>(V1 cp/ I '= W1 • 
i 

(3.3) 

Since 2; i 11./ = 1, and the only finite-dimensional sub­
space of H1 invariant under VI is the one generated by 
1/1.., it follows that only a single lI.i is if. 0 and thus = 1, 
~ = 1 say, and cp/ is a multiple of 1/1.. Hence ¢ = 1/1. 0 ¢2, 
and then 1/J2 must be an eigenvector of V2 • • 

We assume now that there exists an eigenvector 'lI of 
U(a) =0 n exp(iaPn) inH =0 nO n, CPn). We know that wn is 
the only eigenvector of exp(iaP n)' Writing H = J 1 
o (0 n>1 0 n' CPn)) and U(a) = exp(iaP1) 0 (0 n>1 exp(iaP n)) 
we obtain, by Lemma 7, 'lI = Wt ® 'lIz. Applying the same 
argument to 'lI2, etc., we conclude that 'lI is factorizable 
and, morevoer, 'lI =0 n exp(i!3n)Wn' 14 Since 'lI is strongly 
equivalent to 1> =0 nCPm the latter is weakly equivalent 
to n =0 nWn. Vice versa, of course, weak equivalence 
of n and <I> implies that H =0 n(]", CPn) contains 'lI 
=0 n exp(i!3n)wn with suitable f3n, so that U(a) exists in 
H and leaves 'lI invariant. 
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APPENDIX 

Consider Hilbert spaces Hm n = 1,2, ... , and continu­
ous unitary representations Un(A) ofSU(2) onHn. Denote 
by Lni> i = 1, 2, 3, the corresponding angular momentum 
components on H n' which generate the one-parameter 
subgroups Unitt) = exp(itLni ) of Un (A) • Let H =0 n(/-l m 'Pn) 
with II'Pnll = 1 for all n. 

Theorem: The following statements are equivalent: 

(a) H contains a product vector ® nOn with lion II = 1 for 
all 12 and Un(A)on = on for almost all 12 and all A c SU(2). 

(b) 0 nUn(A) exists on H as a continuous unitary repre­
sentation UrAl of SU(2). 

(c) 0 nUni (t) exist, for i = 1,2,3, as continuous uni­
tary one-parameter groups on H. 

(dl There are three sequences {ani }';:l, i = 1,2,3, of 
real numbers an;, so that the direct products:z, iJni(t) 
of Uni(t) = Uni(t) exp(- itan;) define unitary one-parameter 
groups onH. 

For the proof we need the following lemma. Consider 
a continuous unitary representation D(A) of SU(2) on a 
Hilbert space D, and denote by Lithe corresponding 
angular momentum components. 

Lemma 8: If D does not contain vectors cp 0# 0 with 
D(A)cp = cp for all A E SU(2), then 

I (<p, xl I .; (l/lZ)111jJ11 Ilxll 

for arbitrary eigenstates IjJ of L; and X of L j, with U j. 

This lemma may be proved first for an irreducible 
representation with L2 0# O. The general case then follows 
by decomposing D into irreducible subspaces. Both 
steps of the proof are elementary, and are thus omitted 
here. 

Proof of the Theorem: Obviously it suffices to derive 
(b) from (a) and (a) from (d). Assume (a) to be true. 
Lemma 1 applied to 0 nOn then implies that, for an arbi­
trary one-parameter subgroup At of SU(2), (>9 nUn(At) 
is unitary and continuous on H. Since each A E SU(2) be­
longs to some subgroup At, UrAl =0nUn(A) is unitary on 
H. The representation property of U(A) is obvious, and 
continuity then follows from the continuity of U(At) for 
one-parameter subgroups At. 

Assume (d) to be true so that, in particular, 0 niJn3(t) 
exists. Then, with En3 (A) denoting the spectral resolu­
tion of Lre = Ln3 - are and E > 0 fixed but arbitrary, there 
exists in H a product vector 0 nljJn, III/>nli = 1, such that 

- -
(En3 (E) - En3 (- E»ljJn= IjJn 

for almost all 12 [Lemma 1, condition (iii). ] Since the 
spectrum of i n3 is discrete with spacing? t we may 
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choose E < k and conclude that, for all n > N say, 

LnsljJn = 1J1.nljJn· 

Let Al E SU(2) correspond to a rotation by 1J/2 around 
the 1 axis. Then Xn = U(A1 )l/>n satisfies, for n ~ N, 

L n2 Xn = 11/ nXn• 

Since 0 niJn1 (1J/2) is also unitary, the product vector 
o nXn =0 n exp[ - i(1J /2) an! ]Xn belongs to H, too, and 
therefore 

CO' B 11 - (1jJ., Xn) I > 0 [1- I (1jJ., Xn) 11. 
n n>N 

Write, for 12 >N, I/>n = 1jJ~ + 1jJ~ and similarly for Xn, with 
~I/>~ = 0 and 1jJ: ED n, the subspace of H n belonging to 
nonzero eigenvalues of L;. Then X~= U(Al)ljJ~ = 1jJ~ and 
Ln31jJ~ = 111 nljJ~, Ln2X: = m nX:, and thus Lemma 8 implies, 
for 11 '. N, 

1 (i/!m Xn) 1 .; Ilw~112 + I (1jJ:, X~) I 

.; 111jJ~nz +* 11i/!~,,2 
=*+ (1-*) "1jJ~112.; 1. 

Therefore, 

This implies 1jJ~ 0# 0 (and, consequently, mn = 0) for al­
most all n ' N. Moreover, with 

_{I/>~/IIIjJ~11 if n>N and 1jJ~0#0, 

an - any unit vector in H n if 12'; N or I/>~ = 0, 

the product vector Qi) nan belongs to H. Choosing N' so 
that an = 1jJ~/11 i/!~II for all n '. N', we have 

= B (1-1I1/>~1Il 
n)N' 

.; B (1- 111/>~112) <00, 
n>N' 

which proves the strong equivalence of 0 n<Pn and 0 nOn. • 

Remarks: (1) If (as in the case H n =J n considered 
here) each H n contains vectors with ~ = 0, then we may 
achieve L~on = 0 for all n. 

(2) It was sufficient for our proof to require, instead 
of (d), only the existence of 0 nU"i(t) for a single axis i 
and the unitarity of 0 n exp(ii3n)Unj(1J/2), with suitable 
real i3n , for a second axis j 0# i. However, this require­
ment is easily shown to be equivalent to (d). 
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Sequences of transformations for particle-field Hamiltonians8
) 

Eugene P. Gross 

Department of Physics, Brandeis University, Waltham, Massachusetts 02154 
(Received 4 April 1977) 

The nonrelativistic Hamiltonian for a particle interacting with a scalar field is studied by a method that 
involves a product of unitary transforms. We use intermediate coupling transforms for finite particle 
momenta to treat the interaction with oscillators with a range of wave vectors. Elimination of the 
oscillators in the range leads to a new Hamiltonian of the identical operator structure but with a modified 
interaction and mass. We show that with any finite number of divisions the self energy is always lower 
than the intermediate coupling result. In the limit of infinitely many divisions differential equations are 
derived for the interaction and effective mass as a function of the smallest wave vector of the oscillators 
that have been removed. 

1. INTRODUCTION 

In the present paper we study the nonrelativistic 
particle-field Hamiltonian from a point of view which 
is in the spirit of the ideas of Wilson1 and of Anderson. 2 

We note that the well known intermediate coupling 
theory3 can be applied to study the interaction of a par­
ticle with a set of field oscillators with wave vectors 
that lie in a narrow band (in one dimension) or narrow 
shell (in three dimensions). This treatment is im­
plemented by a simple, explicit canonical transforma­
tion. If one then takes the vacuum expectation value 
for the oscillators in question, one has "eliminated" 
these oscillators. One is left with a new Hamiltonian 
which has the following features. First there is a c 
number contribution to the self energy arising from the 
interaction of the particle with the oscillators in the 
band. Second there is an addition to the mass of the 
particle. Finally the interaction of the particle with 
the other oscillators is modified. The transformation 
that we use is sufficiently elementary that the new 
Hamiltonian has exactly the same operator structure 
as the old one. 

The simplest illustration of the procedure is a one 
slice theory. Here the interaction of the particles with 
oscillators of wave vectors greater than IKll is treated 
first by an intermediate coupling transformation, We 
then show that treating the residual Hamiltonian by a 
new transformation leads to a lower ground state en­
ergy than the one obtained with a single Ie transforma­
tion. It is also possible to treat the residual Hamiltonian 
by standard strong coupling techniques and to show that 
the combination of steps improves strong coupling 
theory. We will however not go into this in the present 
paper. 

A more interesting application results when one pass­
es to the infinite limit of a many band theory. The 
theory then contains a function m(k) which tends to the 
value of the bare mass as k - 00 and to the dressed 
mass as k - D. At a given value of I k I it represents 
the effective mass arising from the elimination of os­
cillators from I k I to 00. There is a vertex correction 
V(k) = Vo(k) exp[- k2A(k)] where Vo(k) is the original 

a)Work supported by the National Science Foundation under 
grant DMR-76-02048. 
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interaction and A(k) is a function that tends to zero as 
II? I - 00. The functions m (k) and A (k) obey a set of 
coupled differential equations. The ground state energy 
has the Ie form with V(k) and m(k) replacing the bare 
quantities in the integral over wave vectors. 

Our results however yield only a modest improve­
ment of standard theories. For example, for weak 
coupling the energy is lower than standard Ie theory, 
but one does not obtain the full perturbation theoretic 
correction to that theory. The averaging procedure in 
the elimination of each band ignores certain correla­
tions. In addition we do not obtain the strong coupling 
limit correctly with the simple procedure used in the 
present paper. To do that we need to diagonalize the 
Hamiltonian for bands of a finite width (that depends on 
the coupling constant) by methods more accurate than 
the one employed here. The use of repeated unitary 
transformations in the strong coupling limit requires 
further investigation. 

The Hamiltonian that we will study has the form 

H = p2/2 + g J[ Vo(k) a(k) exp(ikq) + h. c. ] dk 

+ J w(k) a+ (k) a(k) dk (1.1) 

for the one-dimensional case, Here Pi = 1 and the bare 
mass has been taken to be unity. Vo(k) is the bare inter­
action and w(k) the oscillator spectrum, and k ranges 
from - 00 to + 00. We operate in the continuum with 

[a(k), a+(l)] = 6(k -l). 

For the three-dimensional case we have 

H=p2/2 +g3 J[W3(k) a(k) exp(ik"q) +h. c. ]d3k 

+ J w(k) a(k) a(k) d3k. 

(1. 2) 

(1,3) 

Because of the spherical averaging involved in our 
procedure the results for the three-dimensional case 
are simply obtained from the one-dimensional case by 
replacing Vo(k) by W3(k) k2 and g by g3 times a numeri­
cal factor. In some parts of the paper more explicit 
calculations are carried out for the special one-dimen­
sional case Vo(k) = w(k) = 1. 

2. TREATMENT OF A BAND OF OSCILLATORS 

For the one-dimensional case, let 
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HtJ. =p2/2m + g ItJ. [Vo(k) a(k) exp(ikq) + h. c. ] dk 

+ l, w(k) a+(k) a(k) dk. (2.1) 

Here I::. includes the range Kl to K o, Kl < K o, and also 
the corresponding range - Kl to - Ko. 

Consider the unitary transform V(I::.). 

V(I::.) =exp[iq ItJ. ka+adk], 

V(I::.) a(k) V-I (I::.) =a(k) exp(- ikq), 

for k inside the band I::. 

V(I::.)pV-l(I::.)=p- L ka+adk, 

V(I::.) q V-I (I::.) =q. 

(2.2) 

(2.3) 

(2.4) 

Next we introduce a form of intermediate coupling 
theory appropriate for low particle momenta. It is an 
essential feature of the present approach that we need 
to perform a sequence of transforms for nonzero mo­
menta even if our aim is to compute only the ground 
state energy. We use a function 

/(k,p) = - gVo(k) D[1 + kpD21/m*], 

where 

and 

D(k, m) = [w + k2 /2m]-I. 

We perform the unitary transform 

W(I::.) = exp l,[a(k) - a+(k)]/(k,p) dk 

W(I::.) a(k) W-l(l::.) = a(k) + /(k, p) 

for k in the band 1::.; 

W(I::.) P W-l(l::.) = p, 

(2.5) 

(2.6) 

(2.7) 

q'=- W(I::.)qW-1(1::.)=q-i f a/~;p) (a(k)-a+(k»dk. 

(2.8) 

Note that a/lap is independent of p. 

Next, we take a vacuum expectation value with respect 
to the oscillators in the band, viz. state vectors such 
that a(k) <Po=O. We then have 

E(I::.) = (<po, W(I::.) V(I::.) HtJ. V-I (I::.) W-1(1::.) <PO>, 

=p2/2m* -g2 .£.. V7;dkD(k,m). (2.9) 

We now focus on the complete Hamiltonian, including 
the oscillators (labelled by x) that lie outside the band 
considered. Since this Hamiltonian is additive in the 
oscillators the only coupling between bands occurs 
through the coordinate q. We have 

(<po, W(I::.) U(I::.) exp(iXq) V-I (I::.) W-I(I::.) <Po) 

= exp(iAq) exp(- X2a/2), 

where 
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(2.10) 

Thus the Hamiltonian after removal of the band I::. is 

H =p2/2m* + g fa (Vo(X) exp(- X2a/2) a(X) exp(iAq) 

+h. c. ]dX + IA wa+adX-g2 ItJ. V7;(k)D(k, m)dk, 

(2.11) 

where A refers to the remaining part of the range. 

We will need to do this repeatedly, starting with a 
problem where there is an upper cutoff Ko. The start­
ing interaction is Vo(k) and bare mass is mo' The 
define 

(w~) -1, 
2mj _l 

Here 

After averaging over j bands we have the residual 
Hamiltonian 

+ f wa+ a dk + t En • 
n:O 

Aj 

(2.12) 

(2. 13) 

(2.14) 

(2.15) 

(2.16) 

Here Aj refers to the remaining wave vector domain, 

We now make N slices of the domain 0 to Ko (with the 
corresponding negative part - Ko to 0). In the limit of 
large N we have a function m(k), We work with the posi­
tive wave vector range I::.j and double the integrals in­
volved in m i , OJ. Since mj refers to lower k values than 
mj_l, we have in the limit N - 0() 

Each a i is proportional to Ko/N. The sum 

A i _1 =- a 1 + ... + a i-I 

and 

Thus we find the differential equations 

dA(k) 2g2 2v1() [ 2 )] 4 Ilk = m2(k) k 0 k exp - k A(k D (k), 

dm 
- dk =4g 2k2V7;(k)exp(-k2A)D3(k), 

Eugene P. Gross 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2. 22) 
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with 

Since 

dm/dk<O, m(k=O»mo, andA(k=O» 00 

The expression for the total energy is 

p2 fKO 
E=2m(0)-2g2 0(k)dkD(k), 

° 
Finally, we pass to the limit K ° - O(). 

3. ENERGY FOR A SINGLE SLICE 

(2.23) 

We now examine the ground state energy for a single 
slice when both sides are treated by distinct Ie trans­
formations, The energy is 

E=_2g2 jOO dkV%Do(k)_2g2jK1 V% 
K1 0 

dk, 

We study the expression in detail for w = Vo = L 

Domain A: K 1 » 1 

This is the most important domain, Define 

g2 32 
E2 --Iq"3' 

Expanding D(k) in the high k region 

1 3 E2 
m - 1 + E2 + .. , O! - --,,- -

1 'mj 5 Ki' 

(K1y)2 - ~ (1: 2E2)2 ~ 13725 . 

(3,1) 

(3,2) 

(3,3) 

(3,4) 

The first term in the energy is the standard Ie contribu­
tion from the high k part. The second term represents 
a modified contribution from the low k part. It may be 
written as 

6E - 2 2K f 1 exp[ -1]2(K1y)2] d1] x 2 - _1_ (3,5) 
-- g 1 1+1]2(Kx)2, -2m' 

o 1 1 

This is to be compared with the value - g2 212 tan-1 (K/ 
Y'2) which is the contribution of this wave vector range 
to the self energy in standard Ie theory. 

Expanding the exponential we find 

6E=- 2:2 (tan-1K1x-~[K1x-tan-1Klx]+O'O)' (3.6) 

There are a number of subcases. 
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This condition is (1 + E2)112 «K1/12. It of course in­
cludes the situation E2 « 1 when 

6 2 In (7T 12 ) 2 In E2 
E--g 2v2 2- Kl -g v2 2' (3.7) 

The first term is the intermediate coupling contribution 
and the last term represents a lowering of the energy 
of order g4. Note that E2« 1 is compatible with g2 > 1 
provided that .15 2 < * Kr. We can also have E2 > 1, i. e. , 
even stronger couplings. Then x - 1/I2E and 

6E-- Y2 g2E, (3.8) 

which is much lower than - Y2 .15 27T • 

This is the domain of very large coupling strengths, 
viz . .15 2 > K1 33

2 
• We have 

( 
(Kx)2 ) 6E - - 2.15 2 Kl 1 _ ~ + 0 • 0 • (3,9) 

The leading term is the lower bound for the self energy 
noted by Lee and Pines. 4 It is the self energy of an in­
finitely massive source with a wave vector cutoff that is 
independent of coupling constant. It is interesting that 
this saturation of the interaction with a group of oscil­
lators is obtained here as a result of the modification of 
the vertex and effective mass due to interaction, 

Domain B: Kl «1 

In this limit only a small part of the problem is treat­
ed with the corrected mass and interaction, We find that 
both K1x and K 1y are less than unity. The energy is 

6E=-2g 2K 1 (1_~(X2+y2)+ .•• ). (3.10) 

The Ie result is 

6E - - 2g2K1 (1- ~ ~ +.,,) . (3,11) 

We write 

(3,12) 

In the limit K1 «1, 

f oo 3 127T 
A1 - 1?2 dkD o = -8- , 

o f OO 2 4 27T 1 
B1 - k dkD o=--::[2 16' 

o 

(3.13) 

In small .15 2, (x2 + y2) - i and we obtain the Ie result. 
On the other hand, for .15 2 »1 we find 

2 2 A+B 1 1 
x+y-~-:::T 

A 2.15 

which tends to zero. Thus the interaction saturates, 
i. e., reaches the lower bound. This is a general result 
for g2» 1. We have 

2_ g2B1 -0 
Y - (1 +~ 2A1)2 

so that the energy approaches 

K 
6E - - 2.15 2 v2m1 tan-1 ~ - - 2g 2K1 • (3.14) 
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With a more general w(k) and V(k)"; 1 it is easy to 
treat the case K t » 1 when Kly« 1, mt - 1 «1. The en­
ergy is lower than the Ie result by the positive quantity 

f Kl f~ 
2g 2 V%(k) k2 dk D(k) Z2 0o(Z) D~(Z)[Do(k) - Do(l)] dZ 

o Kt 

(3.15) 

The same considerations go through with trivial modi­
fications in the three-dimensional case. 

Finally, it is of interest to examine the ground state 
wavefunction corresponding to the two step Ie theory. 
Standard Ie theory works with states of total momentum 

Po-

\]I = V-l V- t <1>0 

= exp(- iq f ka+adk) exp[j (a· - a)j(k,p)dk] exp(iP<fl) <1>0 

=exp[- t f B2(k,po)dk]exp[a+(k) 

x exp(- ikq)j(k,Po) dkt ] <1>0 exp(iPrn), (3. 16) 

where j(k, Po) contains the bare mass. In the two step 
theory 

\]I = V-t(k) V-l(k) V-l(X) V-t(x) exp(iPrn) <1>0 (3. 17) 

or 

\]I == exp[ - iq f ka·adk - iq" f Xa·adX] V-l(k) V-l(A) 

x exp(iPrn) <1>0. (3.18) 

Here again k refers to the high wave vector region and 
A to the low wave vector region. We also have 

q"=q +iG, 

G = / aj(k, p) [a(k) - a+(k)] dk. 
ap 

We use je(A, Po) to remind ourselves that in the X region 
the corrected vertex and mass are used as parameters 
in the transformation. Defining 

r = f a·(k) exp(- ikq)/(k, Po) - t f l dk, 

F~ = f a+(X) exp(- iXq)jC<X,Po) - t f j~dX, 
we write 

(3.20) 

\]I = exp( f "Aa+a dX • G) exp(r + F;) exp(iP<fl) <1>0. (3.21) 

It is clear that the type of correlations between bands 
in the present theory is different from conventional 
variational choices. This is even more pronounced in 
a multiband theory. 

4. CONTINUOUS COMPOUNDING 

We now return to Sec. 2 and examine the ground state 
energy for the continuum product of unitary transforms. 
We first study the differential equations in the limit of 
weak coupling and show that there is a g4 lowering of 
the Ie energy. The weak coupling limit is obtained by 
setting A(k) = 0, m(k) = mo = 1 on the right-band side of 
Eq. (2.21), (2.22). Toorderg 2, m(k)=1+Bm(k), 

Bm(k) =4g 2 ~~k2vBD~(k)dk, (4.1) 

(4.2) 
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The energy to order g4 is 

- 2g2 f~ V~k2Do[DoBm -A]dk. 
o 

(4.3) 

The energy for P == 0 is the Ie value plus the last term 
BE. The effective mass m(k = 0) is the Ie value. We 
note first that BE is indeed negative since 

We have 

BE = - 4g 4 (fo~ k2 vB(k) Do(k) dk J,."" 0o(l) Z2 D~(Z) dZ 

- fo~ k2V~(k)Do(k) ~~ z20ODt(l}dZ ) • 

(4.4) 

(4.5) 

For the case w = Vo = 1 we do the integrals explicitly 
to find 

(4.6) 

This improvement of Ie does not contain the entire 
g4 correction. Perturbation theory yields 

BE=_g4 [/ V~(k)Dodk r 
- 4 If dkdZ V~(k)Do(k) V~(Z)D~(Z) (4.7) 

g w(k) + w(Z) + (k + Z) /2 

It is apparent that correlations are lost in the averaging 
process. This is already the case in one dimension. In 
three dimensions the loss is obvious because of angular 
averaging. 

We now briefly analyze the differential equations for 
general coupling strengths. We scale variables by intro­
ducing k* =gZ/3 and 

~ = k/k*, B =Ak*2 • (4.8) 

Then 

(4.9) 

(4.10) 

We note that both m(~) and B(O are monotone functions. 

There are two main regions. The outer region is de­
fined bye/2m» 1/k*2 = 1/g4/3. As the coupling in­
creases 1/k*2 moves inward to a point «L We can show 
that ~2 /2m(~) is also a monotone function, increasing 
with increasing~. For small coupling constant g the 
point ~o defined by ~%l2m(~0)=1/g4!3 is at ~o»L Asg 
increases ~o(g) moves closer to zero and ~o becomes 
«1. 

Eugene P. Gross 2175 



                                                                                                                                    

In the large ~ region the differential equations 

dm m 3 

- (if =:::32 -V exp(- eB), (4,11) 

dB 32 2 ( 2) - df = V m exp - ~ B , (4.12) 

are independent of the coupling constant. The equations 
may be integrated inward to some point ~o. In moderate 
and strong coupling ~o is of order unity, This is easily 
done by noting that in the outer region 

so 

dm _~2 dB 
d~ - m d~ 

m(~)=exp (- f~ ~2 ~: d~ ), , 
We find the differential equation for B(O, 

( 
d 6) dB _ 2 dB (d 2 ) 
d~ + ~ df - ~ df d~ -"'€ B. 

This yields the expansion for large ~ 

(4.13) 

(4,15) 

(4.17) 

In coupling strengths g- 2 - 10 these series may be used 
to find B(~o), m(~o) at ~o-4 and the differential equations 
can be integrated numerically in the inner region. 

In the extreme inner region we have 

(4,18) 

where ~t «1. The region ~t to ~o can be treated numeri­
cally, The limiting values for small ~ are given by 

m(O = m(O) - H3(l<*)6 + .. 0, 

2 eUl*)8 
B(O=B(O)-"3 m(W +000. 

(4,19 ) 

It is not profitable to study the asymptotic forms in 
the limit of strong coupling since we do not expect the 
theory to be correct in that limit. The averaging 
procedure that has been used in the continuous com­
pounding case is so drastic that it throws away impor­
tant correlations, The present method also has no ap­
parent relation to the well known physical picture of the 
strong coupling limiL 5 
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5. CONCLUSIONS 

We comment on extensions of the work reported here, 
some of which have been explored in detail, In the case 
of the single slice theory one can treat the low wave 
vector domain by more accurate methods than IC, For 
example, if K t is independent of a coupling constant a 

method such as that of Lee and Pines4 yields the lower 
bound limit in strong coupling and is also accurate in 
the weak coupling limit. The Hamiltonian for this do­
main can also be treated by adiabatic strong coupling 
techniques of Pekar or Bogolyubov-Tyablikov. 5 If 
however we are concerned with a problem with an in­
finite cutoff we can take the slice Kl to be coupling con­
stant dependent. If Kl increases at least as fast as g 2 

the high momentum region can be accurately treated 
by IC. But then the Lee- Pines4 method does not give 
the strong coupling limit for the low wave vector domain 
(which grows with increasing coupling), One must use 
the adiabatic method, The resulting theory is closely 
related but not identical to the author's transition 
theory6 and also handles a certain class of ultraviolet 
divergent theories, 

We have noted that in the continuous case, i. e., the 
use of infinitely many unitary transforms, one loses 
accuracy because of the averaging steps, It appears to 
be difficult to hold the operator parts and to organize 
them in a definite way as the unitary transforms are 
performed, This has to be done if the theory is to be 
systematic, An alternative approach is to take a finite 
number of bands whose width is coupling constant de­
pendenL Each band is treated by canonical transforma­
tions and the modified Hamiltonian for the other bands 
can be obtained. 

In summary, in the present paper we have studied an 
example in which explicit unitary transforms have been 
successful in treating the interaction of a particle with 
oscillators with a spectrum of wavelengths, We have 
shown that treating the interaction with different wave­
length ranges sequentially leads to improved results, 
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All spherically symmetric magnetic poles are explictly constructed in SU(4). We show the relevance of the 
concept of the little group which transforms spherically symmetric solutions among themselves. Unlike the 
SU(2) and SU(3) situation this little group is not always Abelian in SU(4). On the other hand, it is shown 
that while the total strength of the pole is always quantized its projection along the Higgs field is 
sometimes arbitrary. This is also in contrast with the SU(2) and SU(3) cases. 

I. INTRODUCTION 

Many papersl generalizing 't Hooft2 initial construc­
tion have solved the problem of finding magnetic poles 
in gauge theories with symmetry groups H larger than 
SU(2). We here present in great detail the SU(4) case. 

We want to put the emphasis on the underlying invari­
ance properties of the explicit solutions. In particular 
we will show the crucial role played by two groups and 
their algebra which we will call respectively the dia­
gonal group D and the little group Q. 

(a) The diagonal group D 

Let E; (i = 1,2, 3) be a subalgebra of the algebra of H 
with the commutation relation of SU(2), 

(1.1) 

This corresponds in the global group H to a subgroup 
which could be SU(2) or SO(3) = SU(2)/Z 2' Let J; (i 
= 1,2,3) be the generators of the space rotation group 
(including spin if needed). Clearly 

J i = if!.w.}(' ,8,.+ (spin part), 

[J; ,J,] = if!. I,,. J,. , 

(J;,E,]=O. 

The diagonal group D has generators defined by 

Lf=Jf+Ef 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

and has the commutation relations (1.1) of the algebra 
of SU(2). Use of (1.5) clearly mixes internal indices 
with space indices. The solutions we are looking for 
are static, i.e., they have no time dependence and are 
"spherically symmetric, " i. e., they are annihilated by 
L;. In other words, the solutions are time-independent 
singlets under the diagonal group. 

(b) The little group Q 

Let us consider the vector space of the algebra of H 
with position, x, dependent scalars, and the subset Q of 
these operators which commute with the L I, 

(1.6) 

These operators, once normalized, generate an algebra 
which will be called the little group algebra. 

It is clear from their definition that little group 
transformations transform spherically symmetric so­
lutions into spherically symmetric solutions. One par-
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ticularly important operator belonging to Q is E, the 
radial component of Ei [see (2.9) for notations], 

(1.7) 

We stress here that this little group Q is not the little 
groupQ~ which is generally used. To make the connec­
tions more clearly we will introduce three other little 
groups: 

(i) Q4> will denote the generators of the little group of 
the Higgs fields. Q4> correspond to the little group of the 
vacuum, Its generators annihilate <I> , 

(1.8) 

Their direction in SU(4) correspond to the remaining 
mass zero vector bosons. 

(ii) QG will denote the generators of the little group of 

CI""' 

(1.9) 

(iii) Q s will denote the intersection of Q 4> and QG' It is 
the true little group of the full solution, 

(1.10) 

The paper is organized as follows. In Sec. II, we de­
fine our notation, the type of solution we try to find, the 
four inequivalent embeddings of the algebra Ei in SU(4), 
and show how the calculation can be simplified by sub­
traction from WI" a specific term SI"' We end with some 
general considerations. In Sec. III we study in turn the 
four embeddings. In every instance we present: 

(i) the generators of SU(4) decomposed with respect to 
E;, 

(ii) the little group generators Q, 

(iii) the natural basis vectors for WI" (2.16) and the 
change of basis suggested by Q. These basis vectors 
are identical for Cp (3.A.27) and DI"<I>. 

(iv) C I"V and the Lagrangian, 

(v) pointlike solutions for C 1""' 

(vi) Higgs scalars-potential, 

(vii) Higgs scalars, kinetic term, 

(viii) discussion. 

In Sec. IV all the solutions are discussed and the con­
clusions are obtained. 

Copyright © 1977 American Institute of Physics 2177 



                                                                                                                                    

II. NOTATION-SU(2) SUBALGEBRA­
INHOMOGENEOUS SUBSTRACTION 

In this section we recall some known facts. First we 
give the gauge invariant equation and discuss the static 
solutions we want to find. Then we identify in SU(4) all 
possible inequivalent SU(2) subalgebras [the E j of (1.1)]. 
We find that there are four distinct such embeddings. 
Finally we explain why it is convenient to separate W" 
into two pieces, one piece SjJ. the inhomogeneous sub­
straction being written explicitly. This simplifies the 
computations considerably and makes the little group 
properties clearer. 

A. Notation 

In order to specify the notation let us recall the SU(4) 
gauge invariant Lagrangian L 

(2.1) 

for the fifteen gauge fields ~ and the Higgs fields <1>, 

(2.2) 

where r bC are the (completely antisymmetric) SU(4) 
structure constants. The covariant derivatives 

D jJ. = 11,. - ie W':.H" , (2.3) 

with the H"- the appropriate generators corresponding to 
the representation chosen for the Higgs fields. To be 
specific we will later also assume that <l>a belongs to the 
adjoint 15-dimensional representation. Many arguments 
in the paper however do not depend on this hypothesis. 

Introducing Xa (a: 1, ... ,15) as the (basic) four-di­
mensional representation of SU(4), it is convenient to 
associate in a one-to-one correspondence a four by 
four traceless matrjx W jJ. (or G "V or ¢) to the 15 com­
ponents w;. (or G~v or <l>a) by 

(2.4) 

(2.5) 

In this notation, for G,.v and for a 15 -dimensional <1>, 

GjJ.v= 11" WI' - 6vW" + (e/i)(W", W.,], (2.6) 

DjJ.<I>: 11,,<1>+ (e/i)(WjJ.' <1>], 

while the space dependent SU(4) gauge transformations 
(MM+: 1) are 

W~ = MW"M+ + (i/e)M11 jJ.M+, (2.7) 
G~v=MG".,M+, <I>'=i\I<1>M+. 

We want to find asymptotic (pointlike) time indepen­
dent solutions. By time independent we mean that 

(2.8) 

and that no explicit time dependence appears (static so­
lutions). The problem reduces to a three-dimensional 
XI (i= 1,2,3) one. We choose the Euclidean metric. It 
is convenient to work with the following variables Xi ,r: 

r2=6xL xl=xl/r. (2.9) 
I 
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Asymptotically the three terms in (2.1) will behave 
differently, 

V (<I» r - 00 const, 

D <I> r- 00 const 
" r 

G r- 00 const 
jJ.V r2 

(the constants 
may be Xi 
dependent) 

(2.10) 

Hence, in this approximation, all three terms in (2.1) 
have to be maximized separately. In all cases we will 
focus our attention first on G jJ.V' and only later study 
the two other terms. In particular, it will turn out in 
all instances, as is well known, that 

(2.11) 

but this equation will not be used as a starting point. 

B. SU(2) subalgebra 

In order to define the diagonal subgroup we need to 
know all possible ways to extract from the algebra of 
SU(4) the SU(2) subalgebra E I , Up to an equivalence 
this is done quite easily by considering the four-di­
mensional (faithful) representation. Under SU(2) this 
representation splits into irreducible representations 
of SU(2). All possible embeddings thus correspond to 
partitions of 4, namely, 

4-4, (2.12a) 

4-1ED3, (2.12b) 

4- 2Gl2, (2.12c) 

4-1GlIGl2, (2.12d) 

4- ltD IGlIED 1. (2.12e) 

The possibility (2.12b), for example, means that 4 de­
composes in a triplet plus a singlet under SU(2). The 
(2. 12e) possibility is clearly excluded since it means 
that SU(2) does not act at all on the representation. It 
is easy to see that the other possibilities (2.12a)­
(2.12d) can be realized. These decompositions are 
unique up to an equivalence (inner automorphism). 

Since the representations of SU(2) are all self conju­
gate. the decomposition of 4" (the representation conju­
gate to 4 in SU(4)] is identical. From these remarks it 
is then easy to construct the decomposition of any other 
representation of SU(4). In particular since the adjoint 
(I5-dimensional) representation is obtained in 

(2.13) 

The decomposition of 15 can be obtained by simple 
SU(2) decompositions as 

15-3$5ffi7, 

15-1Gl3ED3ffi3ED5, 

15-1GlIGlIGl3Gl3Gl3Gl3, 

15 - 1 Gl 1 Gll if) 1 if) 2 Gl 2 if) 2 Gl 2 Gl 3. 

These results will be used extensively later. 

Y. Brihaye and J. Nuyts 
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(2.14b) 

(2.14c) 

(2.14d) 
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C. Inhomogeneous subtraction 

We have seen that under SU(4) gauge transformations 
M the gauge fields transform (2.7) with an inhomogene­
ous part. For certain subsets of gauge transformations 
which will turn out to be those of the little group ~ it is 
possible to find a solution 5,. of the following matrix 
equation: 

5,.=M5,.M+ -(i/e)M8,.M+. 

If one then defines 

WI' = WI' +5,. 

under the little group transformations one has 

W>A1W,.M+ (M E: Q), 

i.e., there is no inhomogeneous part. 

It turns out that for all known cases 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

This is checked easily for the group transformations 
generated by E of (1.7). 

It is precisely the property (2.17) which enables one 
to greatly simplify the computation if one works with 
WI' rather than WI" 

D. General considerations 

Let us now stress two important results which are 
valid when cP belongs to the adjoined representation. 

First it will turn out in all instances that maximal 
G,.. [G p or better G; see (3.A.27) and (3.A.40) for nota­
tionJ lie as cP in the little group ~ directions and more­
over that 

[G,cpJ=o. (2.19) 

This implies that they can be diagonalized together and 
the eigenvalues of both matrices (remember (2.4)J are 
of great importance. 

Also the other quantity which plays a major role is 

(2.20) 

It is the strength of the magnetic pole in the direction 
of cP as opposed to the total strength as given by 

(2.21) 

III. THE FOUR CASES 

We now turn to the explicit solutions of the equations 
in the four cases A, B, C, and D. We discuss in turn 
the three parts of (2.1). 

A. The 4 -> 4 embedding 

(i) Decomposition of the generators of SU(4) 

There is only one way up to a SU(4) equivalence to 
embed the four-dimensional representation (5 = f) of 
SU(2) in the four-dimensional representation of SU(4). 
A specific set of properties of EI is given in Appendix 
A. The remaining 12 generators of SU(4) decompose 
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according to (2. 14a) in a 5-plet K 1j (Kjj o=Kjj , L,IKIl = 0), 

KIJ=t(E I E J+ E J E I ) - t6 IJ(EmE m), 

and a completely symmetrical 7 -plet 

Njjk=~(EjEjEk+EjEkEI+EkEjEj 

+EjEjEk+EjE.Ej+E.EjEj) 

-u- (6 kj E j +6. j Ej +oij E.). 

(3.A.l) 

(3.A.2) 

The commutations relations of these operators and 
relevant traces are in Appendix A. 

Let us also introduce the projections of these opera­
tors along the XI direction (2.9) by 

K=XjKj, K j =.\;jKiJ, (3.A.3) 

N=xjNj , N j =xjNjj' N jj =x.Njjk • 

(ii) The little group 

The three operators {p} = {E, K, IV} generate the little 
group Q and commute. Hence 

Q ={E, K, IV} '" U(I) 31U(1) 2>U(I). (3.A.4) 

Yet it is useful to introduce a new basis for these 
generators by defining the three commuting generators 
R "'{A. B, C} by 

A = -~E +N/3, 

B=~E+N/3. 

C =K/2. 

An infinitesimal transformation of Q is 

(3.A.5) 

iIi = 1 +i1TP, (3.A.6) 

with the three real r-independenf parameters 1T 
"'{E,K,1)}or 

M= 1 +ipR, (3.A.7) 

with the three real parameters p '" {()I, 13, r} 

a=-E+t-1), 

f3=E +h, (3.A.8) 

r =2K. 

It is then easy to check that formula (2.17) and (2.18) 
are valid for .W of the form (3,A.6) and (3.A.7). 

(iii) Basis vectors for W ~ 

We now want to construct the most general basis for 
static spherically symmetric W~ (wg = 0, /J. = 1,2,3, 
a = 1, ... ,15). There are nine independent orthogonal 
basic vectors. Their corresponding matrices (2,4) are 
naturally chosen as 

Ti~ =x~P, {p} ={E, K, v}, 

Tf~ =(x~xl-6~i)Pj, {p;} ={Ej,Kj,NJ, 

T~~ =E~jj\;jPi' 

Y. Brihaye and J. Nuyts 
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(3.A.9c) 
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Orthogonality is defined by the scalar product [see 
(A10) for the norms] 

LTr(T~u Tr,~). (3.A.1O) 
u 

In this basis W ~, W p are written 

Wu =WfTfp, Wu =WfTfu' (3.A.1l) 

where summation on P and i is understood. 

The components Wf then depend upon r only. In 
writing (3.A.5) we have introduced the natural choice. 
In particular, in (3.A.9a) the tensor T p is in the direc­
tion of Xu while in (3.A.9b) and (3.A.9c) Tu are ortho­
gonal in directions orthogonal to;,.. In other words, 
(3.A.9a) is the radial component and (3.A.9b) and 
(3.A.9c) are the tangential components. This distinction 
is well suited for spherically symmetric solutions. 

Consideration of Q however suggests (see Appendix 
E) another choice for the basis vector of Wp [(2.16) and 
(2.17)1. 

Wp =WCzlT:
l 

_ ClPl m -(Al - -CABl 
-W(rPlTp +wCAlTp +WCAB1Tp 

=WCIP1TJPl +wtTp +tr(Wtj\), (3.A.12) 

T~' is the new set of nine basis vectors (T~IPl, T ""T~A), 
T "" T~AB);A, B = 1,2) which we now define. 

The set T~ has simple transformation properties 
under Q. in its new basis (A, B, C) (see Appendix E). It 
is composed of the three singlets (T ~IPl) 

with P={E,K,N} or P={A,B, C}, and 

W(IPl=wf, 

of a doublet under the A transformation 

(3.A.13) 

(3.A.14) 

(3.A.15) 

(3.A.16) 

the remaining four tensors T,. form a (202) multiplet 
under B0C transformations 

(3,A.17) 

(3.A.18) 

By considering global transformations 
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Mp= (co.s
p 

sinp) 
-smp cosp 

(3.A.19) 

corresponding to two-dimensional representations for 
the three U(l) groups, then 

W'=M",W, 

W'=MaWiVJ? 

(3.A.20) 

(3.A.21) 

This can be proved easily by using (2.17) and exponen­
tiating the transformation (3.A.7) (3.A.8). These con­
siderations will not be repeated for cases B, C, and D. 

Finally before going to the G,.u it is useful to factor­
ize for all Wa term (er)"l, 

W= (ller)V'. (3.A.22) 

Asymptotic conditions (2.10) will then correspond to 
constant V's. 

Elementary group properties then tell us the results: 

(a) The following quantities are Q invariant: 

II = Tr(fkV), (3.A.23) 

I 2 =det(V), 

13= (VtV). 

(3.A.24) 

(3.A.25) 

(b) Multiplication of iT (or W) on the left (V or Won 
either side) by ia2 does not change their transformation 
properties since 

(ia2 )M (ia2r 1 = M. (3.A.26) 

(iv) G,.u and the Lagrangian 

In this subsection we present the general form of the 
spherically symmetric static G ,.u's and find the asymp­
totic (maximal) solutions. 

Since G,.u is antisymmetric with nonvanishing space 
components only we define 

(3.A.27) 

whose transformation properties are 

G;=iVIG;Vr. (3.A.28) 

The basis for spherically symmetric G /s will thus be 
identical to the basis for W,. [Le. (3.A.9) or (3.A.13), 
(3.A.15), and (3.A.17)]. Hence under the little group the 
15 components of G p decompose as three singlets G (IP)' 
an A doublet G, and a B0 C -202 representation ~. 
After some computations one finds [(2.6), (3.A.27)] 

(3.A.29) 

with the values [see (3.A.13)-(3.A.18) and (3.A.26)]. 
First 

(3.A.30) 

(3.A.31) 

(3.A.32) 

the three invariant components. The A doublet is 
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TABLE I. The six maximal solutions (a-f) H= V(l) 181 V(l) 181 V{l)] for the (4-4) spherically 
symmetric G .. v ' The defining equations are: for Ii (3.A.23)-(3.A.25), for G (3.A.27), 
(3.A.40), (3.A.5), for gj (3.A.4l), forl G(1.9), and for gt20t (2.21), (3.A.42). ml8l n is a short­
hand for the Lie algebra of SV(m)I8ISU(n) except when m or n equals one where it means the 
Lie algebra of V(l). 

a b c" d" 

1 1 1 
11 1 '3 3 "6 

12 0 0 -tl: -11
2 

I: 

13 1 0 1 0 2 

G 0 2A _(B+I:C) i-[3A - (B+ I: C)l 

I: ~+1 I: =-1 I: =+1 I: =-1 

3 1 3 -1 gl 0 -1 -2 -2 -2 

-'1 1 1 1 -1 g2 0 2 -2" -2 

g3 0 1 1 
2 

g4 0 1 1 
2 

Q.G 4 2181201 

glot 0 4 
unit e-2 

- 1 [. ! - -r!-] G:::-2 -(w2 )rV - VhA)V , 
er 

1 1 -2 
3 1 "2 

301 20101 

3 9 
"2 

(3.A.33) 

where the dot means differentiation with respect to r; 
while the B0C, 202 representation is [(E4)] 

::I 1 !: _ = 
G::: -2[ -(ia2 )rV + V(1B) V er 

1 
2 
3 
"2 

- Vhc)(ia2)"!7(ia2)]' (3.A.34) 

The covariance of the formulas under the Q. transforma­
tion is obvious, (3.A.26). 

We now turn to the Lagrangian and to maximization. 
First using (2.4), (3.A.27), and the normalization of the 
T tensors frpm Appendix A, 

L== _tG~aJG~a) 

== -tTr(G p p) 

= -H5GZ1E ) + 4G~1K) + *"GZ1N ) 

+ 4(GtG)+ 6Tr(C t C)]. (3.A.35) 
. 

As is clear from (3.A.30)-(3.A.34), the V(1P) do not 
appear. This means that the V(1P) are simply con­
strained. After some straightforward computation one 
can eliminate these components. At the same time 
three of the remaining six derivatives of V and V will 
be eliminated. Hence only three linearly independent 
combinations of these six derivatives will survive, 
namely jl' j2' and j3' Indeed if we define 

C1 = -Tr(~Vtia2)' 
a. = 

C2 = -Tr(V(ia2 )V), (3.A.36) 

C 3 == -(¢tia
2 
~), 

then 

2181 J. Math. Phys., Vol. 18, No. 11, November 1977 

e f 

0 0 

0 0 

1- 0 
4 

-tB A-B 

3 3 
-2" 2 

0 1 
2 

0 1 
2" 

! 3 
2 2 

20101 10101 
9 5 2 

(3.A.37) 

Replacing these values back in the Lagrangian one ob­
tains 

with 

- 4e~4 [H3(1++IJ+ 213 - 5J2+ 9(1+ -IY 

+ ~[(1+ +IJ -101 2
] 

I" = (It ± 212)/2. 

(3.A.38) 

(3.A.39) 

The form (3.A.38) together with the definition of the 
invariants (3.A.23)-(3.A.25), and (3.A.39) is particular­
ly simple and elegant and shows the importance of the 
little group properties. 

A final remark is useful here. Asymptotically [(2.10)] 
V will behave as a constant. Thus in this approximation 
G p will correspond to a field which is of the magnetic 
type with its nonzero components given by (3.A.30)­
(3.A.32). At this point G,. is still a matrix whose physi­
cal interpretation will be given later. Asymptotically 

G p =xp/er2 

and the eigenvalues of G are gj: 

g1 =1(11 + 212 -1), 

g2=i(-311 - 612 + 413 -1), 

g3=i(311 - 612 - 413+ 1), 

g4 = 1(-11 + 212 + 1). 

Y. Brihaye and J. Nuyts 
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TABLE II. The six solutions (1-6) for the (4- 4) spherically symmetric Higgs fields. The 
defining equations are for <!? (3. A. 5), for Ii (3. A. 23-25) for <!?j (3. A. 44), for g2 (2.20), for lIT> 
(1.8), and for m 0 n see Table 1. 

1 2 3' 4' 

0 c!?AA <!?B(B+EC) <!?AA+ <!?B(B+EC) 

E =+1 E =-1 E =+1 E =-1 

<!?i 0 411 =412 <!?2 = <!?3 <!?1 = <!?2 <!?3= <!?4 411 = <!?2 

413= <!?4 =<!?4 = <!?3 

Ii arbitrary 13=0 11 =-2E12 11 = -2EI2 

13 = 0 

~~ 4 20201 301 20101 

The norm of G is defined by 

( )

1/2 

gtot=[tr(GG)]1/2= ~g~ . (3.A.42) 

It will correspond to the strength of the monopole. 

(v) Pointlike solution 

Pointlike asymptotic solutions are obtained by maxi­
malizing the nonderivative part of (3.A.38) with respect - . 
to the parameters V and V. One obtains six different 
types of solutions which are given in Table I together 
with relevant properties. It is remarkable that the re­
sults are expressed most simply in the (A, B, C) basis 
(3.A.5). 

(vi) Higgs scalars-potential term 

The Higgs scalar ¢ could belong to any representa­
tion of SU(4). To be specific we will treat here the 
case where ¢ transforms with the adjoint representa­
tion of SU(4). 

The most general form of a spherically symmetric 
solution is [see (3.A.5)] 

¢= ¢EE+ ¢KK+ ¢NN= ¢PP 

= ¢AA+ ¢BB+ ¢cC=¢~, 

¢A = -¢E+t¢N' 

¢B = ¢E+t¢N, 

¢c= 2¢K, 

(3.A.43) 

with ¢p or ¢R depending on r only. General theorems 
about the maximalizations of the Higgs potential V, 
(2.1), tells us that ¢ is generally maximal when it has 
one or more equal eigenvalues. Nonequal eigenvalues 
are also possible but correspond to less interesting 
situations. The eigenvalues of ¢ are 

¢1 =~¢E+ ¢K+fo¢N' 

¢2=t¢E - ¢K -ro¢N' 

¢3= -t¢E - ¢K+ro¢N' 

¢4=-~¢E+¢K-fo¢N' 

(3.A.44) 

It is not difficult to discuss all the possibilities; there 
are four types: 

(3.A.45a) 
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5 6 

<!?BB+ <!?cC 

<!?2 = <!?3 arbitrary 

11 =12 11 =12 =13 

=0 =0 

20101 10101 

¢l = ¢2= ¢3= -t¢4' 

¢l = ¢2* ¢3= ¢4' 

all ¢j'S are different, 

(3.A.45b) 

(3.A.45c) 

(3.A.45d) 

and all the distinct permutations of the indices (1,2,3,4). 
The little group Q~ (or stability group) of ¢ always con­
tains the ~ group but is in general larger. Correspond­
ing to the four cases just mentioned, the little group 
algebras are isomorphic to 

SU(2)@U(1)@U(1) locally, 

SU(3)@U(1) locally, 

SU(2)@SU(2)@U(1) locally, 

U(1)@U(1)@U(1)@U(1) locally. 

(3.A.46a) 

(3.A.46b) 

(3.A.46c) 

(3.A.46d) 

We now turn immediately to the maximalization of the 
kinetic terms of the Higgs fields. We will show that its 
maximalization establishes a precise correspondence 
between the extremal values of G"v and of ¢. 

(vii) Higgs scalars-kinetic term 

In terms of the definition (3.A.43), (2.16), (3.A.12), 
and (3.A.23)-(3.A.25), the kinetic term of the Higgs 
fields become [(2.6)] 

tD" ¢(a)D" ¢(a) =tTr(D"¢D,, ¢) 

=~{5cP~+ 4¢~+t¢1 
+--;«¢~+4¢k)Il +4¢B¢C i 2) r 

+~ ¢1I3]' (3.A.47) 

Asymptotically again the derivatives do not contribute 
while the maximalization with respect to V, ~, and ¢ 
considered as constant leads to Table II. In any in­
stance, D,,¢ turns out to be identically zero in agree­
ment with the general theorems, and ¢ commutes with 
G [see (2.19)]. 

(viii) Discussion 

Comparing Table I and Table II leads to a correspon­
dence between the asymptotic solutions. This is given 
in Table III. Following't Hooft, the component of G~v 
in the direction of ¢ in internal space is called the elec­
tromagnetic monopole, its strength (3.A.40) is 
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TABLE III. The correspondence between the solutions for C,," and 4> in the (4-4) case. The defining equations are: forJII!,iG,is 
(1.8)-(1.10), for g2 (2.20), (3. A. 48), gl is defined as the strength of the component of the cg orthogonal to the direction of 4>a, 
for m 119 n see Table I. 

1 (a-f) 2b 2d± 2f (3c)± 

[II! 4 20201 20201 20201 301 

f.s=fG see fil! 20201 10101 QII! 
Table I 

g2 
/ unit e-2 4 4 4 3 

gJ: see 
unit e-2 Table I 

0 1 1 0 "2 

gt~t see 
unit e-2 Table I 

4 9 5 3 "2 

(3.A.48) 

but as is seen in Table ill and as was already known in 
SU(3), G p does not always lie in the direction of <p. This 
is unlike the SU(2) case where Gp and cp are parallel. 
The components of G p orthogonal to cp lie in the little 
group Q 0 At this point it is useful to introduce Q s: the 
little group of the full solution, i. e., the stability 
group of G and cpo The part of G p orthogonal to cp will 
always be called a monopole because the Q little group, 
being U(1)0 U(1)0 U(l), allows no freedom for an Q 

isopole. 

In SU(3) the angles between cp and G p in SU(3) could 
only take special value. This leads to a quantization of 
charge. Here, as seen in Table III, a new freedom ap­
pears because the angle between cp and G p in Q is some­
times arbitrary. No direct quantization follows! In 
other words, once the direction of charge is fixed the 
direction of the magnetic poles is still arbitrary. This 
is due to the fact that since the little group Q ¢ is larger 
than U(l) there may exist more than one mass zero vec­
tor boson compatible with electromagnetism. 

B. The 4 --'> 3 + 1 embedding 

We will now repeat more briefly the computation for 
the case 4 - 3 + 1. The procedure will be very analogous 
though the details are quite different. 

(1) Decomposition of the generators of SU(4) 

The identification of a three-dimensional (vector) rep­
resentation of SU(2) in the four-dimensional representa­
tion of SU(4) is again unique up to equivalence. The E i 

are given in Appendix B. Taking into account (2. 14b), 
the remaining twelve generators of SU(4) decompose into 
a singlet which will be called Z, two triplets Kio Njo and 
one 5-plet FiJ [~; Fji =0, FiJ =FJi (see Appendix B)]. As 
in the preceding case we also define the prOjections of 
these generators along Xi directions, 

E=X;Ei' K=XiK j , 
(3.B.1) 

N=x;N;, F=XjFio Fj=xjFjj' 
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(3d)± (4d)± 5e 5f 

301 20101 201211 20101 10101 

20101 QII! QiI! 10101 QiI! 

3 
(24).1- 34>Ll)2 

4>i+ 34>1- 24>A4>B 
94>~ 

24>1+ 4>b 
94>~ 

24>1 + 4>b 
g2 

3 f_g2 !_g2 5_g 2 5_g 2 
2 2 

9 9 9 5 5 "2 2 "2 

(ii) The little group 

The operators {Q}={Z,{p}}, {P}={E,K,N,F} gen­
erate the little group Q. These generators close in the 
algebra of SU(2)0U(1)0U(l) as can be seen by a change 
of basis. Let 

Al =K, A2=N, 

A3 =~Z - F, {R} = (A;/2, B, C) '" SU(2) 119 U(1)0 U(l), 

B=E, C=~Z+2F. (3.B.2) 

A;/2 have the commutation relations of SU(2) and com­
mute with Band C. Let R = {Ai, B, cL An infinitesimal 
transformation of Q is written 

(3.B,3) 

with five real independent parameters ~ = (I;, E, K, TJ, CP), 
p = {(1i' {3, y}. These two sets are related by obvious re­
lations. 

(iii) Basis vectors for W~ 

Quite naturally the 13 basis vectors for W~ are written 

T~~ =x~R, {(R)}={Ai,B,C}, 

T:~ =(X~Xi -OfIl)P;, {Pi}={Ei,Ki,Ni,Fj}, 

T:~ =E~ijXJPi . 

With these definitions the basis vector for W~ are 

(3.B.4) 

r~~=x~R, {R}={Ai,B,C}. (3.B.5) 

Under the little group transformation T~~ and T;~ are 
singlets while TtJ form a triplet (vector) under the SU(2) 
(A generators). The remaining eight components behave 
as a tensor 

r:· B
•
C

, A=(1,2), B=(1,2), C=(1,2), (3.B.6) 

transforming as a 2119202 representation of SU(2)0U(1) 
o U(l }(A;, B, C). For example, for Band C fixed, r:· B • C 

(A =1,2) behaves as a spin or under Ai transformations. 
The precise correspondence is given in (B18). At the 
same time [see (3.A.22), (2.16)] 

v~ =V(R)T~~ +~.B.Cr:·B.C. (3.B.7) 

It is also useful to write 
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TABLE N. The four maximal solutions (a-d) for the (4 - 3 
Q9 1) spherically symmetric G,," [ = SU(2)@ U(l)@ U(l)l. The 
defining equations are: for Ii (3. B. 9), for G (3. A. 27), 
(3.A.40), for gi (3.B.16), forie (1.9), and for gtot (2.21); for 
111 @ n, see Table 1. 

a b C d± 

II 2 1 0 1 
'2-

I, 0 0 
£ 

0 -
2 

I3 0 1/2 0 1 
8 

£=+1 E=-1 
K! 0 -1/2 -1 -1/2 -1 

g'!. 0 1/2 1 1 1 
2 

g3 0 1/2 0 0 

g4 0 -1/2 0 1 0 -2 

Qe 4 2CY2Q<;1 2@1Q<;1 2@1@1 

idot 0 1 2 
, 

unit e-2 " 

- 1 - -) 
VA2 '" 2i (VU - V22 , (3.B.8) 

VA '" -~ (Vu + V22 ) • 
3 

Hence, defining a symmetric matrix VAB ",VBA • This 
corresponds mathematically to writing a vector as a 
symmetrized product of two spinors. 

The following invariants are then constructed: 

II ",VA.B.CVA'.B'.c,EAA,Ecc,OBB" 

12 ",VA.B.CVA, .B' .c'EAA'EBB'OCC" 

13 =UAA,UA"A'IIEAAuEA'A"', 

VAA , = VA •B• CVA'. B' .c,E BB,E cc' = VA' A • 

The metric has been used explicitly, 

(iv) G~u and the Lagrangian 

(3.B.9) 

(3.B.l0) 

(3.B.ll ) 

Spherically symmetric Gp (3.A.27) have the same 
basis as W~. Hence er 2 G p is composed of two singlets 
GB, Ge, and aA triplet GA , i.e., the set {GR}, 

. 1 I 

GAl = Z~2' GA2 = 2i (~I - V22 ), (3.B.12) 

GA1=-~(~I+~2)' GB=~II-l, Gc =I2 • 

We note that 

GAiGAi "'~I3' (3.B.13) 

The remaining eight components contain derivatives and 
quadratic functions of V's, 

G A.B.C = -E BB' VA.B,.C + V(BlVA.B.C 

-V(ClEBB,Ecc,VA.B' .c' 
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(3.B.14) 

As in the preceding case, the Lagrangian does not de­
pend on the derivatives of the {VR } components. These 
can be eliminated. The essential ingredient is that the 
Lagrange equations for {VR } are linear i.n {VR } and that 
the inhomogeneous terms are linear in VA,B.C' We will 
not give these lengthy details here. It is sufficient for 
our purpose to note that the elimination ~f these five 
components eliminates five derivatives VA •B , c. Since 
there were eight derivatives (considered as a vector 
space) to start with, there remain three derivatives, 
namely j I, j 2' and j 3' Hence the G A.B. C term only con­
tributes to the kinetic term. 

(v) Pointlike solutions 

As in the preceding, the asymptotic pointlike solutions 
are obtained by maximalizing the nonderivative part of 
G p , i.e., the set GR' Using Appendix B, that part of the 
Lagrangian becomes [(3. B. 12)], 

L =- 4e!r4 (~ (II - 2)2 +I~ +13) +derivatives. 

(3.B.15) 

The eigenvalues of G l (3 .AAO) 1 for asymptotic solutions 
are as follows: 

gl=~(J2+11-2), g2=~(12-II+2), (3.B.16) 
g3 = -1[12 - (21 3)112], g4 = -1[1 2 + (21 3)112 J 

Maximalization leads to four different solutions which 
are listed in Table IV. Again the strength of the mono­
pole is defined by (3.A.42). 

(vi) Higgs scalars-potential 

A 15-plet of Higgs vectors reduces, for spherically 
symmetric solutions, to 

Let us define 

,+. = (,+.2 +,+.2 +,+.2 )llz 
'f'A 'f'AI 'f'A2 'f'A3 ' 

the length of ¢ Ai and also: 

¢ Al = i ¢12 = i ¢21 , 

1 
¢A2 = 2i (¢1l - ¢22)' 

CPA =-~(¢1l +¢22)' 
3 

The eigenvalues of ¢ are then 

¢I = ¢ C + ¢ B, ¢2 = ¢ c - ¢ B , 

¢3=-¢C+¢A, ¢. =-¢c- ¢A' 

They are clearly ~ invariant. 

(3.B.17) 

(3.B.18) 

(3.B.19) 

(3.B.20) 

According to the equalities between these eigenvalues 
the Higgs vector little group can belong to one of the 
sets (3.A,45) and (3.A,46). They correspond to maximal-
ization of the potential. 

(vii) Higgs scalar-kinetic terms 

Owing again to the Q. little group properties D~ ¢ the 
covariant derivative of ¢ can be written very simply 
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TABLE V. The six possible solutions (1-6) for the (4- 3 EB 1) spherically symmetric Higgs fields. The defining equations are for 
<P; (3.B.20), forI; (3.B.9), for~ (2.20), andforl<J> (l.S);form@nseeTableI. 

1 2 3 4 5 6 

<Pi <Pi ~O \1>1 = <P3 <P2 ~ \1>3 <P1 = \1>2 <P1 = <P2 <P2 = \1>3 <P1 =<P3 <P1 ~ <P3 arbitrary 
<P z ~ <P4 <P1 c- <P 4 = <P3 = <P4 = <P4 = <P4 

Ii arbitrary 2I3=Il 2 13 =11: arbitrary 2 13 ~Il = I} 

arbitrary 

Ii ~ 0 

arbitrary g2 I 1 0 i 
3 

~<I' 4 2@201 30 1 3Q'; 1 11)'; 1«; 1 

with the same tensors as Wp [(3.B.5), (3.B.6)] 

Dp<l>=D/t~p +DA'B.cT~·B.C, 

and 

- ¢AA,EA'A"VA",B,C). 

(3.B.21 ) 

(3.B.22) 

Again the covariance properties under Q ensure the cor­
rect transformation laws of the different terms. Maxi­
malization leads to Dp<l>=O. In view of the first equation 
of (3.B.22) this implies in particular that VAi and <I> Ai be 
parallel three vectors. 

The results of the maximalization are given in Table 
V, and comparison between Tables IV and V are sum­
marized in Table VI. The discussion is analogous to the 
discussion of the A case. 

C. The 4 -+ 2 + 2 embedding 

(i) Decomposition of the generators of SU(4) 

The generators E i forming a doublet of the spin-~ 
representation of SU(2) as a subset of the 4 x 4 SU(4) 
generators are unique up to an equivalence and are given 
in Appendix C. The remaining 12 generators decompose 
according to (2.14c) in three singlets, 

K(k) (k=1,2,3), (3.C.1 ) 

and three triplets 

N?) (k=1,2,3). (3.C.2) 

The prOjections in the Xi direction of the triplets are 

(3.C.3) 

(ii) The little group 

The seven operators {R}={E,K(k).N(k)} generate the 
little group Q. They close under the commutation rela­
tions of 

Q = {E ,K(k) +N(k), K(k) - N(k)} '" U(1)® SU(2)Qs; SU(2). 

(3.C.4) 

We note that SU(2)® SU(2) is locally isomorphic to SO(4). 
And hence the antisymmetric tensor KAB (.4, B == 1,2,3,0), 

(3.C.5) 

has the commutation relation of the Euclidean form 
(gAB = ° AB) of the Lorentz group. The infinitesimal 
transformation of Q, 

M = 1 + ipR, (3.C.6) 

depend on seven real parameters p = {E. K(k),I}(k)} or 
p = {E, KAB} with the correspondence (3.C.5). 

(iii) Basic vector for Wp 

The natural 15 basis vectors for Wp are 

TR =x R {R} = {E K(k) N(k)} 
1/.1 iJ , " 

T;p = (Xu '¥i - 0pi)Pi, {p} = {E,N(k)}. (3.C.7) 

TABLE VI. The correspondence between the solutions for Gp.v and <P in the (4- 3 ttl 1) case. See Table III for notation. 

/<1' 4 2«;2~1 2,~ 2 (X; 1 202«;1 3Q';1 3'~ 1 301 3~ 1 3~)1 2 ~" 1 1 2~1@1 1Q';1Q';1 

Ie see 1<1' 2«;1Q';1 2@101 4 2~1@1 2e1®1 2~1'~1 2e1®1 2'~1~1 2 11)';1 2~1@1 
Table 
BI 

2 16 1 ~ 1 ' 
Is Ie 1<1' H9101 2«;1«;1 1<1' 1e1~1 2«; un 1«;101 2«;1(8;1 11%101 or 1<1' 

19l~l 

g2 / 1 1 1 0 0 0 i 4 
., 

K2 [[2 <T. 

3 h 
unit J 

e-2 

,,1 / 0 1 1 0 2 3 2 !. 2 - ,,2 3 2 2 - ,,2 2 2 " 2-}; 
unit 6 
e-2 

Klot see 1 2 ,3 
0 2 3 2 3 2 " 2 2 2 2 2 

unit Table 
e-2 BI I 
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TABLE VII. The three maximal solutions (a-c) for the (4- 2 
EB 2) spherically symmetric G /LV [Q = SU (2) 181 SU (2) 181 U (1) I. The 
defining equations are: for Ii (3. C.13), for G (3. A. 27), 

(3.A.40), forg j (3.C.18), forQ c (1.9), andforgt~t 
(2.21); for m 181 n see Table I. 

a b c 

II 1 0 

Iz 0 0 1. 
16 

gl 0 1 
2 

gz 0 1 0 " 
g3 0 1 0 -2 

g4 0 1 1 
-2 -2 

QG 4 218121811 218111811 

gl,t 
unit C Z 0 1 1 

" 

Under the little group transformations, the 15 bas ic 
tensors transform as a singlet, 

(3.C.S) 

a six-dimensional (1,0) + (0,1) representation of SU(2) 
Q9 SU(2) represented by an antisymmetric tensor (3.C.5) 

T~B = _T~A, (3.C.9) 

with 

(3.C.10) 

The remaining eight tensors form a four-dimensional 
vector (i Q9 i) representation under SU(2)QS, SU(2) which 
is also a doublet under the U(l), 

TO,' _TE. TO'2 __ TE (A 1 2 3 0) TA,a. ~ - 2~' P - ~p ="" 
P • k 1 N (k) • k 2 N(k) 

Tp' =T3~ ; Tp' =T2P (a=1,2). 

With the same convention as before [(2.16), 

Vp =VETp +VABT~B +VA,aTt,a. 

The relevant invariants are 

with 

GAB=EaBVAaVBB' 

(iv) Gpv and the Lagrangian 

(3,C.Il) 

(3.A.22)j, 

(3.C.12) 

(3.C.13) 

(3.C.14) 

Spherically symmetric Gp (3.A.27) have the same basis 
as W p' After some computation G p is written, 

(3.C.15) 

with (3.C.14) and 

(3.C.16) 

As in the preceding cases the Lagrangian does not de­
pend on the derivatives of V E and V AB' These compon­
ents can be eliminated together with six (and not seven) 
derivatives. 

The nonderivative part of the Lagrangian which only 
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matters for asymptotic solutions is then [(3.C.15), 
(3.C.13)] 

(3.C.17) 

(v) Pointlike solutions 

Maximalization with respect to the relevant VA ,n leads 
to the three solutions of Table VII. The asymptotic val­
ues of G (3.A.40) are 

(3.C.IS) 

where E and E I are arbitrary signs. Again the strength 
of the monopole is defined by (3.A.42). 

(vi) Higgs scalars-potential 

The 15-plet of Higgs scalars are written 

rp = 'PRR, R = {E, ](~),N(~)}, (3.C.19) 

for spherically symmetric solutions. The four eigenval­
ues of 'P are 

<P~ = ~ <P E ± [2? (rp K(~) + rp N(~»2 ]'/2 

(3.C.20) 

It is easy to verify that the values are Q invariant, by 
using the notation [see (3.C.5)] <PAB' Equalities between 
these eigenvalues correspond to maximal potentials lsee 
(3.A.45), (3.A.46)]. 

(vii) Higgs scalars-kinetic terms 

The covariant derivatives of <P have the same basis 
vectors of W p (3.C.12), 

(3.C.21) 

and 

(3.C.22) 

I - -
DA a =- ('PEEexBVA 8 - 'PABV B a)· 'r ' , 

Asymptotic maximization will again lead to Dp <P = O. 
This implies relations between the directions of 'P and 
G. The results are given in Tables VIII and IX. 

TABLE VIII. The four solutions (1-4) for the (4- 2 'Qi 2) 
spherically symmetric Higgs fields. The defining equations 
are: for <1.>i (3. c. 20), for Ii (3. C.13), for g2 (2.20), and for 
Q., (1. 8); for IJl 0 n see Table I. 

1 2 3 4 

(~) i 0 <1.>1 - <1.>4 <1.>1 ~ <1.>4 arbitrary 
<P2 = <l>3 

Ii arbitrary arbitrary 412 Il Ii = 0 

g2 0 0 arbitrary 0 (211 - 1) arbitrary 

Q., 4 20201 10101 1(i<;101 
could be larger 
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TABLE IX. The correspondence between the solutions for Gil-V and cP in the (4- 2 EB 2) case. See Table III for notations. 

1abc 2a 2b 

e.~ 4 2 0 201 2 0 201 

QG see 4 20201 
Table VII 

Qs QG Q~ 1 0 1 0 1 

g2 
unit e-2 / 0 0 

gl / 0 1 

gt~t see 0 1 
unit e-2 Table VII 

D. The 4 --+ 2 + 1 + 1 embedding 

(i) Decomposition of the generators of SU(4) 

Up to an equivalence, the three E j matrices are given 
in Appendix D. The remaining generators according to 
(2.14d) decompose in four doublets, K~J (k = 1,2,3,4, a 
= 1,2), and four singlets 

N,F(k) (k= 1,2,3). (3.D.1) 

As usual the projection of EI along the XI direction is 
written by E, 

E= xiEI • (3.D.2) 

(ii) The little group 

The five operators {R}= {E,N,F(k J} generate the little 
group Q. Their commutation relations are those of 

{R} = {E, N, F (k)} =' U(1) ® U(1)® SU(2) . 

The infinitesimal transformation of Q, 

M=1 +ipR, 

(3.D.3) 

(3.D.4) 

depend on the five real parameters p = {E , 'T1, cp(k)}. 

(iii) Basis vectors for W ~ 

The seven basis vectors for W ~ are 

T~~ = x~R, {R}= {E,N,F(k)}, 
(3.D.5) 

E (~' ~) E ' T 2~ = X ~ X I - U ~ I E I, T 3~ '" E ~ Ii X j E I • 

Under the little group transformations T~~ and T7~ 
transform as Singlets. Ti,,(k) transforms as a triplet un­
der the SU(2) and as a singlet under the two U(1). Final­
ly T:, 

T: = ( T ~ : T;) , 
T ~ - T 3~ 

(3.D.6) 

form a doublet under the E transformation and are sing­
lets under the second U(1) and SU(2). With the same 
convention as before 

- - - E - N - F(k) - A 
V~ -VETl~ +VNTl~ +VF(k)Tl~ +VAT~. 

The relevant invariant is 

I=VAVA . 

(iv) G~u and the Lagrangian 
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(3.D.7) 

(3.D.8) 

2c 3b 3c 4b 

20201 20101 20101 10101 

20101 20201 20101 20201 

QG 10101 101 0 1 Qe 

0 g2 0 g2 

! l_g2 1 l_g2 2 

1 
2 1 1 1 2 

Spherically symmetric G p have the same basis as W ~. 
Computing (2.6) one finds 

(3.D.9) 

with 

GE=I-1, GA"'-rEABVB+VEVA' (3.D.1O) 

Again the Lagrangian does not depend on the derivatives 
V E , 11 N' VF(k)' In fact, as seen in (3.D.1O), it does not 
depend on V N and V F(k) at all. The constraint equation 
on VE , 

VE =r(VAEABVB)/I, 

then enables one to write the Lagrangian 

1 • 
L = - -4 2 4 [(12)/41+ (I _1)a] . 

er 

(3.D.11) 

(3.D.12) 

This is in fact the Lagrangian of 't Hooft's original paper. 

(v) Pointlike solutions 

The maximal asymptotic solutions of (3.D.12) corres­
pond to 1= 0 and 1= 1, respectively. See Table X. The 
eigenvalues of G (3.A.40) are 

(3.D.13) 

Again the strength is defined by (3.A.42). 

TABLE X. The two maximal solutions (a-b) for the (4- 2 EB 1 
EB 1) spherically symmetric Gil-V [Q =SU (2) 0 U (1) 0 U (1»), The de­
fining equations are: for 1 (3.D.8), for G (3.A.27), (3.A.40), 
for gl (3.D.13), for fa (1.9), and for glot (2.21); for m 0 n see 
Table I. 

a b 

I 1 0 

gl 0 1 
2 

g2 0 1 
-2 

g3 0 0 

g4 0 0 

QG 4 201 0 1 

gtot 0 l 
2 

unit e-2 
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TABLE XI. The two solutions (1-2) for the (4- 2 E£i 1 EB 1) 
spherically symmetric Higgs fields. The defining equations 
are:for4>i (3.D.16), forI (3.D.S), forg 2 (2.20), and for 
Qop (1. S), for m 0 n see Table I. 

1 2 

4>i 0 arbitrary 

Ii arbitrary arbitrary 

,,2 0 arbitrary !J - 1)2 b 

fop 4 l1Z11Z1 
could be larger 

(vi) Higgs scalars-potential 

The 15-plet of spherically symmetric Higgs scalars is 

(3.D.14) 

The four eigenvalues of <I> are written in terms of <I> E, 

<l>N' and 

<I> F = (l2 <I> ilk)) 1/2 (3.D.15) 

as 

<1>1 =~(±<I>E +<1> N), CP3=~(-<I>N±<I>F)' (3.D.16) 
2 4 

As usual a maximal potential corresponds to equalities 
between the eigenvalues [see (3.A.45), (3.A.46)]. 

(vii) Higgs scalars-kinetic terms 

The covariant derivatives of <I> have the same basis 
vectors as W ~ (3.D.7). Hence 

(3.D.17) . . 
DE=<I>E' DN=<I>N' 

(3.D.18) 

As is seen from the term DF(k) , the minimization D~<I> 
= 0 implies in particular that VF(k) and <l>F(k) be parallel 
vectors. From DA, one sees that <l>E must be zero un­
less 1= O. Discussion of these cases and comparison 
with the extremal G~u are given in Tables XI and XII. 

IV. CONCLUSION 

By treating explicitly the problem of finding spherical­
ly symmetric monopoles in 8U(4) we have obtained the 
following results: 

(a) We have shown the relevance of the new group we 
have introduced, the little group Q which transforms 
spherically symmetric solutions into spherically sym­
metric solutions. Its use simplifies the problem great­
ly. In 8U(2) and 8U(3) this little group was always Abe­

lian. 3 Here in some cases it is non-Abelian. 

(b) We have found all the possible embeddings of 8U(2) 
into 8U(4) and in each case we have found a discrete set 
of asymptotic G~ u's decreasing as 1/r2. This is without 
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reference to the existence or transformation properties 
of the Higgs fields. 

(c) In all instances we see that the eigenvalues of G 
[see (3.A.27), (3.A.40) and the tables] turn out always to 
be integers or half-integers. This is a particular case 
of results4 which shows that the possible values of the 
magnetic poles are related to the Cartan subalgebras. 
The direction and magnitude of the poles correspond to 
weights of the dual group. Here the dual of 8U(4) is 
8U(4)jZ(4) and hence the results follow. 

(d) Contrary to 8U(2) and 8U(3) the scalar product of 
G~ with a 15-plet (adjoint representation) of asymptotic 
Higgs vectors does not necessarily quantize the charge. 
The strengths g and g.L (see the tables) of the component 
of G parallel and orthogonal to <p may vary continuously 
between prespecified limits. 

The discussion of the smoothed out solution and of the 
related stability has not been given here. The discus­
sion at the end of Ref. 1 applies mutadis mutandis. 
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APPENDIX A 

We here collect some formulas related to case A. 
The commutation relations between E i , F jj , and N jjk 
are 

lEj, E j ] = iEijkE k, 

[Ej,K jk] = i(EjJlK lk +Ejkl Kjl ), 

[Ej,N)kl] = i(EijmNmkl +EjkmNjml +EjlmNjkm), 

(AI) 

(A2) 

(A3) 

[Kkl,KmnJ = 35i (t OkmEI.T)ET+ i(t EkmTl\'w) , (A4) 

[Kkl.Nmnp] = i- (±: EkmTOI.KTP) 

(A5) 

TABLE XII. The correspondence between the solution for GIJ,V 

and 4> in the (4- 2 (71 6 1) case. See Table ill for notation. 

1 a-b 2a 2b 

Qop 4 101 0 1 101@1 

QG see Table X 4 2@1@1 

Qs fG fop Qop 

g2 
/ 0 g2 

unit e"2 

gi 0 
I ., 
2 -g" 

unit e-2 

glot 
unit e-2 see Table X 0 
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(A6) 

In these formulas:6 n means the sum of the inequiva­
lent permutations on the indices needed to obtain the 
symmetry of the left-hand side, n is the number of 
terms in the sum. The traces of the matrices are 

Tr(E i Ej )=50ij , (A7) 

Tr(K jjK. I ) = 3(01k OJ I + Oil Ojk) - tOij Okl' (A8) 

Tr(NjjkNlmn) = 1(t Oil OJ mO •• ) - r,(t Oij Ou Om.). 

(A9) 

The cross traces between E, F, and N are zero. 

With (3 .A. 9) and (A 7)-(A9) one finds the norms of the 
basic vectors 

W ~ = wf 1'f~, 
Tr(W ~W~) = 5(W~)2 +4(W~f +-t(W~)2 

+lO[(W:Y + (W;)2] +6[(W:r +(Wf)2] 

(AIO) 

For T;,A) and T~AB) the norms are respectively 4 and 6. 

APPENDIX B 

We here collect some formulas related to the case B. 
The commutation relations between Z, E i , K j , N j , and 
F jj are the following: 

[Ej,Z] =0, 

[Ej,Nj ] =iE,jk N., 

[E"Fj .] =i(EjjIFlk+EjkIFjl)' 

lZ,K;] =4iN" 

[Z,N.] =-4iK i , 

[Kj,K j ] =[N j , N j ] = iEjjkE k , 

[Kj,Nj ] =-2iFjj+1Jio jjZ, 

[K"Fkl ] =~i(okjNI+OljNk-tO'INj), 

[L j , F kl ] = -~i(o'j K I + OUKk - ~Ol.xl)' 

[FkI,Fmnl =ti(t O.kElmoEo)' 

The traces are 

2189 

Tr(Z2)=12, 

Tr(E j E j )=20 jj , 
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(Bl) 

(B2) 

(B3) 

(B4) 

(B5) 

(B6) 

(B7) 

(B8) 

(B9) 

(B10) 

(B11) 

(B12) 

(B13) 

(B14) 

Tr(K"K j ) = 20 ij , 

Tr(N j , N j ) = 20 jj , 

Tr(F jj F kl ) = t(O'k ojl + 0Il Ojk - to'j 0kl)' 

(B15) 

(B16) 

(B17) 

The correspondence between the natural tensors T:~, 
T;~ [(3.B.4)], and T!,B,C [(3.B.6)] is 

T:~ = i(T~,2,2 + T~2.1), T;p = _i(T~,I,2 + T';;I,I), 

T:~ = T~·1.2 _ T2/,\ T~~ = Tlp,2,2 _ T2p,2,1, 

T:p = T~I,1 + T~,,1.2, T~p = Tl~.2,1 + T2p,2,2, 

i i 

(B18) 

TF = __ (Tl,I,I_T2,I,2) TF = __ (Tl,2,I_T2,2,2) 
2p 2 p p' 3~ 2 p ~. 

The norm of W p with the natural tensors [see (3.A.ll) 
and (3.B.4)] is 

Tr(W ~Wp) = 12(w~)2 + 2[ (W~)2 + (W~)2 + (W~ )2] 

+ %<W;J2 + 4[ (W:)2 + (W;)2 + (W:)2 

+ (W~)2 + (W:)2 + (W~)2] + (Wf)2 + (wf)2. (B19) 

For T~' B, C the norms are 

(B20) 

APPENDIX C 

We here present some formulas related to case C. 
The generators E j , K(k), and N;k) take the simple form 

E j =~1®ai' 

K(k) =~ukQ91, 

N\k)=t UkQ9U j, 

(Cl) 

(C2) 

(C3) 

in terms of the Pauli matrices U i and of the unit 2 x 2 
matrix 1. The commutation relations between these 
generators are 

[EbEj] =iEjjkE k , 

[E j,K(k)] =0, 

[Ej,N}k)] =iEjjkN~k), 

[K(k),K(il] =iEklmK(m), 

[K(k),N\Il] = iEklmN\m), 

[Nlk) N(ll] =i(OkIE" E +0. EklmK(m) 
, , ; "1m m 1j • 

The nonzero traces are 

Tr(E jE;l = Oij , 

Tr(K( ilK(')) = Oln, 

Tr(N(k)N( I)) = OklO. 
i j Ii . 

(C4) 

(C5) 

(C6) 

(C7) 

(C8) 

(C9) 

(ClO) 

(Cll) 

(Cl2) 

In the natural basis (3.C.7), the norm of W p [(3.A.ll)] 
is 

Tr(W pWP) = (W~)2 + (W~( 11)2 + (Wf(1»)2 

APPENDIX D 

+2[(w:)2 + (W;)2 + (W:(k»)2 + (W~(k»)2] . 

(C13) 

Here are some formulas related to case D. The non-
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zero commutation relations between E j, N, and F(k) 

are 

[E j,E}] = iEijkEk' 

[F(k),F(l)] =iEklmF(m). 

The nonzero traces are chosen as 

Tr(EjEj)=~ojj , 

Tr(N 2
) = 1, 

Tr(N(k)N( 0) = tokl. 

(D1) 

(D2) 

(D3) 

(D4) 

(D5) 

The norm of W ~ (3.A.ll) in the natural basis (3.D.5) is 

APPENDIX E 

There are conflicting reasons for the two choices of 
basis vectors T ~'s and for the basis of the little group 
generators. Let us make some remarks. 

(a) in the natural choice for T~, 5 p turns out to have 
always the same form, 

Sp=(1/er)T:p ' (El) 

The T ~ becomes interesting once S p has been subtract­
ed. 

(b) For case A in the natural choice E,K,N are or­
thogonal in the sense 
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Tr(P ,P ') = CipOpp •. (E2) 

This is not the case for A, B, C since it is easy to veri­
fy that 

tr(AB) = -1. (E3) 

(c) In view of Eqs. (3.A.33), (3.A.34), (3.A.8) it looks 
as if 

(E4) 

would be better tensor combinations to use. However 
the corresponding tensors T~lA) and T(plB) would then 
not be orthogonal. 

tE. Corrigan, D. Fairlie, J. Nuyts, and D. Olive, Nuc!. Phys. 
B 106, 475 (1976). 

2't Hooft, Nuc!. Phys. B 79, 276 (1974). 
3For SU(2), the little group contains E only [(1.7)]. For SU(3), 

the little groups in the 3-3 case has a U(l)®U(1) structure, 
in the 3- 2iBl case a U(l)®U(l)®U(l) structure. In all these 
case 1 is Abelian. In SU(4) for the first time / can be non­
Abelian. 

4F. Englert and P. Windey, Phys. Rev. D 14, 2728 (1976). 
We thank these authors for showing us the general theorem 
they had found prior to publication and for discussion about 
weights and roots of the dual group. Related material is also 
found in D. Olive, Nucl. Phys. B 113, 413 (1976) and in p. 
Goddard, J. Nuyts, and D. Olive, Nuc!. Phys. B 125, 1 
(1977), where direct use is made of/i/}' See also A. 
Goldhaber and D. Wilkinson, "Spherically symmetric mono­
poles," Stony Brook (1977-30). 
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Stationary gravitational fields of a charged perfect fluid 
S. Kloster and A. Das 
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(Received 30 December 1976) 

Einstein's field equations which include electromagnetism are investigated when the metric admits a 
timelike Killing motion and the source is a charged perfect fluid under isometric motion. It is shown that 
the pressure must necessarily be a function of the electrostatic and gravitational potentials. A class of 
solutions is found under the following simplifying assumptions: (i) The pressure is a constant, (ii) the 
Lorentz force vanishes, and (iii) the magnetic and twist potentials are functionally related. In this class 
the ratio of (7" /(p + 3 p) is a constant and this resembles an equilibrium condition. Finally a four-parameter 
group (maximal) is supplied which can generate new solutions of this class. 

1. INTRODUCTION 

In this paper we investigate the stationary electro­
gravitational field equations in presence of a perfect 
fluid in isometric motion (that is, the fluid motion is 
along Killing direction). From the equation of motion in 
this case, one can show that the pressure must be a 
function of electrostatic and gravitational potentials, 
or in other words an "equation of state" must exist. If, 
moreover, the condition that a/(p + 3p) is constant is 
stipulated (this resembles an equilibrium), then the 
pressure can be specified further. 

Som and Ray Chaudhuri,1 and Misra, Pandey and 
Srivastava, 2,3 have shown that the ratio alp is a constant' 
for a stationary perfect fluid under the following three 
assumptions: (i) p = 0, (ii) the Lorentz force vanishes, 
and (iii) the magnetic and twist potentials are functional­
ly related. This result is generalized here (Sec. 3) to 
the constant pressure case: (i') p = const, where it is 
found that a/(p + 3p) is constant. 

Under the assumptions (i'), (ii), and (iii), it is shown 
that the field equations reduce to the equations for 
cosmological dust in isometric motion,4 and hence any 
such solution can generate a charged perfect fluid solu­
tion. As a corollary, every static vacuum metric can 
generate a stationary charged dust solution. Thus we 
have generalized the results of Ehlers4 for the un­
charged case to the charged case. 

Another class of solutions is found which depends on 
solutions of Laplace's equation in a three-dimensional 
space of constant negative curvature. A constructive 
method is given for finding these solutions. However, 
all of these solutions have some unphysical aspects. 

Finally a table is furnished to show how new station­
ary charged perfect fluid solutions can be derived by 
the action of a four-parameter group on already known 
solutions. 

2. FIELD EQUATIONS 

In a previous paper, 5 it was shown that when a 
charged perfect fluid is in isometric motion one can de­
fine two complex potentials r = eW 

- ~IC j q,j2 + iX and 
q, =A + iE, where A,I = - F41 and B,l =Ftl' The metric 
is given by 

(2.1) 

with To< = - e2w curl(ao<) and X,o< = To< + ~iIC(q,*q"o: - q,q,:,.). 
Throughout this paper it is assumed that no monopoles 
are present; i. e., a* = a. Then the field equations5 

become 

ao<~ ;Ro<~ - IC e-w Re(q"o<q,:~ + 2pg",~) 

+ ~e-2w Re(r:", + ICq,q,:",)(r,~ + ICq,*q"S) = 0, (2.2) 

1I;~2 q, - e-Wq"", (r'''' +IC q,*q,.o:) 

- e-w/2 fu a = 0, (2.3) 

/l ;~2r - e-wr,o«r'o< +ICq,*q,'''') 

+ IC(- 3p - p + e-w/2 fu aq,*) = 0. (2.4) 

The number of unknowns is 13 = 6 (gaa) + 2(r) + 2(q,) 
+ 1(p) + l(p) + l(a), and the number of equations in the 
system (2.2)-(2.4) is 13 = 6 (ao<~) + 2(1)) + 2(/l) + 3 (co­
ordinate conditions). It would appear that the equation 
of state is already determined implicitly in this 
problem. 

This fact is explicitly shown by the equation of motion6 

p =~(p+p)w _fue-w/2aA 
.J.L 2,,,,, .fJ.' 

which shows than an "equation of state" must exist, 
namely, 

P=P(A,w), 

P,A = - fu e-wI2 a, 

P,w=~(p+p). 

(2.5) 

(2.6) 

Furthermore, if a condition analogous to equilibrium 

a/(p + 3p) =b = const (2.7) 

is introduced, then (2.6) yields a partial differential 
equation 

2bfue-w/2p w+P A+2bfue-w/2p=0. (2.8) , , 
The above equation can be integrated by using the 
characteristic curves7 to obtain 

p = e-w f(fu bA _ ew/2 ), (2.9) 

where f is an arbitrary differentiable function of fu bA 
_ ew/2 • 

3. EXACT SOLUTIONS 

Solutions are obtained by making the following two 
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assumptions: 

(i') p = const and (ii) A = o. 
The first assumption means that the mechanical force 
vanishes, while the second means that the Lorentz 
force vanishes. By the equation of motion (2.5), w must 
be constant, say w = 2 Inc. 

Now we have q, =iB and r =c2 -11(B2 + iX; 

hence r'" + I(q,*q,'" =iX'''. Equation (2.3) becomes 

iA2B + c-2B,,, X'" =c-1 fua. (3.1) 

Thus we must have, from the imaginary and real parts, 

(3.2) 

and 

(3.3) 

By using (3.2) and (3.3), Eq. (2.4) can be reduced to 
the following two equations: 

A 2X = 0, (3.4) 

- I(B,,,B'" + c-2X,,, X''' = 1(3p + p), (3.5) 

Finally, Eq. (2.2) becomes 

R,,~ = c-21(B, "B. ~ + 2pg "'~) -1c-4x." X.~ • (3.6) 

This is a generalization of Eq. (2.29) of Ehlers. 4 

We now assume that X and B are functionally related. 
Because of (3.2) and (3.4), this must be a linear rela­
tionship, 3 which we write as 

x=acf2i{B, (3.7) 

where a is a real constant (a possible additive constant 
has been absorbed by a gauge transformation). Then 
the system of Einstein-Maxwell equations (3.2)-(3.6) 
is reduced to the following: 

3p + P = (2a2 
- 1) B."B·", 

R,,~ = c-21(l(1 - a2
) B "B " + 2pg,,~J. . ,~ 

(3,2) 

(3.3') 

(3.5') 

(3.6') 

Furthermore, Eq. (3.2) follows from (3.6') by using 
the contracted Bianchi identity in V3• Note that 

a 2a 
--3- = ~1' a constant. p+ p a-

(3.8) 

To obtain solutions of this system, we need only 
solve Eq. (3.6') since (3.3') and (3.5') may be regard-
ed as definitions of a and p. 

Theorem 1: If - g,,~ dx" d~ + Ia" dx" + dt)2 is the local 
metric of a cosmological dust in isometric motion with 
twist potential X and cosmological constant A, then 
- c-2 (g,,~ dx" dx~) + c 2 (a" dx" + dt)2 is the local metric 
of charged perfect fluid in isometric motion with twist 
potential X = ac2 (a2 - 1 )-1/2 X, magnetic potential 

B=c[21(a2-1)]-1I2 X, charge density a=2aB."B·", 

and pressure p = C21(-1 A. 

Proof: If we put the above values into Eq. (3.6'), we 
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obtain 

(3.9) 

But this is just the equation for cosmological dust in 
isometric motion, as given by Eq. (2.29) of Ehlers. As 
examples of such solutions, we mention those of 
Wright. 8 

When A = 0, (3.9) is the static vacuum equation. 
Hence we obtain the following, 

Corollary: If - e-X(g,,~dx" d~) + eXdt2 is locally static 
vacuum metric, then - C-2(g,,~ dx" d~) + c 2(a" dx" + dt)2 is 
the local metric of a charged dust in isometric motion, 
with X and B as above and p = o. 

Another way to find solutions of (3.6') is to put a = 1, 
giving 

(3.6") 

This is just the equationS for a space of constant curva­
ture - C-

21( p. Thus solutions can be obtained as follows, 
Choose any nonnegative constant value for p. The as­
sociated V3 is the space of constant curvature - c-21( p. 
Now Eq. (3.2) is not an automatic consequence of 
(3.6") because it has become uncoupled. However, 
there is no difficulty in finding solutions of (3.2). 

The metric of the V3 can be written 

(3.10) 

where k = C-21( p. Equation (3.2) becomes 

(sinh2rB. T).T + (sin8)-1(sin8 B. 8).8 + (sin8)-2B.</></> = O. 

(3.11) 

Using separation of variables, the following general 
solution of (3.11) is found: 

B(r, 8, 1» = 6 O'zmfz(R) Yt(8, 1» + c. c., (3.12) 
Z.m 

where R = cothr, fz(R) = (R2 - 1) P;(R), P z is the lth 
Legendre polynomial, Yz

m(8, 1» =P;"(cos8) elm</> , the 
spherical harmonics, and the C\' 1m are arbitrary complex 
constants. 

Note that B R, B 8, and B 4> all involve power series 
in R, so ther~ mu;t be som~ radius R> 1 in which all 
three converge. Thus these three functions remain 

TABLE I. a and d are arbitrary real parameters and 6 is an 
arbitrary complex parameter. 

rotational electromagnetic 
scale gauge gauge 

r' a 2r r tid r - 2Krl<P - 2K Iii I 2 

<I> , a <I> <l> <P 426* 

p' a 2p p p 

p' a 2p p p 

u' a 2u u (J 
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finite in the limit (R -1+). But 

B,,,,B'''' =k(R2 _1)[(R2 -1)(B,R)2 

+ (B,e)2 + sin-28 (B,qYl, (3.13) 

so B,,,,B'''' -0 as r- oo • Then Eq. (3.5') shows that if 
p is nonzero, p will become negative as r - 00. 

In conclusion, we mention that all of these solutions 
may be subjected to the four-parameter group of trans­
formations5 which preserve charged fluid solutions 
having no monopole currents. These transformations 
are generated by the basic transformations in Table I. 
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The J V·particle Lee model is proposed. The file scattering amplitUde, the ve scattering amplitude and 
the nee production amplitUde are evaluated. The integral equation in the ve sector is solved. The usual 
deductive method cannot be applied here to solve the integral equation of the ve sector. A nondeductive 
method is applied to solve the integral equation. The solution obtained correctly reduces to the solution of 
the ve integral equation of the ordinary Lee model, whenever any two bare interaction constants in the 
Hamiltonian are switched off. The two resonances that appear in the Ne sector, again appear in the ve 
sector at the same energies. 

INTRODUCTION 

A Lee model with more V particles is more interest­
ing mathematically than the ordinary Lee model. Re­
cently the generalized Kallen-Pauli (GKP) equation in 
the ve sector of the 2V-particle Lee model was solved.1 

While generalizing the 2 V -particle Lee model to any 
n V - particle Lee model one comes across certain re­
strictions on the bare masses and the bare coupling 
constants. These restrictions do not arise in the 2 V­
particle Lee model. Moreover the restrictions and the 
subtleties involved cannot be shown explicitly in the 
case of any nV-particle Lee model. 

The necessity of these restrictions and other related 
matters can be better appreciated if we work out the 
3V-particle Lee model in detail. In this model we can 
explicitly derive these restrictions [see Eq. (39) 1 and 
justify their necessity. Once we follow the 3 V -particle 
model closely, it is a simple matter to generalize the 
results to any 11 V-particle Lee model. 

In Sec. I the model is presented. In Secs. II and III 
the physical I V> state and the properties of the related 
functions are discussed, whereas in Sec. IV the N(J 

scattering amplitude is evaluated. The GKP equation 
and its solution are presented in Secs. V, VI, and VII. 
In the last two sections we evaluate the ve scattering 
amplitude and the Nee production amplitude. 

I. THE MODEL 

In this model there are three V particles and all of 
them are subjected to the elementary interaction V1 

=Ne, V2 =Ne, and V3=Ne. The bare parameters are 
adjusted in such a way that only one of the V particles 
is stable, and the remaining two appear as resonances 
in the Ne sector. The model is described by the 
Hamiltonian, H, where. 

3 

H =6 mj V;Vi + n1N N+N + Bwpa;ap 
i=l p 

+ B B/(Wp)Pi V;Nap 
p i=l 

+E 6/(Wp )};i ViWa;. 
p i=l 

(1) 

In Eq. (1), w; = J1.2 + p2, J1. being the mass of the e par­
ticle, and p is its linear momentum. Morevoer m1, 111 2 , 

and n13 are the real bare masses of V1 , V2 , and V3. The 
bare interaction strengths };1, g2, and 1t3 are real. In 
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the Hamiltonian the mass of the N particle 111 N will be 
set equal to zero, In Eq. (1), /(w p) is given by 

(2) 

The function u(wp) is so chosen as to make all the rele­
vant integrals finite and so as not to allow any ghost 
states. Moreover S1 is the volume of quantization. The 
equal time commutators obeyed by the field operators 
are 

lap, n;. J = o(p - p'), 

[Vj, V;] = 1, where i = 1, ... ,3, (3) 

and 

All other commutators between the field operators 
vanish. In Eq. (3) the first commutator should be taken 
as a Kronecker delta when the volume of quantization 
is finite. 

II. THE PHYSICAL IV) STATE 

The lowest sector is spanned by the physical I V) 
particle state and the N8 scattering states. We choose 
the stable I V) to have a physical mass equal to zero 
as in the 2V-partic1e model. The physical I V) state can 
be written as a linear combination of the bare states of 
the sector and we get 

3 

I V) =~ a j v;1 0) + 6¢1(wp )N'a; I 0). 
i=l P 

The Schrodinger equation, 

HIV) =E!V), 

yields, 

and 

(E - 1111) a 1 -};1 L;/(Wp )¢l (Wp ) = 0, 
p 

(E - 1112) a 2 - f{2 Lt/(Wp) ¢1 (Wp ) = 0, 
p 

(E - m 3)a3 - f{3 Li/(wp )¢1(Wp ) = 0, 
p 

In the above equations we have taken the phYSical 
mass of I V) equal to E. Subsequently we will set E 
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(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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equal to zero. Inserting Eq. (9) into Eqs. (6)-(8) and 
taking the determinant of the coefficients of 0:1 , 0:2, and 
0:3 equal to zero, we obtain, 

where 

H3(E) = (E - m1)(E - 1I12)(E - m 3) 

+ a3(E)I1 (E). 

In Eq. (11) we have 

a3(E) =gf(E - 1112)(E - 1113) 

(10) 

(11) 

+ ~(E - 1I13)(E - 1111) + ~(E - md(E - 1112), (12) 

and 

I (E) - 1 1~ pu2
(w) d 

1 -~4 E w. 
" "w-

(13) 

By setting E = 0 in Eq. (10) we obtain the eigenvalue 
condition corresponding to a I V) state of physical mass 
zero. The eigenvalue condition is equivalent to the fol­
lowing requirement: 

(14) 

The normalization of the physical I V> state is equi­
valent to the following requirement: 

_1 f~lpU2(W) I d 
+4 2 ~ W. 

" " w 
(15) 

It should be noted that the right-hand side of Eq. (15) is 
a positive real constant since gl, &, g3' mb mz, and 1113 
are all real parameters. 

We define a function H;(w) where 

(16) 

We follow the convention that H;(w) =H3 (w ± if.). In Eq. 
(16), a3 (w) can be obtained from Eq. (12) by writing w 
for E. The function H;( w) = 0 for w = 0, as required by 
the Schrodinger equation. We introduce another func­
tion C;(w), where 

C +( ) _ C ( .) H 3 (w + iE) 
3 w - 3 W + ZE ( ) a3 w 

Since H 3(0) = 0, we require that 

C3 (0) = O. 

(17) 

(18) 

h;(w) = ~a2wz - W[(1111 + mz + m 3)a1Gz + m1 m2m 3] 

+ ~a2(11111112 + 11121113 + mSnl1) - (~ + Gz)mlm2m3 

1!~ p' 2( ') +~ ,~w. dw'. 
4" " w (w - w - tE) 

(20) 

In Eq. (20) the two constants al and a2 are given by 

gf(111z + 1113) + ~(1113 + ml) + ~(ml + m2) +.;q 
~ = 2(gf +<rl + ~) 

(21) 

and 

(22) 

with 

q = [gf(111Z - 1113)]2 + ~(m3 - 1171)]2 + W(1111 - 1f12)]2 

- 2&I~(1112 - 1f13)(m3 - 1111) - 2g2~(ms - 1111)(1111 - 1112) 

- 2g2srl(ml - m 2)(m2 - m s)' (23) 

It will be quite useful to note tli.e following relations 
which can be readily obtained from Eqs. (21), (22), 
and (23): 

gf(m2 + ms) + ~(m3 + ml) + ~(m1 + 111 2 ) 

(gf + ~ + Ks) (24) 

gf1112m(J~11131111 + Ksmlni2 
a1 a2 ::2 ::2) . 

1 + b2 + b3 
(25) 

From Eq. (23) it is clear that q is not a perfect 
square. Hence the two constants al and Gz can have com­
plex values as well. This must be clear from Eqs. (21) 
and (22) where the square root of q occurs. We can 
always choose the real bare masses and the real bare 
coupling constants in such a way that ~ and az are 
real. Even if ab and Gz are complex, they are also 
complex conjugates of each other [see Eqs. (21) and 
(22)]. Hence the quantities ala2 and (al + a2) are always 
real. That this is so is also evident from Eqs. (24) and 
(25). 

In Table I we give the values of al, az, (al + a2), and 
~a2 when one of the bare interaction constants is set 
equal to zero with the remaining two interaction con­
stants being nonzero. The table is self explanatory. 

TABLE I. 

In order to insert the requirement of Eq. (18) into Eq. if '" 0 
(17), we first find C3 (0) from Eq. (17) and then subtract ----------------------
it from C;(w). This yields gi=o 

(19) 

where 

2195 J. Math. Phys., Vol. 18, No. 11, November 1977 Cvavb. Chandra Raju 2195 



                                                                                                                                    

In Table I, we use the symbols wij , where 

iiJ;M + i;m i 
wij -2' 

i + Jij 
(26) 

It proves very useful to define a renormalized charge 
through Eq. (20). To this end, we put w = 0 in Eq. (20). 
This yields 

h3(0) = alaZ(JJlz111 3 + 11111112 + 1111JJl3) - (al + a2)ml1112111 3 

(27) 

We take 

(28) 

where "K' is known as the renormalized charge. Com­
paring Eqs. (15), (27), and (28) one easily finds that 

(29) 

Whether a1 and az are real or complex, If is always 
real and positive. From Eq. (15) we know that the 
right-hand side of Eq. (29) is a positive real constant. 
Moreover in Eq. (27), a1 and a2 occur in the combina­
tions a1a2 and ~ + a2. As mentioned earlier, when ~ 
and a2 are complex, they are also complex conjugates 
of each other. So the expression given by Eq. (27) is 
always a real quantity. 

We now re-express h;(w) of Eq. (20) in such a way 
that the requirement of Eq. (28) is automatically taken 
care of. Thus we have 

h;(w) =h;(w) - h(O) +;? (30) 

In Eq. (30) we use Eqs. (20) and (27) for the first two 
factors on the right-hand side and simplify it. We add 
1/ K to the resulting expression. This yields 

where 

B1 ::= [(a1 a2)2 - a1 a2(1n11112 + 11121113 + 1n31nd 

+ (al + a2) 1111 JJl21n3]/(gf + tfz + ~)(alaz)2 

and 

B2 = [ala2(al + a2)(111 1 1112 + 1n 2JJl 3 + 1n 3111l) + ala2111l111 21113 

- (~a2)2(ml + 1112 + 111 3) - (al + a 2)2 111l 111 2111 3 ) 

(31) 

(32) 

X [(gf + ~ + ~)(~a2)Z)-1. (33) 

It should again be noted that B1 and B2 are always real 
whether ~ and az are real or complex, since ~ and a2 

occur in the combinations ~a2 and (~ + az) in B1 and B2. 

In Table IT the values of Bl and B2 are given when one 
of the bare interaction constant out of the three is set 
equal to zero, with the remaining two interaction con­
stants being nonzero. The table is self explanatory. 
The symbols w iJ are given by Eq. (26). 

2196 J. Math. Phys., Vol. 18, No. 11, November 1977 

III. THE PROPERTIES OF THE FUNCTION h+3 (w) 

Henceforth whenever we refer to the function h;(w) 
we mean Eq. (31) only. By C;(w) we mean wh;(w). The 
function h;(w) has simple poles at w = al and w::= a2 • The 
function h;(w) is known as a twice subtracted function. 
In fact, if we take ~ = 0, the function h;(w) reduces to 
the function h>(w) of Ref. 1. The function h>(w) of Ref. 
1 is given in Appendix B here. With the help of Tables 
I and II we can easily show that h;(w) reduces to the 
following function whenever ,cl::= 0: 

> 1 [ J; '2 WB{ J;,zw f'" p
I
U2(W

/
) j 

h2(w)=-::t2" 1-( )+4=2 12( 1 • )dw 
J; W 23 - W 7T "w W - W - t E 

where 

J;,z = (<l!~2 + <l!3R"3)2 

and 

B' 1 
(W23 - JJlZ)(W23 - 111 3) 

(?z + ~)W~3 

(34) 

(35) 

(36) 

The function h;(w) is the twice subtracted function that 
we would obtain in the 2V-particle Lee model with bare 
interaction constants K2 and K3, and with bare masses 
1nz and JJl 3 • In an analogus manner, one can easily show 
that the function h;(w) reduces to a function similar in 
"content" to the function h;(w) of Eq. (34) whenever 
~ = O. So the function h;(w) reduces to the twice sub­
tracted function of the 2V-particle Lee model whenever 
anyone interaction constant, out of the three bare in­
teraction constants, is switched off. 

In Ref. 1 we have shown that the twice subtracted 
function of the 2V-particle Lee model reduces to the 
twice subtracted function of the ordinary Lee model, 
whenever one of the interaction constants, out of the 
two is set equal to zero. From the foregoing discus­
sion, it follows that the function h;(w) reduces to the 
following function of the ordinary Lee model, whenever 
any two of the bare interaction constants, out of the 
three, are switched off: 

> 1 [ ,~w f'" p'U
2
(W') d 'J 

Yl(W) = Ko 1 +4Ji2 " w/2(w' _ W _ iE) W , (37) 

where 

TABLE II. 

(W23 - m2) (W23 - m3) 
(g~ + g§)W~3 

(W12 - ml)(w 12 - m2) 
(~ +,il)Wf2 

-B2 

1111 (W23 - m2) (W23 - 1113) 

Crl+gpW~3 

1112 (W13 - ml) (W13 - m3) 
(if +g~)wL 

m3(W12 - ml) (W12 - m2) 
(gi+gp wf2 
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(38) 

In Eq. (38) there is no summation on i. If ~=O=rl 
theni=l inEq. (38). On the other hand, if.ts=O=gf, 
theni=2inEq. (38). Similarly, i=3, ifgf=O=Kz. 
The constant go is known as the renormalized charge. 
The function gi(w) is the twice subtracted function of 
the ordinary Lee model. In Refs. 2-5 the authors have 
used once subtracted functiono 

We adjust the bare parameters of the 3V-particle 
Lee model in such a way that Gt < Jl and a2 < Jl. This 
would enable us to find the solution of the integral equa­
tion in the VB sector. Since Jl is a real number we re­
quire that at and a2 must also be real. The constants 
Gt and a2 can be real if and only if 

q'" O. (39) 

There are many free parameters in the theory, and 
we can always satisfy the condition imposed by Eq. (39). 
For example, Eq. (39) can be reduced to the following 
requirement: 

{cl(m2 - 1113) - Kz(11I 3 - 1111) + Ka (111 1 - 11I2)}2 

'" 4Rf~[m2ml - rn~ + 11131/12 - n1311111. (40) 

In Eq. (40) if we take 1112 negative, and nil and 1n3 posi­
tive, the right-hand side of Eq. (40) will be a negative 
number whereas the left-hand side is a positive number 
and hence Eq. (40) will always be true. In a similar 
manner we can obtain several other conditions analo­
gous to Eq. (40) from Eq. (39), by a proper elimination 
of the parameters involved. The point is that the basic 
requirement of Eq. (39) can always be satisfied since 
we have six free parameters at our disposal, and the 
number of restrictions on them are less than six. Re­
strictions of the type of Eq. (39) are not at all neces­
sary in the 2V-particle Lee model. Such restrictions 
must also be present in any nV-particle Lee model with 
n"> 3. In general it will not be easy to derive conditions 
of the type of Eq. (39) for any nV-particle model, with 
n :' 3. 

Suppose ql/2 is not real. Then Gt and a2 will be com­
plex numbers. What is the significance of these com­
plex numbers? Do they have anything to do with the 
Lee-Wicks

,7 suggestions? These questions require a 
closer study of the model. For the time being we ig­
nore these questions, and assume that ql/2 is real. 

The function h;(w) of Eq. (31) has a branch point at 
w = Jl. We attach a cut from w = Jl to co. 

The function h;(w) of Eq. (31) can be re-expressed 
as 

(41) 

where 

- +( 1 ( g2w 1~ p'U2(W') ,) S'3 w)=~ 1+0 12( 1 . )dw . 
K 1T" W W - W - zE 

(42) 

The function 9;(w) of Eq. (42) is Similar, in so far as 
its analytical properties are concerned, to the function 
g;(w) of Eq. (37). The difference lies only in the con-
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stant factors g2 and,rl. It will be useful later to define 
a function K;(w), where 

K;(w) = wg;(w). (43) 

From Eqs. (31) and (42) we easily find that 

Imh;(w) =Img;(w) =-4
1 

Pli(w)B(w - Jl). 
1TW 

(44) 

From Eqs. (19) and (43) we observe that, 

ImC;(w) = ImK;(w) =p~2;w) B(w - Jl). (45) 

Moreover from Eqs. (31), (42), (19), and (43) we easily 
find that 

(46) 

and 

The integral representation for the inverse of the 
function h;(w) can be easily found with the help of the 
functions h;(w) and C;(w), where 

(48) 

and 

(49) 

It should be noted that the function h;(w) does not have 
any poles. This will be clear if we insert h;(w) from 
Eq. (31) into Eq. (48). Moreover the function [c;(w)l-l 
has a pole at w = O. Hence we find that 

1 tf 1 1~ [ 1 ] 1 I -+-=--+- Im-+-, , . dw 
Cd(w) GtGzw 1T" Cd(w) (w - w -IE) , 

(50) 

since 

(51) 

The relation in Eq. (50) can be verified by doing the 
integral in Eq. (50) as a contour integral. The infinite 
circle gives no contribution because of the form factor 
u(w) of Eq. (2). Multiplying Eq. (50) by w, we obtain 

1 g2 w f~( 1) 1 1 --=-+- Im-- dw 
~(w) Gta2 1T" C;(w /) (w' - W - iE) . 

With the help of Eqs. (52) and (48), one readily finds 
that 

(52) 

(53) 

Following Ref. 3, we can easily find an integral rep­
resentation for the function [g;(w) ]_1. Thus, 

1 .-.2 W i~( 1) 1 I --=g +- Im--- dw 
g;(w) 1T" K;(w' ) (w' - w - iE) . 

(54) 
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Whenever any two bare interaction constants are switch­
ed off, h;(w) and ~;(w) both reduce to ~;(w). The in­
verse of h;(w), given by Eq. (53), also reduces to the 
inverse of 0 i(w) whenever any two interaction constants 
are switched off (see Appendix C). However, to solve 
the integral equation in the ve sector we find it more 
convenient to use an algebraic representation for the 
inverse of h;(w). By a mere rearrangement of Eq. (41) 
we find that 

1 1 [ (W2
.H1+WB2)] 

Ii;(w) =0;(w) 1- h;(w) . 
(55) 

Whenever any two interaction constants are switched 
off, Bl and B2 would go to zero and we would find from 
(55) that 

1 1 1 
Ii;(w) - ~;(w) - ~i(w) . 

(56) 

The integral representation for [~-i(w) ]_1 is identical in 
form to Eq. (54), only we have to interpret If in Eq. 
(54) as g~, and K;(w) as Ki(w), where we have 

Ki(w) =w0i(w). (57) 

When w - 00 the functions Iz;(w) and q;(w) tend to two 
related but different constants. Anyway, we do not use 
these representations. 

IV. N8 SCATTERING 

Consider a state consisting of an incident wave 
}y+ 11;0 I 0> plus additional terms which in the asymptotic 
region reduce to outgoing waves only. This state is 
designated by I Ne;~. The energy of this state is wo, the 
incident energy of the e particle since 1J/N = O. The state 
vector in question can be expanded, 

3 

I Ne;n> = a; ,v+ 10> + 61\(po) V; i 0) 
I 0 j=l 

From the Schrodinger equation, 

HINe in
\ =w INe in\ PLY 0 pu/, 

one finds that 

and 

131 (Pu) =gl ('"-'0 - JIIz)('"-'o - 111 3}f(WO) [H;(wo) 1-1, 
i3 z(po) =gz('"-'u - 1J1 3 ) (Wo - 1111) f(wu)[H;(wo) ]_1, 

i3 3 (pu) =g3(w U - 1171)(wO - 11I 2)f(wu)[H;(w u) ]-\ 

( )_f(wo)f(wp) [c+( )1-1 
ap,PO-(wo_Wp+iE) 3

W
U • 

The He scattering amplitude is defined by 

= 6(p- Po) + 27Ti6(w - wo)T1(w O)' 

The T matrix in the Ne sector is given by 

T1 (w U) =-f(wo)[C;(w oll-1
• 

(58) 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 

(65) 

From Eq. (65) it is evident that T1 (w O) will be zero 
whenever the incident energy wI) has a value near or 
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around Clt or a2 • So in principle, from the Ne cross 
section and from the values of a1, 0z, B1 , and B 2, we can 
determine the masses of the two resonances. 

V. THE GKP EQUATION 

For the scattering of a e particle on a V particle we 
want an eigenstate of the total Hamiltonian of the form 

Ivein\=o+ IV)+lx+) 
Prl Po ' 

(66) 

with 

HI ve;~ = Wo I Ve;~). (67) 

The state I V> denotes the stationary eigenstate of the 
total Hamiltonian describing a phySical V particle of 
mass zero and 

3 

i X +) = 0 r J'j (p', po)V;a;, I 0) (PI>' 
i =1 

with only outgoing waves in 4;1, UZ, U'3' and ~;4' 

The Schrodinger Eq. (67) yields 

, ,£;g;/(wol/(w) 
(wu- w - IJlj)0-'j(p, Po) = --'--"-'-'--"---'--------"~'----'­

w 

and 

2(w o- w' - w)U.'4(p', p, Pu) 

3 

=~ t-r;[f(w) ~j(p', Po) +f(w')1'j(P, po)]· 
i=l 

(68) 

(69) 

(70) 

In Eq. (69) taking i = 1-3 we in fact obtain three equa­
tions for :11., ~'2' and <i-'3' We readily find from Eq. (69) 
that 

and 

g3 (w o- w - 1JI1), 
ifi3(p, Po) =~ ('"-, w m) zi!1 (p, Po)· 

.--.1 0 - - 3 

Inserting Eqs. (71) and (72) into Eq. (70), we obtain 

2(wo - ,"-,' - W + iE)i/J4(p', p, Po) 

=f(w)a3(w O - W
I )W1(P', Po) 

(71) 

(72) 

+f(w ' )a3(w O- w)~\(p,po). (73) 

In Eq. (72) the symbol a3 is given by the defining Eq. 
(12). Inserting Eq. (73) into Eq, (69) for :11., we easily 
find that 

g£;lf(w o)f('"-') 
w 

f( ) r f(w ')a3(wo- w
l
)zi!1(pl,Po)d3p' 

- W}(wl-wo+w)(WO-W'-1I12)(WO-W'-1I13)' 

(74) 

Let 
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(75) 

Inserting Eq. (75) into Eq. (73), we obtain 

C;(wo - w)rp(p, Po) 

1 (f( w ') ,f, (, ) d3 , 
=--;;:;- j-(w'-Wu+W-iE)'Y P,Po p. (76) 

As in the usual Lee model we assume that rp (p, Po) is 
a function of w only. Doing the angular integral in Eq. 
(76), we find that 

C;(wo - w)rp-(w, w u) 

=-1-11~ [I,mC;(w')] . tp-(w',wo)' 
w 1T JJ. (w - Wo + w - IE) 

(77) 

Let 

( ) _ l'vl(w, wol 
rp w, Wo - - ( ) . w wo- w 

(78) 

Inserting Eq. (78) into Eq. (77) yields the generalized 
Kallt~n-Pauli (GKP) equation in the 3V-particle Lee 
model, 

h;(wu - w)Ar(w, w o) 

= 1 + ~ f~ I~h;(w'). (;W-(w', wo) . ) dw'. (79) 
1T " (w - Wo - tE) w - Wo + w - IE 

VI. SOLUTION OF THE INTEGRAL EQUATION 

Like the celebrated Kallen-Pauli equation, the GKP 
integral equation given by Eq. (79) is a singular inte­
gral equation. The function lz;(wo - w) has simple poles 
atw=wU-(/l andw=wu-(/2' By dividing Eq. (79) 
throughout by h;(wo - w), we find that 

M-(w, wo) 

_ 1 (1+~ (~ Imh;(w') 
- h;(w o- w) 1T j" (w' - wo- iE) 

X M-(w', wo) I') 
1 • (W • 

W -WO+W-/E 
(80) 

Since the function [h;(w o - w) ]-1 has zeroes at w = wo-i1t 
and w = Wo - (/2 [see Eq. (53)], we observe that 

l\Ir(w,wu)=O for W=W O-(/l or W=W O-(/2' (81) 

Moreover, we know that, whenever any {WO oare 
interaction constants are switched off the function 
h;(wu - w) reduces to the function g;(wu - w) of Eq. (37) 
with w replaced by (wu - w) there. That means the GKP 
Eq. (79) reduces to the ordinary Kallen-Pauli (KP) 
equation whenever any two bare interaction constants, 
out of the three are switched off. In other words, the 
solution of Eq. (79) must reduce to the solution of the 
ordinary KP equation whenever any two bare interaction 
constants are switched off. Under these conditions con­
dition (81) should simply disappear. 

In a similar manner we note that the solution of Eq. 
(79) must also reduce to the solution of the 2V-particle 
KP equation (Ref. 1) whenever anyone interaction con­
stant out of the three is set equal to zero. 
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To solve the integral Eq. (79) we exactly follow the 
procedure outlined in Ref. (1). To this end, we rewrite 
Eq. (79) with the help of Eq. (41) as 

9;(wo - w)M-(w, wo) 

(w2B1 + wB2) 

(w _ (/l)(W _ (/2) M"'(wo, wo) 

1 w 1'" Imh;(w') M-(w', wo) d' + +- , . (' . ) w. 
1T ,,(w - Wo - tE) w - Wo + w - IE 

Dividing throughout by 9 ;(wo - w), we obtain 

M-(w, wo) 

x , w . M-(w', wo) d'J 
(w - Wo + w - iEJ 

(82) 

(83) 

We suppose that the first term on the right-hand side 
is known to us. By following Refs. 1 and 2 closely, the 
quantity inside the brackets divided by 9i(wo - w) can 
at once be written down. Thus, 

1 (1 w 1'" Imh;(w') M-(w', wo) d ') 
g;(wo-w) +11 JJ. (w'-Wo-iE)(W'-wo+w-iE) w 

( ) (Wo- w) fOO( 1) X 3(w', wo) , 
= C1 Wo + Im K +( ')' . dw. 

1T JJ. 3 W W - Wo + w - IE: 

(84) 

In arriving at Eq. (84) we have used Eq. (44). In Eq. 
(84) C1(W O) is a constant function of woo The function 
X 3(w', wo) is still an unknown function. It has a left-hand 
cut. 2 Inserting Eq. (84) into Eq. (83) and after a little 
rearrangement, we find that 

M-(w, wo) 

9;(wo- w) (C
1

(W
O
) + (wo;; w) 

hi(wo- w) 

xl'" X 3(w',wo)dw'I 1) 
JJ. (w' - Wo + w - iEJ m K;(w /) 

From Appendix B, we note that 

X 3 (w', wo) =C2 (wo) h+( 1 ')' 
3 WO- W 

(85) 

(86) 

where C2 (W O) is a constant function of w00 We hereafter 
suppress the arguments of the constants C1 and C2 • In­
serting Eq. (86) into Eq. (85) we readily find the solu­
tion of Eq. (79), 

M-(w, wo) 

_q;(wo- w) 
- h;(wo - w) 

where 

(C 1 - (wo - w)C~(wo - w» , (87) 

(88) 
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The solution will be complete if we can determine the 
constants C1 and C 2 • Once the solution is found the con­
stants (/1 and (/2 may be allowed to take values higher 
than fl. 

VII. EVALUATION OF THE CONSTANTS 

To evaluate the constants C1 and C2 we need two 
equations connecting them. We evaluate M(O) from 
Eqs. (79) and (87) and then equate. This yields 

C1 0 Ii - C2K oAii = 1, (89) 

where 

(90) 

and 

1 f~ 1 1, 
Ao=- G+( ,)Im K +( ,)dw 

1T" 3 Wo - W 3 W 
(91) 

Inserting the solution [Eq. (87)] into the original in­
tegral Eq. (78), we obtain 

0;(wo - w)[ C1 - (wo - w)C2I(w o - w)] 

~ wC1 f~ Imlz;(w') dw' 9;(wo - w') 
~ 1 + ( , . ) ( , . ) 1+( ') rr "w -Wo-lE W -Wo+W-lE 13 wo-w 

wC2 f~ Imli;(w') (wo - w') dw' 
- -rr~ " (w' - Wo - iE) (w' - Wu + w - iE) 

These integrals have been evaluated in Appendix A. 
Using these results we can write (92) as 

0;(wo- w)[C1 - (w o- w)C2I(wo- w)] 

- 1 C [I 0 ;(w)Iz;(wo - W)J 
~ + 1 10 lz;(w) 

C [
K3"(W)Iz;(WU - w) I( ,) _1_ - (,2J 

+ 2 1I;(w) W + h;(w) h • 

In Eq. (93) we now take w = Wo and this yields, after 
some rearrangement, 

1+C1 [1t1J-/~~-? J +C2[~~i+h~ -KJ =0. 

It is a simple matter to solve for C1 and C2 from 
Eqs. (89) and (94). We find that 

C 2 = (0 U + Ii 0 - I~:~ -~ ) / 
(K.~0-KoAoho+0o!f-~) . 

(92) 

(93) 

(94) 

(95) 

(96) 

The solution (87) of Eq. (79) satisfies all the condi­
tions explained earlier. Whenever any two interaction 
constants are switched off, the factor outside the pa­
renthesis in Eq. (87) simply cancels out and the solu­
tion reduces to the solution of the oridnary KP equation. 
The solution found here, and the solution of the 2V­
particle KP equation have the same "form." It is a 
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simple matter to check that the solution presented here 
reduces to the corresponding solution of the 2V-particle 
model. Finally Eq. (87) also satisfies the requirements 
of Eq. (81). 

VIII. THE VB S MATRIX 

For computing the VB scattering matrix we use the 
following definitions: 

S ~ <veou
! I Ve in\ V8 ~ p. Pr/ 

where 

T(wo) =/2(wo)M(w o, wo) • 
Wo 

From Eqs. (98) and (87) we find that 

T(w
u
) =/2(WO)C1 

Wo 

_!2(wo)[KoA~ 0 - KoAo 0 o/hoK +!f9 0 - 9 o/hol 
~ KolKoAo/ - KoAoh o + ?(j II - (j'o/hol . 

(97) 

(98) 

(99) 

In Eq. (99) !(wu) is as defined in Eq. (2). From Eq. (99) 
we note that T(wo)=O for wU=Gl or WO=G2. This follows 
from the fact that 

(100) 

This means that in the ve cross section also we find 
the resonances, at the same energies at which they 
appear in the Ne cross section. 

IX. THE PRODUCTION AMPLITUDE 

The production amplitude veo - Ne1 e2 can be easily 
computed from 1/J4(Wb w2, wo) of Eq. (73). Inserting the 
solution of ~)1 into Eq. (73), we find that 

1/J4(Wl, w2, wo) 

= - f[!(wO)!(wl)!(W 2) [lW(W1 ' wo) + lW(w2, wo) J . 
2(wo - wl - w2 + iE) wl (wo - (1) W2(WO - ( 2) 

The production amplitude P defined by, 

Sprod = (Ne1 e~U! I ve~n> 

= 21Ti6(Wl + w2 - wO)P(Wl, wo) 

(101) 

(102) 

is given by the term containing 6(W1 + w2 - wo) in 
1/J4(wb w2, wo) of Eq. (101). Substituting w2=wo- wl we 
find that 

P fd{(1 )!(wo- (1)/(w O) [M-(W1) +M-(wo _ Wl)]' (103) 
W1(WO- w1) 

The quantity inside the brackets in Eq. (103) has been 
evaluated in Appendix A. Inserting (A12) into Eq. (103), 
we find that 

P(Wb wo) 

=fi!(W1)/(WO - wtlf(wo) [G;(W1)~;(WO _ (1) 

(1 + C1h O - Czlf) J 
+ W1 G;(WO- (1) . 
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From Eq. (104) we note that the production amplitude 
goes to zero whenever 

(105) 

On the other hand, the first term in Eq. (104) goes to 
zero whenever 

(106) 

X. DISCUSSION 

In the 3V-particle model, as in the 2V-particle mo­
del, the resonances that appear in the Ne sector, also 
appear in the ve sector. In the light of the present 
solution, the Pierels8 mechanism should be re­
examined. The solution of the GKP equation here has 
the same form as the solution of the GKP equation of 
the 2V-particle model. The ordinary deductive method 
usually employed to solve the KP equation is not ap­
plicable here. Hence a more general deductive method 
should be invented. It will be really a challenging task 
to prove the unitarity in this model. An algebraic meth­
od due to Bolsterli9 may be employed to solve the in­
tegral equation here. This might help in checking our 
result, although we do not have any doubt about our 
solution. 

APPENDIX A 

Inserting the solution [Eq. (87) J into the integral 
Eq. (79), we obtain 

g3(WO- w)[Cl - (wo- w)C2I(w o- w)] 

1 WC11~ Imlz;(w') dw' 0;(w o- w') 
= +-7T- " (w'-Wo-iE) w'-wo+w-iE} h;(wo-w') 

wC2 f~ Imlz;(w') (wo - w') dw' 
--7T- " (w' - Wo-iE) (w' - Wo+W-iE) 

(A1) 

The integrals in Eq. (A1) can be performed easily by 
contour integration. The contour is an infinite circle 
with a cut from Jl to 00. Since the function h3 (z) has 
poles at Z = a1 and Z = a2 , these poles should be deleted 
from the contour of the integration by cross cuts from 
the infinite circle. If this is not done, the constants Cl 
and C2 will attain an indeterminate form when Wo = a1 

or Wo = a2 • We have found this by explicit calculation. 

The first integral in (A1) can be written as 

WCll h3(z) dz cf3(WO-Z) 
27Ti c (z - wo) (z - Wo + w) h3 (wo - z) , 

which has simple poles at z = Wo and z = Wo - w. 
the residue theorem, we have 

WC1 1 h3(z) dz (j3(W O - z) 
27Ti c (z - wo) (z - Wo + w) h3(W O - z) 

= C [h:i(wo) _ 9;(w) h;(wo - W)J 
w 1 h+( ) . W 3 W W 

(A2) 

So by 

(A3) 

Inserting the definition of I(w o - w') into the second 
integral of (A1), interchanging the orders of integration, 
and after cancelling the factor (wo - w'), we obtain the 
following integral: 
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The very last integral can be performed by residue 
method. So the residue method yields 

1 f~ Imh;(w ' ) dw' C;;(wo - w') 
:;[ " (w' - Wo + w - iE) (w' - Wo + w - iE) h;(wo - wi) 

h;(wo- w)q;(w) h;(w o- w")C;;(w") 
= h;(w)(w" - w) h;(WI')(W" - w) 

Inserting (A5) into (A4), we obtain 

C wq;(w) ( ) +( ) 
2 h;(,,-') I w h3 Wo - w 

1 f~ 1 dw' 0;(w;) 
+WC2- ImT?+( ') (' .) h+( )' 1T" 1\.3 W W - W - ZE 3 w 

where 
1f~ 1 1 1 

I(w)=-- (' .) +( ,)Im--;:--( ,)dw'. 
7T " w - w - tE 1t3 Wo - W K3 w 

(A4) 

(A5) 

(A6) 

(A7) 

The integral in (A6) can again be computed by the re­
sidue method. It has poles at w' = 0 and at w' = w, so 
we have 

C 1 f~ I 1 dw' q;(w;) 
w 2:;[ " m K;(w') (w' _ w _ iE) h;(w) 

(A8) 

Inserting (A8) for the integral into (A6), and inserting 
the resulting expression of (A6) and (A3) into (A1), we 
find that 

0~;(wo - w)[Cl - (wo - w)C 2I(wo - w) 1 

= 1 + C [h _ h;(wo:- W)q;(w)J 
1 0 h

3
(w) 

C [
K;(W)h;(WO - w)I( ) _1_ -.2J 

+ 2 h;(w) w + h;(w) -li 

which is the desired result. 

From the solution (87), we find that 

M-(wl) + M-(wo - wl) 

(A9) 

=h+( C l
)n) [g;(wo-wl)h;(Wl)+g;(Wl)h;(wO-Wl)] 

3 Wo - wl 13 Wl 

(A10) 

On the other hand, from (A9) we find that (by putting 
W=Wl) 

C2 + h;(Wl)[l + ClhO - CzIf] 

= Cl [<j;(W O - w)h;(wl) + h;(wo - Wl)g;(Wl)] 

- C2[h;(Wl)~(WO - wl)I(w o - wl) 

+K;(Wl)h;(wo- wl)I(Wl)]' 

Inserting (All) into (A1D), we find that 
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M-(w1) + M-(wo - W1) 

C2 (1 + C1hO - Cvf) 
h;(wo - w1)h;(W1) + h;(wo - w1) 

(A12) 

which is the desired result. 

APPENDIX B 

In this appendix we propose an ansatz which will en­
able us to determine the function X 3 (z, wo) of the text. 

The solution of the ordinary Kall~n- Pauli equation 
is given by 

M1(z, wo) =D(j1(W O - z) 

( ( ) 1f.~ X1(W',wO) 1 ') 
x D1 + Wo - z - (' ) 1m Tr+( ') dw , 

7T " W - Wo + Z 1\.1 W 

(B1) 

where 

1 
(B2) D=r: ( ). 

'11 wo- Z 

An expression for the constant D1 is given in Ref. 1. 
The function ~l (wo - z) is the twice subtracted function 
of the ordinary Lee model. The function Xl (z, wo) can 
be found out by a deductive method. 2 We have 

Xl (z, wo) ~ (D2 ) , 
1 wo- Z 

(B3) 

where D2 is a constant. The factor outside the parenthe­
sis in Eq. (B1) is unity. But by comparing Eq. (B2) and 
Eq. (B3) we immediately find an interesting relation. 

That is, 

(B4) 

This ansatz appears to be true even in the nY-particle 
Lee model. So by a clear cut derivation, if we know 
a factor similar to D, we can always infer a factor like 
X 1 (z, wo)· 

For example in the 2V-particle model we quite gen­
erally find that, 1 

( _92(WO - z) (C' ( )! M2 z) - h( ) 1 + Wo - z Wo - Z 7T 

f~ X2(W', wo) 1 ') 
x (' ) 1m Tr+( ') dw , " w - Wo +z 1\.2 w 

(B5) 

where 

(B6) 

(B7) 

and 

(B8) 

Here C{ is a constant. Moreover the constants Band 
we are given in Ref. 1. The renormalized charge Y is 
given by 
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(B9) 

Here the QI'S are the expansion coefficients of the phy­
sical IV) state in the 2V-particle model. 

From the ansatz proposed above we easily infer that 

c' 
X 2(z, wo) = ( 2 )' 

II Wo - z 
(B10) 

where C~ is a constant. From the factor outside the 
large parentheses of Eq. (85) we readily conclude that 

(B11) 

In general, for any 11 V-particle Lee model we can also 
infer the function Xn(z, wo) from the ansatz proposed 
here. 

APPENDIX C 

In this appendix we show that whenever any two in­
teraction constants out of the three are switched off, 
relation (53) is an identity. As previously explained, 
the function 1z3 (z) becomes identical to ~ 1 (z) of Eq. (37) 
whenever any two interaction constants are switched off. 
Let us assume that .~ = 0 =.~. Under these conditions, 
we have 

(C1) 

Moreover when any two interaction constants are zero, 
from Eqs. (48) and (49) we note that 

(C2) 

where 

Jq(w') = w' <j;(w'). (C3) 

So Eq. (53) now reads 

1 [ if -c:-( ) = (z - 111 2 )(Z - 111 3) --
~1 z 11121113 

Z f~( 1 1 ) dw' ] 
+ IT " 1m (w' _ 1n2)(W' - 1113) K;(w') (w' - z) , 

(C4) 

where we have written z for (w + iE) of Eq. (53). The 
integral in (C4) should be treated as a contour integral, 
the contour being an infinite circle with a cut from J.l. 
to 00. We have 

(C5) 

The integrand in (C5) has poles at w' = 0, since K1 (0) 
= 0, and at w' = z. There are no poles at w' = 1112 and 
at w' = Jr/3' since these are the real masses of the now 
noninteracting V particles. Taking residues at these 
poles we obtain 

Cvavb. Chandra Raju 2202 



                                                                                                                                    

z r 1 1 dw ' 
21Ti J c (w' - m 2 )(w' - m 3 ) K;(w ' ) (w' - z) 

(C6) 

If we insert (C6) into (C4) we find that relation (C4) 
is an identity. In Ref. 1, below Eq. (47), we stated that 
although h(z, B) reduces to q (z) when B = 0, the inverse 
of h(z, B) [given by Eq. (47), Ref. 1] does not reduce to 
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the inverse of q (z). The statement is unfounded in view 
of the results of this appendix. 
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Fermi-Bose and internal symmetries with universal 
Clifford algebras 

Geoffrey Dixon 

Department of Physics, Brandeis University, Waltham, Massachusetts 02154 
(Received 21 November 1976) 

Supersymmetry in four-dimensional space-time is approached from the theory of universal Clifford 
algebras. The representation produced results in a class of new algebras characterized by an index n which 
indicates the natural appearance of su(2n) X u(1) as a subalgebra interacting only with the spinor (or odd) 
parts of thc surrounding Fermi-Bose algebra. Finally, a reformulation of the Dirac equation in this 
formali,m is presented which is not plagued with the empirically untenable problem of a continuous range 
of eigenvalues. 

A Clifford algebra for an n-dimensional real orthogo­
nal space X (11 finite), as defined by Porteous, 1 is a real 
associative algebra A with unity I containing isomorphic 
copies of R and X as linear subspaces such that for all 
x in X the algebra product x2 = - (x, xlI, where ( , ) is 
the scalar product of the space X. Furthermore, A is 
generated as a real algebra by I and X. The universal 
Clifford algebra of X is that Clifford algebra which 
satisfies a certain universal mapping property, but it 
can also be characterized as the unique Clifford algebra 
of X with dimension 2n. 

Let R P 
,Q be the (j) + q) -dimensional real linear space 

with scalar product (a, b) = - Z iE pa i b i + L,}!CQap+j bp+i' and 
let Rp,Q be the uni versal Clifford algebra of RP,Q. If 
Jl =-p +q is even, then Rp,q can be shown to be isomor­
phic to either R(2 nf2 ) or H(2 nf2 -'), where R(m) and H(m) 
are the real algebras of III x m real and quaternion 
matrices, respectively, [Since the basic quaternions, 
denote them i, .i, and I?, can be represented as 2 x 2 
complex matrices, i. e., as elements of C(2), an Rp,Q 
isomorphic to H(2 n f 2 -') could also be represented by 
elements of C(2 nf2 ), but since this algebra is 2n+'_ 
dimensional it is not isomorphic to Rp,q' The author has 
found the restriction to the canonical representations 
enlightening and these will be used throughout. I 

R, 3> the universal Clifford algebra of the Minkowski 
spac~ R"\ is isomorphic to H(2). One set of four basis 
matrices for R ' ,3 in R,,3 is Yo=[~ _~I, y,=iC, Y2=jC, 
Y3 = kC, where C = [~~l. (Basis matrices must anticom­
mute. ) The general element x in R' ,3 takes the form 

x=[:o -~J. (1 ) 

where x=x,i +x2i +x3'? (Note that xy=xXx-x·y,) 
Finally define Y5 = Y, Y2 Y3 Yo = U ~ 1. In any representation 
Y;= -1 

The Clifford algebra of primary interest here is R2 4 

"" H( 4). A set of six basis matrices for R 2
,4 in R2 4 is ' 

r,,=[6"r~], Il=O,1,2,3, Ll.'=[~5 -b51, Ll.z=[~5~51,'where 
the Y's are the H(2) matrices given above. Finally, let 
to = r ,r2 r 3r oto,Ll.2 = [65 -~51. 

The fifteen matrices r"rv(WFIJ), r"Ll."" and tl,Ll.z, 
together with ~ generate the Lie algebra so(2, 4) xu(l) 
"" su(2, 2) xu(l). This constitutes the even parts of a 
graded Lie algebra (GLA) first introduced by Wess and 
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Zumino. 2 Denote the nontrivial components of this 
algebra by L_2' L_" La, L" and L 2. 

Let x be as in (1) and define a four-dimensional sub­
set of R 2

•
4 consisting of elements of the form 

(2) 

A basis for Lo consists of the six r" r v which generate 
Lorentz transformations on the Minkowski vector x in 
X, Ll.,Ll.z which generates a dilation, and to which acts 
as a kind of phase transformation. A basis for L2 is the 
four Hr "Ll.2 - r "to,) which generate translations on x in 
X, and for L_2 the four Hr"to2 +r"to, ) which generate 
space-time dependent dilations. It should be noted that 
elements of the form (2) constitute a subset of the null 
cone about the origin in R2,\ and that whereas all the 
above conformal transformations map X into this null 
cone, only the Lorentz transformations and translations 
maintain the form of X given in (2). 

To complete the GLA, W=L_2tJ;L_l'BLocf4L,EBL2' we 
must incorporate the odd elements. By maintaining the 
condition that R2 4 be a real algebra a variation of the 
usual complex r~presentation3 results. In fact the alge­
bra is radically altered and will be presented without 
the details of its developmenL 

To incorporate the odd elements, the size of the 
matrices must be increased to H(6) resulting in the even 
elements taking the forms 

I: :: 1n L_z, [: ; 

lY5Y 0 oJ ° 0 

:Jin La,!: : 

-A* lo ° 
(3) 

where x and l' are of the form (1), A * is the quaternion 
conjugate of the matrix A which has the form ul + l'Y5' 
u and 11 in H, and the form of D is yet to be determined. 

The four basis matrices for L, are 

(4) 

The parameters of these super transformations are 
elements of a Grassmann algebra G, but it is necessary 
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that these parameters be taken over the complex field 
with Y5 representing the basis for the imaginary part. 
That is, if r a and S a are elements of G of odd degree, 
then the general element of Ll takes the form 

ro r+y5s 0 J 
R= (ra + Y5s a)Sa = 21/2L~ ~ C(r -~5S~ 

=~ ~~J' (5) ~ 0 0 

where rand s have the form (1). 

- -Let R' be the same as R with primed components. 
Then 

U
o 

0 TJ [R, R'] = 0 0 0 , 
o 0 0 

where 

T=RR' -R'R = (ror' +rr~)yo - (ror~ +r· r')C 

- (r Xs ')Yo + (similar terms), 

which has the form of an element of L2 as required of 
such a commutator. 

The four basiS matrices of L_l are 

Q.~2-'''~' ~~.c ~l a~O,1,2,3, 
The general element in this case must be defined 
through multiplication on the right by the parameters. 
That is, 

B = Qa(b a - Y5C a) = 2-l/Jb +~5C ~ ~J L 0 - (b - Y5c)C 0 

c~ i ~l 
The commutator [R, B] must take the form of an ele­

ment of La. From this it is possible to determine the 
form of the matrix D defined in (3), 

[R, B1=~B RB-:R ~J. 
L~ 0 -BR 

It is not difficult to show ER = (BR)*. The central term 
is 

liB - BR = - (r xb)l + (rca - roc)l + (roco - r· c)Y5 

+ (similar terms). 

This has the form of an element of su(2) xu(l) (compli­
cated by Grassmann parameters). In fact, if we allow 
Din (3) to be an arbitrary matrix of the form [-~0!1, 
where the ga are real or even elements of G, then the 
algebra remains closed and is now endowed with an 
extra, internal subalgebra su(2) xu(l) which interacts 
only with the odd components Ll and L_1 • 

This algebra is quite easily generalized. Instead of 
enlarging the representation of the even components 
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from H(4) to H(6), as was done, enlarge it to H(2n +4) 
in a similar fashion and define the general element of L1 
to have the form 

0 Rl R2 .·. Rn !L 
0 0 0 .•• 0 ~ 

R = n 0 0 0 ···0 R2 , 

0 0 0 .. ·0 Rn 
0 0 0 .. ·0 0 

where R j and R; have the forms of R and Ii in (5)0 Define 
an element Bn of the new L_1 by a similar generalization. 
Then 

n 

2.= RiBi 0 0·· . 0 
1=1 0 

0 0 
[R n, Bn1= 0 [RkBj -BRRj ] 

n 
0 0 0·· . -?;BiRi 

where [RkE) -BkR j ] is an element of H(2n) whose H(2) 
components are RkBj -BRR j • This central matrix has 
the form of an element of su(211) xu(l) and again the 
algebra is closed if we allow this central matrix to vary 
independently in La. If this is the mathematical origin 
of internal symmetries it could have far reaching 
consequences. 

To produce a Dirac equation we must adjust the 
formalism to accomodate the Clifford algebra formalism 
used here. We should expect phases to be generated by 
Y5 and the lowest order spinors to be elements of H(2). 

Define p = Y"P" = [: -11:1 and M =p I p=o = myo = [~ _~], 
where E, p, and m represent the energy, momentum, 
and rest mass of the particle to be described by the 
spinor. The variation on Dirac's equation is then 

(6) 

where 2 = [~\. =r
t 

1. A plane wave solution takes the form 

i}!(x) = exp(Y5/J "x") U, (7) 

where U is in H(2). Substituting this into (6) gives 

(8) 

To obtain the momentum equation we must cancel the 
exponential in ~'(x) [which could not be done were we to 
replace M wi th III in (8)] obtaining 

pU=MU. (9 ) 

It is not difficult to show that U = P is a solution of (9) 
unique up to multiplication on the right by an arbitrary 
element of H(2) and that III =0. Furthermore, the heli­
city of the solution points along the momentum vector. 
Therefore, the only solution of (6) is a neutrino solu­
tion. Were it to have been demanded of the original 
Dirac equation that it playa more fundamental role in 
physics than that of a technical tool, then the continuous 
range of eigenvalues for m allowed by that equation 
should have been deemed unsatisfactory in light of the 
fact that nature has supplied us with no more than 
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countably many particle rest masses. Further, since 
massive spin-i particles invariably attribute their rest 
masses to self fields, we should not expect to obtain 
massive solutions for a spin-~ equation if that equation 
incorporates none of these extra fields. The original 
Dirac equation differs from the above primarily in that 
it treated the Dirac matrices as generators of a complex 
rather than real Clifford algebra. It is seen here that if 
the theory is approached from the mathematical end, 
maintaining the mathematical consistency throughout, 
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then complex analysis arises naturally and the theory 
takes on the semblance of fundamentality and provides 
a fresh starting point for the theory of fermions. 

1I.A. Porteous, Topological Geometry (Van Nostrand, 
London, 1969). 

2J. Wess and B. Zumino, Nucl. Phys. B 70, 39 (1974). 
3L. Corwin, Y. Ne'eman, and S. Sternberg, Rev. Mod. 
Phys. 47, 573 (1975). 
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A Lie group framework for soliton equations. I. Path 
independent case 

James Coronesa) 
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B. L. Markovski and V. A. Rizov 
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A general Lie group theoretic framework for the study of a class of nonlinear partial differential equations 
is presented. In two space-time dimensions this class includes soliton equations. The approach is 
applicable in N? 2 space-time dimensions. Eigenvalue problems and isospectral flows associated with 
equations have a natural group theoretic interpretation in this framework. A sequence of nonlocal exact 1-, 
2-•...• ( N - 1 )-forrns are derived in N -dimensional space-time. 

1. INTRODUCTION 

This paper presents a general Lie group theoretical 
framework for a class of nonlinear partial differential 
equations. Members of this class are the integrability 
conditions for a certain system of first order differen­
tial equations in N-dimensional space-time. The solu­
tion of this system gives the parameters of a bilocal 
Lie group, that is, a Lie group described in terms of 
bilocal functions of space-time. A consequence of the 
existence of the bilocal Lie group is the existence of 
N-Iocal conservation laws in N-dimensional space-time. 

In two space-time dimensions the class of partial 
differential equations treated contains equations that 
have recently received considerable attention equations 
with soliton solutions. 1 These equations are known to 
have associated eigenvalue problems and isospectral 
flows and an infinite number of conservation laws. In 
the present approach the differential form of the linear 
action of the bilocal group on a linear representation 
space expresses the associated eigenvalue problem and 
isospectral flow. 1 Other equations of physical interest 
that have not yet been shown to have soliton properties 
are also contained in the general scheme. The main 
geometric feature of the present framework is that the 
bilocal group action on a linear representation space 
naturally defines a flat connection. The vanishing of the 
corresponding curvature tensor is a re-expression of 
the original nonlinear partial differential equation. 

This work was motivated by the study of pseudopoten­
tials. This idea was introduced in Ref. 2 and later 
studied for example in Refs. 3-8. The geometric 
picture associated with the vanishing of the curvature 
tensor extends previous work in Refs. 8 and 9 on 
particular soliton equations into a coherent group 
theoretic framework. 

In the next section some standard results from Lie 
group theory are presented for future reference and to 
fix the notation. Section 3 introduces the central defini­
tions, those of a bilocal Lie group and bilocal group 
parameters, and the connection with partial differential 
equations, particularly soliton equations, is made. 
This is followed in Sec. 4 by the introduction of local 

a) Supported in part by the National Science foundation. 
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group parameters and the expression of bilocal param­
eters in terms of them. Group actions are then dis­
cussed in Sec. 5. It is shown how a representation 
space for the group is a set of pseudopotentials asso­
ciated with the equation, and that the differential form 
of a linear group action is the associated eigenvalue 
problem and isospectral flow used to solve soliton 
equations by the inverse scattering method. A flat con­
nection is defined by the linear group action. The final 
section gives the derivation of N-Iocal conserved cur­
rents as well as a sequence of exact (j + 1)-localj­
forms, j = 1, ••. ,N - 1, in N-dimensional space-time. 
The forms are exact on the equations of motion, that 
is, on the integrability conditions for the bilocal group 
action. 

2. LIE GROUPS 

In this section some basic results from the theory of 
Lie groups are recounted. The reader is referred to 
any of the standard classical treatments of Lie theory 
for their derivation, see Refs. 10 and 11 for example. 
In the remainder of the work, group parameters of 
particular types are introduced and discussed, bilocal 
and local group parameters. The addition of space­
time dependence to the group parameters produces a 
richer structure though all the basic results of Lie 
theory remain and indeed are often called upon to derive 
consequences of the space-time dependence. It is useful 
then to gather together the relevant results from the 
standard theory in order to delineate the boundary be­
tween them and those results that are due to the types 
of parametrization used and also to fix notation. 

Let G be an I-parameter Lie group with parameters 
given by tA, k = 1, .•• ,j. The notation g={tA} is used 
when g E G and the tA are the corresponding parameters 
of g. If g= {tA} and g-l is the element inverse to g, the 
notation g-l = {t k} is used. Let e denote the unit element 
of G. In the sequel, unless otherwise stated, sets of 
parameters are used that have the properties e = {~= O}, 
k = 1, ... ,j; if g= {tA}, then 

g-l = {t k = - tA}. (2. 1) 

Ifg1>g2 EG , gl={tU, g2={tn, and glg2 =g3, then the 
parameters of g3 are given by 

(2.2) 
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The functions RR are called the group composition law 
jor G. 

The group composition law has the following 
properties: 

RR(t, t) = RR(t, t) = 0, 

RR(t, o} = RR(O, t) = t, 

RR(tl> R(t2 , t3» = Rk(R(tl> t2), t3L 

(2.3a) 

(2,3b) 

(2,3c) 

The Rk are analytic functions of 2/ arguments. The 
values of various derivatives of the RR playa fundamen­
tal role in Lie theory; it is useful to introduce special 
notation for them, Thus define 

Ak(t ) '" aRk(t!, t2) I 
' I at' , 

2 t2=0 
(2.4a) 

B~(t2) '" aRk(t,t. t2) \ • 
atl tl=O (2,4b) 

It follows in the general theory of Lie groups that if 

[A A lm- oAr An oAT An 
k' , = a tn , - a tn k' 

then 

[Ak,A,t = C~,A~, 

[Bk,B,lm=- q,B~. 

(2.5) 

(2.6a) 

(2,6b) 

where the constants C~, are the structure constants of 
the group G. In (2.5) and throughout the text the summa­
tion convention is used. The A~ and B~ give two realiza­
tions of the Lie algebra of G. These realizations are 
clearly equivalent. 

The sets of functions A~(t), BW) have the following 
properties: 

A~(O) = B~(O) = 6~, 

AW)=B~(- t). 

It can also be shown that 

[Ak' B,lm = O. 

(2.7a) 

(2,7b) 

Let A(t) and B(t) denote the matrices with matrix 
elements AW) and B~(t), respectively, The matrices A 
and B are invertible. Let V and W denote the matrices 
inverse to A and B, respectively. Thus 

A(t)V(t) = V(t)A (t) =1, 

B(t)W(t) = W(t)B(t) =1, 

(2.9a) 

(2.9b) 

where 1 is the /- dimensional unit matrix, It follows fron 
(2. 7) and (2.9) that 

Vet) = W(- f). (2.10) 

Using (2.6), (2.9), and (2.10) it is easily shown that 

ovi a~ k 
atm - at' = Cnp v;;, Yf, 

(2.11b) 

If (2. 3c) is differentiated with respect to t~ and the 
result evaluated at i3 = 0, it is found that 

(2. 12a) 
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The derivative of (2. 3c) with respect to tl at tl = ° is 

ilRR(tl, t2) B'(t ) =Bk(R(t t» (2,12b) 
"2 t' n 1 n "I> 2 • 

Using (2.9) it readily follows that 

~(R(t t» aR'(tI, t2) = Vk(t ) 
I I, 2 at'!. n 2 , 

Wk(R(t t »oR'(tl, i2) = u;k(t ) 
I I! 2 ali n I • 

If (2.13) are evaluated at 12 = tl = - t1> one obtains 

~(fl) = aRk(¥u '" _ 
(lt2 t l =t2' 

~(t ) = ~Rk(t!, 12) I 
I I ~t' _ 

c 1 t2=tl' 

when (2.7) and (2.10) are used. 

(2. 13a) 

(2. 13b) 

(2. 14a) 

(2. 14b) 

This ends the brief recital of standard results from 
Lie theory. In subsequent sections the structure is en­
riched by conSidering group parameters depending on 
two space-time pOints. 

3. BILOCAL LIE GROUPS 

Recent studies3- 5, 7, 8 have suggested that there is a 
close connection between Lie algebras, and therefore, 
between Lie groups and equations that have soliton solu­
tions. These results consist of a series of computations 
and/or observations based on pseudopotentials. 2 Thus 
far no coherent basis for the existence of the Lie alge­
bra structure has been developed. This section contains 
the principal definition needed for the construction of a 
Lie group framework for soliton equations; bilocal Lie 
groups. Following the definition the basic properties of 
bilocal group parameters are derived and the connection 
with soliton equations is established, 

A bilocal Lie group G is given by a map 

(3.1) 

1. e., if (x, y) c ]RN X ]R'v, then the image of ~¥, y) under Y 

is an element of g '=. G with parameters yk(X, v), " 
= 1" .. J (for some fixed parametrization of G). The 
expression "bilocal Lie group" is used to indicate that 
a Lie group G described in terms of bilocal group pa­
rameters is being considered. 

We ask the following property for the map (3.1), 

Rk(y(x,x'), y~¥' ,V»=1,.k(X,y), x,y,x' ,,-lRN, (3,2) 

1. e" the product of two group elements having one com­
mon point x' does not depend on that point. It follows 
from (3.2) evaluated at x =x' and from (2, 3b) that 
rk~¥, x) = o. If (3.2) is evaluated at x oc- v, (2, 3a) and 
(2.1) can be used to show that yk(X ,),) = - rk(y, x). 

It is necessary to derive numerous expressions in­
volving derivatives of (3, 2). The notation becomes 
cumbersome unless some conventions are used, For 
the purposes of differentiation let I'k, k = 1, 0 , • ,f, 
denote the first / arguments of RR and Uk the second f 
arguments of Rk. The components of XL ]RN are denoted 
by XX, A = 0, 0 , • , V - 1, In applications X

O denotes the 
time variable, 
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Consider (3.2). Since the right-hand side is indepen­
dent of x', 

aRk(r(x,x'), r(x',y» ar'(x,x') + aRk(r(x,x'), r(x',y» 
au' ax A av' 

CJr'(x',y) 
x ax A =0. 

Settingx=x', 

CJRk(u,r(x,y» I ar'(x,x') I + aRk(u,r(x,y» I 
ou' u=O ax,A x=x' av' u=0 

ar'(x',y) I -
x ax,A x'=x - 0, 

while setting x' = y yields 

aRk(r(x,y), v) I ar'(x,x') 
au' v=o ax,A 

ar'(x',y) I -x a,A - o. 
x x'=:y 

I 
+ aRk(r(x,'y), v) I 

x'=y av x=O 

(3.3) 

(3.4a) 

(3,4b) 

These equations are a direct consequence of the bilo­
cal composition law (3.2) and have a fundamental role in 
the present framework. They can be written in a more 
convenient form by introducing the notation 

j k( ) = ark (x ,Y11 (3. 5a) 
A y - ayA x=,' 

(3,5b) 

Since rk(x ,y) = - rk(y,x) it follows from the definition 
that JAk(X) = - f:(x). Using this fact together with the 
definitions of A and B given by (2.4), the pair (3.4) 
becomes 

ark (x ,y) + Bk(r(x- y»)Ij'(x) - 0 
axA " , A -, 

(3,6) 

(3.7) 

For a given set of functions f:(x) and B~(r) [A~(t)], 
satisfying (2.6), the system (3.6) [(3,7)] can be treated 
as a set of equations for the rk(x,y). In this situation it 
is of interest to derive conditions for the existence of 
solutions of the equations; the integrability conditions. 
For (3.6), (3.7) these are 

a2rk(x,y) _ a2rk(x,y) 
axA ax" - ax" ax A , 

a2rk(x,y) _ a2rk(x,y) 
ayA ay" - ay" ayl , 

a2rk(x,y) _ a2rk(x,,ll 
axA oy" - oy" axA • 

The first two sets of conditions give 

Ak( ( » {af~ af~ C' fn'fp} - 0 , r x,y ayA - ay" - np A " - , 

Bk( ( » {2fl. af{ C' jn'fp} , rx,Y axl- ax"- ~ A " =0, 

(3.8a) 

(3.8b) 

(3.8c) 

(3.9a) 

(3.9b) 

where (2, 6) has been used, Since A and B are invertible 
it follows that 

~ - Ef{ - c' f''fP axl ax"- np l ". (3.10) 
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The final condition (3. 8c) implies 

f~f:[A"Bklm= o. (3.11) 

The equality is satisfied due to (2.8). Thus all the re­
strictions put onf: so that (3.6), (3.7) is integrable are 
contained in (3.10). For a given set of flk, if (3.10) is 
satisfied the bHocal group parameters r"(x, y) exist. We 
note here that if fAk satisfy (3.10) the functions If:(y) 
;, EV: (y) have the same property if 

(3.12) 

i. e., if the constants E~ form a matrix belonging to the 
adjoint representation of G. Therefore, linear transfor­
mations of fl through the adjoint representation do not 
yield an essentially new solution of Eq. (3.10). We shall 
say that two solutions of (3.10) differing by transforma­
tion from the adjoint representation of G belong to the 
same class. 

It is interesting to see how f: transform under change 
of parametrization of G. Suppose the new parameters 
yk(X,y), are expressed through the old by the formula 

?(x,y) = .pk(r'(x,y» 

with nonvanishing Jacobian II alJlk/ar'll. Following the 
definition (3. 5) we obtain in the new parametrization 

p(v)= a?(xilll =Ek!'(v) 
A - C1yA x=y j A . , 

where 

Let the new parameters be chosen so that the structure 
constants C~m remain unchanged. Then rederivation of 
Eqs, (3.6) and (3.7) shows that 1: have to satisfy (3.10) 
again and that the constants E' obey (3.12). From here 
we conclude that transformations to new parameters 
which do not affect the structure constants change the 
functions fAk in a trivial way- the latter are only linearly 
transformed according to the adjoint representation of 
G, and, therefore remain in the same class of solutions 
of (3.10). 

This observation shows that in fact the functions are 
not tied to a particular choice of parameters (once C~m 
are fixed). The independence of the flk is important in 
view of the applications to nonlinear partial differential 
equations, where they will be regarded as primary 
objects. 

If we have a bilocal parameterization in two space­
time dimensions, for some fixed group G, then with a 
suitable choice offk which has the form fAk =fk 
(u, ux , un, u,"') (u is some function of X O and Xl), 
Eqs. (3.10) become known partial differential equations 
for u which possess the soliton solution. For example, 
in Ref. 5 (in a more restricted and rather ad hoc 
fashion) it was pointed out that all differential equations 
solvable by the inverse scattering method via the gen­
eralized Zakharov-Shabat eigenvalue problem can be 
cast into the form (3.12l. As a particular case consider 
the identifications 

fl(x) =ti(u + ku*); fl (x) = - t(u - ku*), 
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fl(x) = X; fOl(X) = M2X(u +ku*) +i(ux - ku:>}, 

f02(x) = -H2X(u - ku*) + i(ux + ku:)}; (3.13) 

f03 (x) = 2X 2 + k / U /2, 

C~m = 2Enl m; n, l, m = 1,2,3. 

Here u is a complex valued function of XO = t, xl =x; u* 
is the complex conjugate of u, U x denotes the derivative 
of u with respect to xl, k and X are constants. Further­
more the group G is taken to be SU(2) with structure 
constants 2Enl m (Eklm is the completely antisymmetric 
tensor E123=l). With this choice off:, (3.10) yields 

iu t +uxx -2kluI 2u=0, (3. 14a) 

iut - u:x + 2k I u 1

2u* = O. (3. 14b) 

Thus with the selection (3.14), (3.10) reduces in two 
space-time dimensions to the nonlinear Schrodinger 
equation. 

Another example of physical interest is a two-dimen­
sional CJ model introduced in Ref. 13 and recently 
studied in Refs. 14 and 15. In Ref. 15 results are 
derived, in a very different context from the present 
one that can easily be used to show that the model 

, k 
treated can be put in the form (3.10), with the C'm the 
structure constants of 0(4). This model has not yet 
been fully investigated. 

An alternative interpretation of (3.10) is given by de­
fining the "Yang-Mills" tensor 

<'1:1 =~_ y{-C1 jn'!" (3.15) U~A- axA ax~ np A ~, 

through the "vector potentials" f~. The integrability 
conditions for the bilocal group action are then seen to 
be the conditions for the vanishing of the Yang-Mills 

1 G 12.16 Th· tensor tJ ~A constructed for the gauge group. is 
interpretation will be commented on further below. 

4. lOCAL LIE GROUPS AND FACTORIZATION 

In this section a factorized form of the path indepen­
dent map (3.1), (3.2) is introduced and its basic prop­
erties established. 

Let s be the map 

S:]RN_G, (4.1) 

such that if x E]RN then the image of x under s is an 
element g E G with parameters Sk(X). We are consider­
ing the same parametrization of G as in Sec. 3, L e. , 
with the same set of functions Rk as those in (2.2) for 
the group composition law. 

With a given map s, we can explicitly construct a 
bilocal map r: ]RNX]RN - G satisfying (3.2). Indeed, de­
fining the functions rR(x, y) by 

0(x,y) =Rk(s(x), s(y», (4.2) 

we obtain the desired bilocal parametrization. In other 
words we are considering pairs of maps (r, s) such that 
such that if gl = {Sk(X)}, g2 = {Sk(y)} the parameters of the 
product glg21 are 

Rk(s(x), s(y» =rk(x,y). 
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If (4.2) is differentiated with respect to y and evaluat­
ed at x = y, it follows that 

f~(y) = + Vk(s(y» a~\~) = _ W~(s (y» as ;,~y) , (4.3) 
y J~ 

where (3.5), (2.14), and (2.10) have been used. 

As was shown in the previous section, in two-dimen­
sional space-time it is possible to choose f: in the form 
f~k =fAk(U, u x , llxxo ••• ) so that the integrability conditions 
(3.10) become soliton equations for the function u(x, t). 
From this point of view the equations (4.3) are a differ­
ential system for the Sk(X) with the fAk given and it is 
convenient to write (4.3) as 

OSk(X) = _ B~(s (x»f~(x). 
axA 

This system for the Sk(X) has a solution if (3.10) and 
(2.6) are satisfied. 

There is a natural superposition principle for the in­
tegrability conditions (3.10) that is inherited from the 
group composition realized in local parameters. The 
logic of the superposition principle is as follows: Let 
flkA and fA be two fixed solutions of (3.10) and s~(x), 
s~(x) are the corresponding solutions of (4.4). The func­
tions st 2 (x) realize one and the same parametrization 
of G but with different space-time dependence, there­
fore the expression 

(4.5) 

is well defined and can be used to find the corresponding 
f3k~o 

The details of the calculation are the following. Let 

osi(x) )' ) ~ =- B~(Si(X) fn(x, i = 1, 2 (4.6) 

and suppose (4. 5) is satisfied. Then one obtains 

k. n>k ) s~(x) 
f3A(X)=- wi(s3(x) axA 

,rk( (» ~ oR' (S1z S2) asT + aR' (SI, 52) asr} 
= - VI, s3 X l aum ax~ av m axA 

{
,csT '( )V"(-)osr} =- ~r1(S3) B n(S3)w;:,(SI) cxA +An S3 m S2 oxA 

=fA(x) - U1(S3)A~(S3)h;(x), (4.7) 

when (2.10) is used. This equation indicates the possi­
bility of finding new solutions of (3.10) in terms of two 
known solutions. This will be commented on further in 
the next section. 

5. GROUP ACTION 

In the present application of Lie groups to partial dif­
ferential equations the properties of bilocal Lie groups 
viewed as continuous groups of transformations are of 
considerable importance. Considering the action of a 
group on a linear space defined over two-dimensional 
space-time establishes the connection of the new form­
ulation presented here with the pseudopotential approach 
to nonlinear partial differential equations. Indeed it 
could be argued that the bilocal Lie group framework is 
the natural setting for the study of pseudopotentials. 
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More importantly study of the group action provides a 
group theoretic interpretation of the linear eigenvalue 
problem and isospectral flow used to solve soliton equa­
tions. 1 The basic properties of bilocal Lie groups of 
transformations are, of course, independent of the di­
mension of the underlying space-time. In this section 
the definitions of a global group action (written in bilo­
cal parameters) is given and its consequences developed. 
In the bilocal case the general definition of group action, 
in arbitrary parameters, can be written in complete 
analogy with the usual case. 10,11 

Let Q be a d-dimensional space and let q be a map 

(5.1) 

The coordinates of Q(x) "'- Q are given by qa(x), a = 1"., , 
d, A global action of G on Q is defined by 

qa(x) = F'(r(x,Y); q(y». (5.2) 

This action is in general nonlinear in the sense that the 
P are not necessarily linear functions of qa, For a set 
of functions P to realize a bilocal group action two con­
ditions must be satisfied: 

(1) If K={rk(x,y)} and 

qa(x) = P(r(x,Y); q(y», 

then 

qa(y) = F'(r(x, y); q~"(), 

(2) IfKlg2=gS' Kl={rk(y,x')}, g2={rR(x ' ,x)}, and 
gs={rk(y,x)}, then 

P(r(y ,x'); F(r(x',x); q(x)) = P(r(y ,x); q(x)). (5.4) 

The generator junctions of the group action (4.1) are 
defined by 

X a( ) = aFa(1';q) I (5.5) 
kq -- ark ,.,..0' 

It follows from the general theory of Lie groupsl0,11 that 
if 

[ ]
a _ ax~ b b ax~ 

Xk,X/ '" -bX/-Xk a b, oq q 
(5,6) 

then 

[Xk' xl]a = CZ'/X~, (5.7) 

Where, again, the CZ'/ are the structure constants of G. 

Consider the derivative of (5.2) with respect to x, 

aqa(x) _ aF'(r(x,y);q(y» a1'k(x,y) 
ax).. - ark axA (5.8) 

If (5.8) is evaluated at y =x and (5.2), (3.5), and (3,6) 
are used, it follows that 

aqa(x) k 
ax~=f).. (x)~(q). (5.9) 

If (5.9) is treated as a system of equations for the qa(x) 
with given X~ and f)..k, then the integrability conditions for 
(5.9) are satisfied if X~ and f: obey (5.7) and (3.10), 
respectively, with the same structure constants C;'/. 

Equations of the form (5. 9) when d = 1 have been 
derived in connection with the study of simply pseudo­
potentials associated with the sine-Gordon, KdV, 
Hirota and other equations. 3,4 These results can now be 
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properly interpreted. They are the differential form of 
the nonlinear action of a three-parameter bilocal Lie 
group on a one-dimensional representation space. 

Let the F' realize a linear action 

P(1'; q) = l1(1')qb, (5.10) 

where 11(1') are the elements of a (d xd)-dimensional 
matrix function T(1'), In this case the generator func­
tions of F' are linear in qa and are given by 

(5.11) 

where the Ik~ are constants. Let Ik be the matrix with 
matrix elements Ik~' The set of I k, k = 1, ... ,1, satisfy 
the matrix commutation relations 

(5.12) 

and form a d-dimensional matrix representation of the 
Lie algebra of G. 

The linear form of (5. 9) is 

aqQ(x) -fk(x)I aqb(x) 
ax).. -).. kb • (5.13) 

Equations of this form have been derived in connection 
with the study of linear pseudopotentials. 3,5,7 It has been 
shown5,7 that, e. g., for G = SU(2) with a suitable choice 
of the fAk (for example that already made in Sec. 3 for 
the nonlinear Schrodinger equation) (5.13) reduces to 
the linear eigenvalue problem and associated isospec­
tral flow used to solve the soliton equation given by the 
g. 

In fact for the case of the nonlinear Schrodinger equa­
tionusing (3.13) and settingIkg=i(at)~ (ak are the 2X2 
Pauli matrices) one obtains 

It follows for a linear group action and from (4.3) that 

T(1'(x,y» = T(R(s(x), sty))) = T(s(x»T-1(s(y». (5.14) 

If q(x) denotes the vector with components ql(x), •• " 
qd(X), and (5.14) is used in (5.2), then 

T-l(s(x»q(x) =T"I(S(y»q(y) =qo, (5.15) 

where qo is some fixed constant vector in the space Q. 
Thus 

q(x) = T(s(x»qo. 

Differentiating with respect to x yields 

aq(x) = BT(s(x12 r-l( ( » ( ) 
ax'\ axA s X q X • 

This is another form of (5.13) so that we have the 
equality 

r ()- aT 1 k ~ X =- ax~ r =-f~Ik' 

(5.16) 

(5.17) 

(5.18) 

The quantities r,\(x) can be used to define a covariant 
derivative 

(5,19) 
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From (5.13) it follows that the covariant derivative of 
q(x) is zero. 

The r ~ (x) give a natural linear connection of Q in­
duced by the bilocallinear group action. This linear 
connection has the curvature tensor 

Ra = or "t _ or~~ + r ar c _ rare 
&~u - ax>' GXU ~c "b uc b' (5.20) 

The definition (5.18) together with (5.12) and the in­
tegrability conditions for f:, (3.10) imply that 

R~~U = O. (5.21) 

When N = 2, as has been discussed in Sec. 4, the 
g can be chosen so that (3.10) reduces to the soliton 
equation. The vanishing of the curvature tensor (5.20) 
associated with the connection (5.18) is a restatement 
of this fact. The vanishing of a curvature tensor has 
previously been observed in connection with solitons in 
Refs. 8 and 9. 

The fact that nonlinear equations possessing soliton 
solutions may be associated with a flat connection in the 
Q-space defined over two-dimensional space-time is, 
in the present general framework, of particular im­
portance. The flatness of the connection is the principal 
geometric manifestation of the path independence of the 
bilocal group action, i. e., of the main property of the 
map (3.1) expressed by the composition law (3.2). A 
path dependent action leads to a nonzero curvature as 
is shown in Yang's integral formulation of gauge 
fields. 16 A discussion of nonvacuum gauge fields from 
the present point of view will be presented elsewhere. 

Equation (5.18) shows that any set of functions that 
satisfies the integrability conditions (3. 10) is a pure 
gauge term. Thus any two solutions can be connected by 
a gauge transformation. Alternatively put, consider 

(5.22) 

for two families of local group parameters Sj(x), i=1,2 
possessing the same composition law Rk. (See the end of 
Sec. 4.) If we construct 

S~(x) = Rk(Sl (x), S2( xl), 

then 
f' 3~(X) = r 1~(x) + Tl (x)rh (x)Tjl(x). 

(5.23) 

(5.24) 

This is the linear version of (4.7). Of course (5.23) [or 
(4.7) 1 may not produce a r ~ or f: that has the same 
form as the two original constituents, this would be 
necessary to obtain a third solution of a given nonlinear 
partial differential equation. However such superposi­
tion principles are contained in (5.23) and (4.7). The 
problem of the form invariance of the r). or R is cur­
rently under investigation since its solution is closely 
related to finding the Backlund transformation for the 
original equation. 

6. CONSERVATION LAWS 

In this section, conservation laws for the equations of 
motion (3.10) are derived if the group under considera­
tion is semisimple. All computations are performed in 
canonical parameters. In this case A and V have a sim­
ple closed form representation. To give this represen­
tation first define a matrix a with matrix elements 
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a~= t"C~/' 

With this notation10
• 11 

Vet) = 1+ ~(J" + ta2 + .... 

As a formal series 

Vet) = (eO - I)a-1• 

USing (2.4) it follows from (6.3) that 

_ 0 -1 _ 1. ro B 2p2j 
A-a(e -1) -1-za+"0 2.' ' 

i·l " . 

where B2i are Bernoulli numbers. 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

It is useful to introduce the Killing tensor defined by 

(6.5) 

This tensor can be used to define objects with lowered 
indices, so that for example 

tk = Ckltl, 

Cklm=CkpC~m' 

It can be shown that in canonical parameters10 ,11 

t k V~ = t k A ~ = i l • 

In order to investigate the existence of conserved 
quantities consider the difference 

(6.6a) 

(6.6b) 

(6.7) 

~~" = ~ () x (rk(x, y )Ckzf :(Y» - ~ () U (rk(x ,.1' )Ckzf;(.1' )). 
u.1' 0')1 

(6.8) 

Clearly 

~ _(ark(X,.1')c fl(.1')- ark(x,y) C fl(1))) 
~" - oJx kl" J:vu kl x j 

+rk(x v)C (af :(?) _ OfX.l(y)) , (6.9) 
,. kl oy oyU 

and using (3.7) and (3.10) 

~>.u = (A~(r)f~Cklf~ -A~f~Ckzf{) 

+rkCklC~pfrt: 

=(A~CkP-A:Ckm +rkCklC~p}f;:'ft· (6.10) 

It is not difficult to show that ~>." vanishes if the group 
C is semisimple. If C is semisimple, then C kl is in­
vertible, so that a matrix C kl exists with the property 
that 

(6.11) 

To show that ~X" vanishes it is sufficient to show that 

CkP (a2)Pl = (a2)kl = (a2)lk' (6.12) 

This follows immediately from the complete antisym­
metry of Cklm , and the symmetry of Ckl and Ckl • Thus 

~).,,=O. (6.13) 

In two-dimensional space-time (6.13) can be cast into 
the form 

v.·( )_ojo(x,y) +oh(x,y)_O 
lX, Y - oy 0 oy I -, (6. 14a) 

where 
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If 

jo(X,y) =rk(x,Y)Gklfl
1(y), 

jl (X,y) = - rk(x,y )Gklfi(y)· 

exists andjl(x,y) vanishes at \yl\ =00, then 

aC(x'lo) =0. 
ay 

(6.14b) 

(6.14c) 

(6.15) 

(6.16) 

In fact the integral (6.15) can be explicitly calculated. 
Using (6.7) and (3.7), 

1:. ark(x,y)Gf1r1(x,y) _ k( )G fl( ) 
2 ay - r x, y kl ~ Y • 

Thus 
yl=oo 

C(x) = ~rk(x,y )Gklr1(x,y) I 1 • 
Y =- 00 

(6.17) 

(6.18) 

To facilitate the derivation of conservation laws in 
more than two space-time dimensions certain differen­
tial I-forms will be introduced. Define 

wk(y) =f~k(y) dy~ (k = 1, •.. ,f). (6.19) 

In this notation (3.10) becomes 

1 (ajk afk) dwk(y) =- ::Ll.. _~ dy~ /\dy'" 
2 ay'" ay 

(6.20) 

The fact that Ll~". vanishes is the coordinate statement 
that the I-form 

(6.21) 

is closed. Due to (6.17), Q(x,y) is exact, with respect 
to y, in any space- time dimension. 

In N space-time dimensions a conservation law of 
the form 

a .~ 0 3;01 = , (6.22) 

is expressed by giving an (N - 1) - form IN-1J (y) such 
that 

dX<N-O(y) =0. 

It is easily seen that the N-Iocal (N -I)-form 

X<N-ll (y) = Q(Xf, y) /\ Q(X2, y) /\ ••• Q(x N-l'y), 

(6.23) 

(6.24) 

satisfies (6.23). Furthermore the (j + I)-local form 

X'(y) = Q(Xj,y) /\ Q(X2,y) /\ ••• /\ Q(xj>Y), 

j=I, ... ,N-l (6.25) 
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has the property that 

ax:'(y) =0, j=I, ... ,N-l. (6.26) 

If appropriate convergence conditions are satisfies, the 
Xj(y) can be used to define quantities conserved on sub­
manifolds of the N-dimensional space-time. A full 
discussion of the sequence of exact nonlocal forms as­
sociated with (3.10) will be presented elsewhere. 
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Discrete path approach to linear recursion relationsa) 
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It is shown that the solutions of linear homogeneous recursion relations, with arbitrarily specified 
boundary conditions, are related, by a mapping, to the totality of discrete paths joining the two ends of 
an interval and made up of a predetermined set of directed segments. We study the dependence of 
these solutions on the way the boundary conditions are specified. When the boundary conditions are given 
as initial conditions, the present approach reduces to the formalism already developed for that specific 
case, and which is based on the partitions of an interval into classes. 

I. INTRODUCTION 

The original motivation for the study of multiterm 
linear recursion relations1 with variable coefficients, 
was to obtain an explicit solution of the Schrodinger 
equation with a linear central potential. 2 This quark 
confining potential has recently acquired the same im­
portance in particle physics3 as the Coulomb potential 
in atomic physics. 

As is well known, explicit solutions of the Schrodinger 
equation with central potentials of the form rn only 
existed for n = - 1, 0, and 2, the Coulomb, constant, 
and harmonic potentials, respectively. This is related 
to the fact that, only in these three cases are the ex­
pansion coefficients, of the series solution, given by a 
two-term recursion relation. This type of recursion 
relation has two important characteristics: (i) it admits 
an explicit solution (thus giving explicit wave functions), 
and (ii) it can be cut off by a proper choice of param­
eters (thus providing an energy eigenvalue equations). 4 

For other values of n, one obtains a three-term re­
cursion relation for the expansion coefficients. These 
cannot be cut off and their explicit solutions were, un­
til recently, not known, However solutions of this type 
of recursion relation were recently developed,1 in terms 
of so called "combinatorics functions, " and the corre­
sponding energy eigenvalue problem resolved without 
the need of a cutoff. 2 This provided an exact analytic 
solution of the linear potential problem. 3 

The scope of the method developed in Refs. 1 and 2, 
goes beyond the problem of the linear potential, and 
actually has a bearing on the whole subject of ordinary 
differential equations. As a second application of the 
method, an exact analytic solution of the combined 
Coulomb and linear potentials has been obtained. 5 This 
latter type of quark confining potential is indicated by 
the requirements of asymptotic freedom and infrared 
slavery. 3 Previously, this problem could only be 
handled in the framework of perturbation theory. 

The solutions of two-term recursion relations are 
given essentially in terms of Pochhammer symbols, or 
equivalently in terms of gamma functions. More pre­
cisely, they are given in terms of factorial expressions. 6 

a)Work supported in part by the National Research Council of 
Canada. 
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It is thus not surprising that the solutions of multiterm 
linear recursion relations should be given by a sort of 
highly generalized factorial expressions, which is what 
the combinatorics functions are. As for the energy 
eigenvalue equation it is given in terms of so called 
conjugate combinatoric functions. These are solutions 
of the inverted recursion relation with the boundary con­
ditions imposed at infinity. 2.5 

Thus at present the solution of multi term linear homo­
geneous recursion relations with variable coefficients 
is known for the two most commonly occurring types of 
boundary conditions; initial conditions, ! and final condi­
tions. 2 The solution in both cases is basically a finite 
sum of terms, each of which is a certain product of the 
coefficients of the recursion relation. These are the 
only two types of boundary conditions for which the solu­
tion is given in terms of a finite number of terms. As 
will be seen, in all other cases the number of terms is 
infinite. 

In this paper we would like to modify the formalism 
used in Refs. 1 and 2 in order to make it suitable for 
handling the case of arbitrarily specified boundary con­
ditions. The modified formalism, in addition to per­
mitting more flexibility in handling recursion relations, 
provides a unified treatment of the two previously 
studied cases of initial and final conditions, and gives a 
solution for the important caSe of mixed boundary con­
ditions; partly initial and partly final. 

The solutions given previously!·2 are related by a 
specific mapping to the totally of partitions of an inter­
val (m,j) into parts ai' a2,'" ,aN all of which are posi­
tive. In the modified formalism, these are replaced by 
the totality of discrete paths, starting at 'III and termi­
nating at j, and made up of the directed segments 
a fl" a2"" ,aN' When all the segments have the 
s~~ 'sign, the discrete paths from m to j become par­
titions of the in terval (rn, j). 

The discrete paths that have been introduced here are 
essentially a generalization of one-dimensional random 
walks. 7 In a conventional random walk, the steps could 
be forward or backward, but are all equal in magnitude. 
For discrete paths, on the other hand, the steps are 
variable. Moreover the general approach presented here 
for the solution of recursion relations is essentially a 
flow graph topological approach. 7 In a traditional flow 
graph approach linear recursion relations would be 
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(a) 

(b) 

(c) 

Specification Of Boundary Conditions 

Arbitrary 
__ ---------------m-----------------
00.0000 •• 0000000.000.0000000. 0 000 

II 12 13 14 is 16 

Mixed 
------j 3 < m < j 74 -----

0000 ••• 0000000000000000000 ••• 0000 

h~~ k~~ 

Final 
---m < il-----

Initial 
-m>j6-

0000000000000 •••••• 00000000000000 

II ~13L.J5is 

FIG. 1. The three basic ways of specifying the elements of the 
set,9 = hj.h •...• jJ. The boundary conditions are the values 
of b J",. O! = 1.2 •...• h. 

treated as an infinite set of simultaneous linear rela­
tions, and the problem is too difficult to handle. Our 
contribution consists of having utilized the functional 
dependence of the coefficients, to relate the flow graph 
topology of the problem to a much simpler underlying 
topology, that of discrete paths. The latter is relatively 
easy to handle. 

To set up the problem we write the general multi term 
homogeneous linear recursion relation with variable 
coefficients as 

N 

6 !?"'k(m)bm+.k=O, 
k=O 

(1. 1) 

where the coefficients g 'k(m) are arbitrary functions of 
the level m, and the numbers ak are integers assumed 
to be ordered according to 

(1.2a) 

with 

(1. 2b) 

Depending on how Eq. (1.1) is written r can take on any 
value between 0 and N. The order h of the equation is 
given by 

(1. 3) 

The boundary conditions we will be concerned with 
specify h different values of the solution bm for certain 
values of the index m, given by the elements of the set 

,9 ={h,h, ... ,jh}' (1.4) 

according to 

bJ",=AJ"" a=1,2, ••• ,h. (1. 5) 

The points on the real axis whose coordinates are given 
by j", will be referred to as "terminal points. " It is 
convenient to separate the study of boundary conditions 
into the three cases shown in Fig. 1. These are: 

(i) The terminal points are distributed in an arbitrary 
fashion. 

(ii) The terminal points form two separate sets of 
consecutive integers. If the sets are h to js andjS+l to 
jh' then for js < m <js+l' the boundary conditions are 
mixed, partly initial and partly final. 
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(iii) The terminal pOints are h consecutive integers. 
In this case, for m > jh the boundary conditions are ini­
tial conditions, while for 111 <jl they are final 
conditions. 

In Sec. II we will introduce the terminology of dis­
crete paths, how to operate on them, and their mapping 
into combinatorics functions. In Sec. III we develop the 
solution of linear recursion relations, and in Sec. IV 
we will analyze a special class of paths, those which 
are closed loops. A concrete example is worked our in 
the Appendix. 

II. DISCRETE PATH APPROACH 

A. Discrete paths and terminal points 

Consider a one-dimensional real space, which we take 
to be the x axis, a set of directed segments 

(2.1) 

and a set of terminal points 

(2.2) 

The elements of A are ordered by Eq. (1.2) and lz is 
given by Eq. (1. 3). From the elements of A, we con­
struct a new set A, which contains all the elements of 
A except the element aT = O. That is, 

(2.3) 

A point m on the real axis is said to be joined to a 
terminal point j, provided there exists a set of seg­
ments (01, 0z, .•. , (1) satisfying the following conditions, 

and 

I 

6 OJ =j -111, 
j =1 

OjEA, i=1,2, ••. ,l. 

The different points on the paths are given by 
j 

SI=II1, Si+l=6 Ok' SI+I=.1. 
k=1 

1. Zero length segments 

(2.4a) 

(2.4b) 

(2.4c) 

It is evident that, from a given path, we can derive an 
infinite number of essentially identical paths, all pass­
ing through exactly the same points on the real axis, by 
adding segments aT of zero length to the original path. 
The need to keep the element aT = 0 in the set of seg­
ments is in order to be able to join a terminal point to 
itself. As will be seen later on, this plays an important 
role in determining the boundary conditions associated 
with a given solution. When paths are eventually mapped 
into functions, all paths that only differ by the number of 
zero segments they contain must map into the same 
function. This restriction normalizes the solution and 
uniquely determines the boundary conditions associated 
with a given solution. If we artificially eliminate aT from 
the set of segments, rather than keeping it and render­
ing it ineffective, and use the set A instead of A from 
the beginning, we lose this vital information, on the 
normalization of the solutions. Having said this we will 
from here on only deal with paths which do not contain 
any zero segments, and justify this a posteriori by 
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i3 
Fundamental Paths pOnq(m,ia) For A={-2,+I} 

~ 
• • • • 
0 

'~ () m \ 
II '\ 

~ 
'\ / I 

0) 

~ ~ ~ 0 ~ 0 j ~ 
I 

0 

~ i2 • I 
I 

il • .; I • • • 
q 2 3 

n 2 3 6 4 4 4 

a 3 2 2 2 

oinitial point ointermedlate point 
• terminal point 

FIG. 2. An example of fundamental paths p~q(m,j",) for A 
= {- 2, + I} and mixed boundary conditions. m is the initial 
point, j", the terminal point, n the number of parts, and q 
labels the paths with the same value of m, j"" and n. 

choosing our mapping to be independent of the number 
of zero segments in a path. Thus except for the bath 
(j", ,j,J., the segments of a path will belong to A rather 
than A. That is, Eq. (2. 4b) will be replaced by 

(2.4d) 

2. Initial, intermediate, and terminal points 

A path starting at m terminates whenever it reaches 
one of the terminal points ja. Thus none of the inter­
mediate points of a path can be a terminal point, 

(2.4e) 

where l is the number of segments in the path. As for 
the initial point the situation is a little more subtle. 
Consider a path from in to ja with the intermediate 
points obeying Eq. (2.4e). If m is a terminal pointja, 
then the path terminates at its starting point ja and can­
not join to j". The one exception to this, is when (3 = a, 
for by terminating atja the path would have reachedj",. 
Thus for a path from m to ja we have the condition 

In *- ja unless (3 = a. (2.4f) 

It is important to note that the path (ja,j",) cannot have 
any closed loops, for then ja becomes an intermediate 
point as well, in violation of condition (2. 4e). 

3. Fundamental paths and closed loops 

The discrete paths joining In to j fall into two main 
categories according to whether or not they have closed 
loops. The paths without closed loops will be referred 
to as "fundamental paths" and labeled by two indexes n 
and q. n is the number of segments in the fundamental 
path, and q labels the different fundamental paths with 
the same number of segments. Paths with loops will 
have an additional index Ci, which will be used to classi­
fy the loops that are superimposed on the fundamental 
path. In Fig. 2 we give an example of a set of funda­
mental paths built up from the two segments of the set 
A={-2,+1). 

Corresponding to a given path p~q(rn,j), joining In to 
j, we introduce the vectors .1~. and S:!, by 
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Basic Differences Between Discrete Paths. 

• • • 
0 

1\ 

'~' '~' 1~'2 
:~4 3 A 3 4 3' 

5C): 
I 

5\ 6 2 
6 

~\ 9~IO ~7 oh o :7 

~ 8' I J, 
~8 • 18 .1111 .)8 

J j .I -' e' , 
Original Additian Exchanging Reordering 

of Seoments Positions 
o initial point ointerm.diate point 

• terminal point 

FIG. 3. From a given path we can generate other paths by 
three methods: adding segments, exchanging the positions (in 
space) of unequal segments, or reordering segments without 
exchanging their positions. 

(2.5a) 

and 

(2.6a) 

The components of .1~ are the segments of the path, 
and those of S~ are the coordinates of the successive 
points on the path. For a fundamental path Ci = 0, and 
I =n, thus 

.1~qU - m) = (01,02, ••• , On), 

S~.(m,j) = (Sj, S2,'" ,Sn, Sn.l)' 

4. Topology of paths 

(2.5b) 

(2.6b) 

The totality of discrete paths joining m to j, can be 
separated into subsets according to their topology. The 
paths in each subset have the same topology but differ 
in the ordering of their segments. 

Distinct fundamental paths necessarily differ in their 
topology. On the other hand, paths with loops may have 
the same topology and still differ by the ordering of 
their segments. From a given path, there are three 
basic ways of generating other paths, distinct from it, 
as shown in Fig. 3. These are: 

(i) adding segments, 

(ii) exchanging the positions of segments of different 
length, 

(iii) changing the ordering of segments having the 
same length but positioned differently. 

On the other hand, exchanging the ordering of two 
segments having the same length and position (two seg­
ments joining i to i + 3 for example) does not generate 
a distinct path. The addition of segments of zero length 
does not generate distinct paths either, as has already 
been mentioned. Methods (i) and (ii) above alter the 
topology of the path, while (iii) leaves in intact. 

B. The fusion and union of partial paths 

For the purpose of constructing and analyzing paths, 
it is convenient to introduce the symbol ® to indicate 
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The Fusion Operation 

• • • • 

o initial point o intermediate point 

• terminal point 

FIG. 4. The noncommutative fusion operation 0 on partial 
paths. 

the operation of "fusion" of two partial paths as shown 
in Fig. 4. A partial path does not need to end at a ter­
minal point. The fusion operation is noncommutative 
but will be assumed to be distributive with respect to 
the union operation. If the partial path Pab is obtained by 
taking the partial path Po and prolongating it by the par­
tial path Pb, then 

(2. 7a) 

Furthermore if Pi' i = 1,2, •.. ,n is a set of partial 
paths, then 

n n 

Po:;) U Pi = U Pa0Pi' (2. Th) 
i=1 i=1 

Using the fusion operation we can write a given path 
as the product of its segments. Thus for a fundamental 
path, for example, we have 

p~q(rn ,j):= (m, s2) 0 (S2' s3)0 • •• :;) (S ._I,S n)0 (s.,j), 

(2.8a) 

where (S;,SI+I) is the segment of the path between the 
points SI and s;+I' For a nonfundamental path with 1 seg­
ments we have 

(2.8b) 

We will designate by P(m,j) the set of all distinct 
discrete paths joining m to j subject to conditions (2.4a), 
(2.4d), (2.4e), and (2. 4f), 

p(m,j) ={p~ (m,j); n ENU - m), q:= 1, •.. ,qmax(n), 

0:=0,1,2,3, ••• } (2.9) 

where 

(2.10) 

and nl is a possible number of segments for a funda­
mental path joining m to j. When no paths joining m to 
j exist, P(m,j) is empty. In particular, if j" andja are 
two different terminal points, then 

(2.11) 

The subset of P(m,j) consisting of all paths having 
ak as their first segment, will be denoted by Pak(m,j). 
That is, 

2217 

p~.(m,j) E Pak(m,j) ¢:> {p~q(m,j) E P(m,j) and 01 =ak}' 

(2.12) 
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Since the segments ak are all different, then 

Pa.(m,j) () Po/m,j)=d. (2.13) 
t 

Furthermore since the first segment of every path 
joining m to j must be, like all the other segments, 
an element of A, then the set of all paths from m to j 
subdivides into N disjoint subsets, each containing the 
paths that start with the same segment. That is, 

P(m,j)= U
A 

Pa (m,j). (2.14) 
Ok E k 

Since the subsets Pa (m,j) are exhaustive and mutually 
k 

exclusive, there is a one to one correspondence between 
the elements of the right- and left-hand sides of Eq. 
(2.14). 

Using the fusion operation, the definition of Pa (m,j), 
k 

and the representation of a segment, we have 

(2.15) 

Since p(m +ak,j) is the union of all its elements, then 
the segment (m, m +ak ) fuses at the beginning of each 
element of the set P(m +ak,j) to produce the set Pak(m,j). 
Combining the above equation with Eq. (2.14), we finally 
obtain the basic result 

P(m,j)== U A (m, nz +ak)0P(m +ak,j). 
ak E 

(2. 16) 

C. The mapping of paths 

We can transform Eq. (2.16) into the recursion rela­
tion (1.1) by a mapping of paths into functions in the 
following way (see Fig. 5), 

(i) A segment (s I, S i+a ) is mapped into the function 
k 

fak(x) evaluated at Sf: 

(Sj,Sj+Qk)-fak(sj)' (2. 17a) 

(ii) The fusion operation 0 is mapped into the function 
multiplication operation 

8 

6 

4 

2 

o 

0-X. 

Mopping of Paths 

f'Sj+ak 
/0 

aki\~ =====>fok(s,) 
'os, 

• 

(2.17b) 

FIG. 5. The mapping that relates paths to combinatorics func­
tions and the solutions of recursion relations. 
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(iii) The union operation is mapped into the operation 
of summation 

U-6. (2. 17c) 

(iv) A segment of zero length is mapped into unity, 

(2. 17d) 

Condition (iv) is necessary to guarantee that the map­
ping is independent of the number of segments of zero 
length that the path contains, and consequently justifies 
our neglecting these segments when discussing paths, 

D. Combinatorics functions 

We define the functions F~a(lII,j) and C(m,j) by 

I 

F~(m,j)= n 16 (Sl) (2,18) 
/=1 I 

and 
amax 

C(m ,j) = 6 6 6 F~a(m-,j), 
"EN a=1 '" 

(2.19) 

where 0; and sl> i = 1,2,3, ... , l, are the components of 
A~(j - m) and S~q(m,j), respectively. Due to the com­
binatorial way in which the s; are evaluated, we refer 
to C(III,j) as a combinatorics function, Using Eqs. (2,8), 
(2.9), and the fact that a set is the union of all its ele­
ments, we obtain the mappings of the path P~a(m,j) and 
the set P(m,j) as 

p~(m,j) - F~(111 ,j), 

and 

P(m ,j) - C (111, j), 

(2.20a) 

(2.20b) 

Due to the commutativity of the multiplication of the 
functions fa (s/), all paths having the same topology map 
into the sa~e function Fna(lIl,j), 

If there are no paths joining 111 to j, then, on the one 
hand P(III,j) is empty, and on the other hand, Eq, (2,19) 
gives C(m ,j) = O. Hence 

0-0. 

Combining Eqs. (2.11) and (2. 20c) we have 

C(j""ja) =0 for (]I * 13. 

(2.20c) 

(2. 21a) 

On the other hand, for (]I = f3, the path joining j a to j a 
exists, has one segment of length zero, and no loops. 
Thus the set P(ja,ja) contains one element P~1 (ja,ja) 
and according to Eqs. (2. 17a) and (2. 17d), this maps 
into unity. Hence 

(2. 21b) 

This will actually determine the normalization of the 
solution. Combining the above two equations, we have 

(2.22) 

Finally by making use of Eqs. (2.17) and (2.20) we find 
that Eq. (2.16) maps into 

(2.23) 

III. LINEAR RECURSION RELATIONS 

The preceding analysis provides a general solution for 
linear homogeneous recursion relations with nonconstant 
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coefficients and arbitrarily specified boundary 
conditions. 

A. General solution 

Theorem: The general solution of the recursion 
relation 

bTl! = 6 fa (111 )bm+a , 
a

k 
EA k k 

subject to the initial conditions 

bia=Aia:' (]I=1,2, ••• ,lz, 

is given by 
h 

bm =6 Aj C(m,ja). 
ex=1 Ol 

(3.1) 

(3.2) 

(3.3) 

Proof: Substituting Eq. (2.23) in Eq. (3.3) we obtain 
h 

bm = 6 Aj 6 fa (m)C(m +ak,ja)' 
a=1 "ak EA k 

(3.4a) 

Since the summation over ak and (]I are independent of 
each other, we can exchange them to obtain 

h 

bm = 6 fa (111)6 Ai C(m +ak,ja), 
ak (~A k a=l O! 

(3.4b) 

and making use of Eq. (3.3) one more time we obtain 
Eq. (3.1). As for the boundary conditions, Eq. (3.3) 
gives 

h 

bia = 6 Ajex CUa,j,,). 
a=1 

Substituting Eq. (2.22) in Eq. (3.5) gives back Eq. 
(3.2). This comples the proof of the theorem. 

B. Boundary conditions 

(3.5) 

We will discuss the three types of boundary condi­
tions separately. 

1. Arbitrary specification: In this case the boundary 
conditions b i(Y. are specified at lz arbitrarily distributed 
points ja as shown in Fig. 1 (a). The main characteristic 
of the resulting solutions is that for every value of 111 

there are in general, an infinite number of loops, and 
the loops can be infinite in length. The usefulness of the 
method in this case depends on the speed of conver­
gence of the infinite series giving the combinatorics 
functions. Each term in the series corresponds to one 
path. 

2 . ."vlixed s/Jecijication: In this case the values of j" 
separate into two sets of consecutive integers, 
(jj, ... ,.15 ) and Us+!>'" ,.1h) as shown in Fig. l(b). For 
III < .11 and 111 > jh the situation is not very different than 
the case of arbitrary specification discussed above. 
But the region js < m < js+I' is interesting, and of practi­
cal importance. The boundary conditions, when m is in 
this region, become partly initial and partly final, and 
we refer to them as mixed. 

Since the recursion relation is of order h one needs 
all the h boundary values bia' (]I =1, 2, ... ,h, to obtain 
a unique solution. Thus there must be paths terminating 
on everyone of the .1a's. But since no path can have a 
terminal point as one of its intermediate points, then 
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to reach the terminal points it and jh we need segments 
having the values a.=it - (js +1) and a.=jh- (js.l-l), 
respectively. Since js -it = (s -0 and (jh-jS.I)=h - (s 
+ 1), then 

a. = - s, a. = h - s, (3.6a) 

and 

a.- a.=h. (3.6b) 

The above equations guarantee that, in general, every 
terminal point can be reached by a path starting at m, 
and consequently that there are h arbitrary constants in 
Eq. (3.3). To find out whether the specification of the 
boundary conditions is compatible with the recursion 
relation for a specific problem, we need to determine 
whether Eq. (1. 1) can be rewritten in the form (3. 1) 
with the setA containing the elements a. and a •. Equiva· 
lengtly we need to determine whether Eq. (1. 1) can be 
rewritten in such a way as to include elements a., a_, 
and ar = 0 in the set /T. As will be seen shortly this is 
not always possible. 

Comparing Eqs. (1.2) and (1. 3) with Eqs. (3.6) we 
find that the only way to include both a. and a. in A is 
to set 

(3.7) 

Once the value of ao is determined, then the values of 
all the other segments are also determined through Eq. 
(1. 1). Due to Eqs. (1. 3) and (3. 6b) this automatically 
sets aN =a •• On the other hand, there is no guarantee 
that among the remaining segments there is one of 
length zero. Thus this is the crucial test of compati­
bility of the boundary conditions with the recursion 
relation. 

When there is compatibility, the main characteristic 
of the solutions is that all paths are bounded, from below 
by jl and from above by jh' No path can bypass the lower 
set of terminal points since the most negative segment 
is ao == - s, and thus cannot make the (s + 1) downward 
jump which would have been necessary to bypass. Sim­
ilarly the largest positive segment is aN = h - s and can­
not make the (h - s + 1) jump necessary to bypass the 
upper set of terminal pOints. A direct consequence of 
this is that the number of fundamental paths in this 
case is finite. On the other hand, the closed loops, 
even though they are limited to the region Us + l,js.1 
- 1] can have an infinite number of segments. An il­
lustrative example is solved in the Appendix. 

3. Initial and final specification: In this case the co­
ordinates iOi of the terminal points are h consecutive in­
tegers as shown in Fig. 1 (c). Thus the boundary condi­
tions are initial for m > jh and final for m <jl' 

(a) Initial conditions: In order to have paths starting 
at m > j~ reach all the terminal pOints; we need a seg­
ment a.=jl- Uh + 1) =- h. In addition we need a seg­
ment of length zero. From Eq. (1.3) it is seen that both 
these requirements can be satisfied by chOOSing ao =a. 
=- h, leading to aN=O. Hence the boundary conditions 
are compatible with the recursion relation. Since all the 
elements of A are negative in this case, then the coordi­
nates SI of the successive pOints on the path are de-
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creasing functions of i. Consequencely no closed loops 
are pOSSible, and each path from m to j", determines a 
partition of the interval (j"" m) with the first part great­
er than jh- j",. Hence this formalism reduces to that de­
veloped, in Ref. 1, for the case of initially specified 
boundary conditions. 

(b) Final conditions: To reach all terminal points from 
m < it, we now need a segment a. =j~ - (jl - 1) == +h. 
This and the requirement of having a segment aT = 0 can 
both be satisfied by choosing ao =aT = 0 which leads via 
Eq. (1. 3) to aN =a. == + h. The compatibility of the 
boundary conditions with the recursion relation is thus 
guaranteed. Since the elements of A are now all posi­
tive, Sl is an increasing function of i. Thus again no 
closed loops are pOSSible, and each path from m to j", 
determines a partition of the internal UOI' m) with the 
first part greater than j ex - jl as in the formalism of 
Ref. 2. 

IV. ANALYSIS OF CLOSED LOOPS 

As an illustration of the technique of evaluating dis­
crete paths with loops, we consider the very simple, 
but typical, problem of a three-term recursion relation 

bm=f+l(m)bm+1 +f.l(m)bm_l , 

subject to the boundary conditions 

b j =Aj and b j =AJ . 
I I 2 2 

(4.1) 

(4.2) 

The setA contains two elements, A ={- 1, + I}. Thus 
corresponding to every point nI, included between jl 
and jz, there are only two fundamental paths; one joining 
it to it and the other to j2' 

To these fundamental paths we can adjoin closed loops. 
The basic building block of these closed loops, in the 
special case considered here, is a circle passing 
through two successive points. We will designate by 
An(i, i + 1) a closed loop having n circles passing through 
the points i and i + 1, 

A(i, i +1) = (i, i +1)0(i+ 1, i), 

A(i +1, i) = (i +1, i)0(i, i + 1), 

An(i, i + 1) =A(i, i + 1)%)An- l (i, i + 1). 

Using Eqs. (2.17) we find that An maps as follows: 

An(i,i+l)~ 

An(i+l,i)~ ~n(i,i+l), 

where 

W, i + 1) =f+1 (i)f.1 (i + 1). 

(4.3a) 

(4.3b) 

(4.3c) 

(4.4a) 

(4.4b) 

The set of all closed loops which are made up of cir­
cles passing through the points i and i + 1 and having i 
as initial point will be denoted by A(i, i + 1), 

A(i, i + 1) = {A "(i, i + 1); n = 1,2, ... , co}, 

or equivalently 

A(i,i+1)= u An(i,i+l). 
n=1 

(4.5a) 

(4.5b) 

The set A is graphically represented by a dark Circle, 
as shown in Fig. 6, and maps as follows: 
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/" ·fh ~ 0 0 I :U C!J)UOJU:., i)U = 
V 

, U ,2 U " U " U = A 

{ + {2 + {' + {' + fe 
n::1 

FIG. 6. The graphic representation of the set A, its elements 
An, and its mapping. 

( .. 1) ( .. 1) ~ t n(·· 1) W,i+1) 
A z,z+ =>T/ Z,Z+ =L1 s Z,Z+ =1- t(· ·+1)' 

n=1 s Z, Z 

where in performing the sum we have assumed that 
IW,i+l)! <1. 

(4.6) 

The set of closed loops which is next in complexity, 
is the one formed by adjoining circles passing through 
i - 1 and i to circles passing through i and i + 1. We 
denote the set of all loops thus formed by r" (i - 1, i, i 
+1), where C1 =-, 0, or +, depending on whether the 
loop is entered from the fundamental path at the point 
i - 1, i, or i + 1, respectively. r" can be divided into 
subsets each of which contains the loops which have the 
same topology. The loops in each subset differ by the 
ordering of their segments. The subset r~m(i - 1, i, i 
+ 1) contains all loops which are made up of n circles 
\(i - 1, i) and m circles A(i, i + 1). The graphic repre­
sentation of the set r" and its subsets r~m is shown in 
Fig. 7. 

The elements of the subset r~m will be denoted by 
Y~ml' and they all map into the same function, 

Y~ml(i - 1, i, i + 1) - ~n(i - 1, iHm(i, i + 1). (4.7a) 

Thus the subset r~m maps into 

rn~(i - 1, i, i + 1) - d~m~n(i - 1, i)~m(i, i + 1), (4.7b) 

where d~m is the number of elements in the subset r~m' 
Since the subsets r~m are exhaustive and mutually ex­
clusive, then r" maps according to 

n m 

(4.8) 

For C1 = 0, the loop is entered through its central point 
i. In this case d~m is the number of ways in which we 

8 O 0 ~ 0 0 0 

= 'U U~U .... UOUO' UOu· .. u 
o 0 0 

o point of entry to closed loop 

FIG. 7. The graphic representation of the set rO and its topo­
logical subset r~m' 
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708 

4~3 
U 7@ .. 48 Sf}J5 

o point of entry to cloled loop 

3~4 
8@j7 

FIG. 8. The graphic representation of the topological subset 
rR2 and its six elements yg21' 1 1,2, ..• , 6. 

can order n + m circles, n of which are of one kind and 
m of another kind (see Fig. 8). Hence8 

dO _ (n +m)! 
nm- n!m! ' (4.9a) 

and the summation over nand m in Eq. (4,8) is from ° 
to 00 subject to the condition n +m?o 1. For C1 =-1, the 
point of entry to the loop is i - 1, and hence the 11/ upper 
circles A(i, i + 1) can only be reached from the n lower 
circles \(i - 1, i). Hence d;m is the number of ways we 
can adjoin }/I circles to n ordered circles (see Fig. 9). 
This is the number of m-combinations with repetitions 
of elements of n types, and is given by8 

d- _ (111 + n - 1)! 
nm - m! (n - 1)! • (4.9b) 

Furthermore in the summation of Eq. (4.8) III varies 
from 1 to infinity and In from ° to infinity. Similarly 
for C1 = + 1, the point of entry is i + 1, m varies from 1 
to infinity, n varies from ° to infinity, and 

d+ _ (n + m - 1) ! 
nm- n!(m-l}! 

(4.9c) 

Using Eqs. (4.9), and the above results on the limits 
of the summation of nand m for the different values of 
C1, we have, 

(4. lOa) 

~ ~ (m+n-1)! ~n(i-1,i)~m(i,i+l), (4.10b) 
(]-<i)=~ ~ m!(n-1)! 

n=1 m=O 

( 1\, S~7 ~~ 6~7 : I ,) 
42i 3'5 

(r( U 
7~)8 

U 
\\ 

f'(ll i~B 3\ II :2:8 '0JJ ~7 ',\,J 

r2~ Y221 U Y222 U Y223 

I:) point of entry to closed loop 

FIG. 9. The graphic representation of the topological subset 
r 22 and its three elements 1'221, l=1,2,3. 
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i+1 

O=A(i,i+l) =>17(i,i+1)= {(i,i+il 
1-{!i,I+I) 

1 

'~'8=r1H'i'i+')=>"'+(i)= ~(I,i+l) { 
1 (H ,i)- Ii,i+il 

H 

i+1 

i 8=r~H i 1+1)= (i)= {U-I,iJ+{!i,i+il 
, , <{, 1-{!i-I,il-{Ii,I+il 

H 

1+1 

8 {(H,i) 
1 =fCI-I,i,i+il-a:.(i)= {o 0 {r 0 ) 

1- (1-1,1)- 1,1+1 
H 

{(H,i)= f+I(I-I)f-I(i) 

{!i,i+l) = f+I!i)1-I(i+1) 

I!) point of entry to closed loop 

FIG. 10. Summary of the graphic representations, symbols, 
and mappings of, up to second order, loop sets arising in the 
study of the recursion relation bm = f+l (m)bm+l + fool (m)b m_1• 

(0) ~ ~ (n+m-1)! t"(O 1 O)tm(O 0+1) (4 10) 
a.I =0 LJ n!(m-1)! ~ 1- ,1., 1,1 • • C 

n:tO m=l 

Making the change of variable m - q = m +n in Eq. 
(4. lOa) we obtain 

~ 

=6 (W-1,i)+W,i+1)]Q. 
Q=I 

Assuming that I ~(i - 1, i) + Hi, i + 1) I < 1, the above sum 
adds up to 

(
0) Hi-1,i)+W,i+l) 

ao 1 = 1 _ W _ 1, i) - Hi, i + 1) (4. 11 a) 

Similarly we find that 

o W-1,i) 
a..(l) = 1- W-1,i)- W,i+1)' 

(4.11b) 

and 

(
0) W,i+1) 

a.l = 1 _ W _ 1, i) - W, i + 1)' (4.11c) 

It is interesting to note that 

ao (i) ==aji) +a.(i). (4.12) 

4 • 

P(I,O) P(2,O) P(3,O) P(I,4) P(2,4) P!3,4) 

oinJtial point otnt.rmedlate point • terminal point 
1J,r;] point of entry to closed loop 

FIG. 11. The six sets of paths arising in the solution of the re­
cursion relation bm 01+1 (m)bm+l + fool (m)bm_1 subject to the mixed 
boundary conditions specification}t cc 0, }z - 4. 

A summary of the notation used, and results obtained, 
in this section is given in Fig. 10. 

For loops of higher order, the analysis becomes 
correspondingly more complicated, and we will not go 
into it here. Instead, in the Appendix, we will apply 
the results already developed, for up to second order 
loops, to obtain an exact solution for the case jl = 0, 
j2 =4. 

V. CONCLUSION 

The solution of linear recursion relations has been 
shown to be related by a mapping to the problem of 
joining two points by a discrete path made up of a pre­
determined set of directed segments. 

We have found that the way in which the recursion 
relation should be written depends on the way in which 
the boundary conditions are specified. For initially 
specified conditions, each term should be given in terms 
of lower level terms, while, for finally specified condi­
tions, each term is written in terms of higher level 
terms. In both these cases we found that the specifica­
tion of the boundary conditions is compatible with the 
recursion relation, that the paths have no closed loops, 
and that the present approach using paths reduces to 
the formalism using partitions. 1,2 

For mixed boundary conditions, part of the conditions 
are specified initially and part finally. We have found 
that not all ways of effecting the separation into initial 
and final conditions is compatible with the recursion 
relation. When there is compatibility, the paths are 
bounded by the initial conditions from below and the 

TABLE I. The sets of discrete paths P(m,j,,) and related combinatorics functions elm,},,) involved in the evaluation of bm for 1 
:S m:S 3. "I" is the identity element with respect to the operation of adjoining 0. 

rn }", P(m,}",) 

1 0 [Iu r(1,2,3)]0 (1,0) 

2 0 [I u rO(l, 2, 3)]0 (2,1) 0 (1,0) 

3 0 (3,2)0 [IU rO{1,2,3)]0 (2,1)0 (1,0) 

1 4 (1,2)0 [IU rO(1,2,3)] 0 (2,3)0 (3,4) 

2 4 [Iu rO(l, 2, 3)]0 (2,:i) 0 (3,4) 

3 4 [Iu r+(1, 2, 3)1 0 (3,4) 
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[1 + <Too (2) ]fool (1) 

[1 + CTo(2) ]fool (2) fool (1) 

fl (3)[1, CTo(2)l!_1 (2)j_l (1) 

f+l (1)[1 + CTo(2)l!+1 (2}f+l (3) 

[1 + CTo (2)l!+1 (2)f.1 (3) 

[1 + CT+ (2) ].t.l (3) 
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final conditions from above. None the less they may 
have an infinite number of loops, and these loops may 
be infinite in length. 

Finally we have worked out a specific example of 
mixed boundary conditions to show how, in practice, 
discrete paths can be handled, classified, and summed. 
In more complicated cases one may decide to sum 
paths up to a given order, that, is develop a perturbation 
theory approach. From the point of view of insight into 
a given problem, this remains far superior to a purely 
numerical approach. 

APPENDIX 

Given the recursion relation 

bm=i.l(m)b m• 1 +i_l(m)b m_l , 

subject to the boundary conditions 

bO=AO and b4=A4' 

(A1) 

(A2) 

we want to find an explicit expression for bm, in the 
range 1,,; In ,,; 3. The relevant paths are shown in Fig. 
11, and are given with their corresponding combinator­
ics functions in Table I. 

To obtain numerical values for the combinatorics 
functions we have to make a specific choice for the 
coefficients i.l (111) and i-I (m). We choose 

i.1 (i) = i ! 1 and i-I (i) = 1. (A3) 

Then, according, to Eq. (4.4b), 

W-1,i)=~ and W,i+l)=~l' z z+ 

When substituted in Eqs. (4.11) these lead to: 

a.(i) ='2 i. l' a.(2) = 2, 
1 -1-

. 2i + 1 
ao(z) ='2 . l' ao(2) = 5, 

1 -1-

( .) i + 1 
a_ z = '2 . l' z -z-

The resulting values of C(m,j",) are: 

C(1,0)=4, C(2,0)=6, C(3,0)=6, 

C(1,4)=t, C(2,4)=t, C(3,4)=t. 
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(A4) 

(A5a) 

(A5b) 

(A5c) 

(A6) 

Combining Eqs. (3.3) and (A6) we obtain the required 
solution in the form 

b1 = 4Ao + t A4' 

b2 = 6Ao +tA4' 

b3=6AO+tA4' 

(A7a) 

(A7b) 

(A7c) 

As a check on this result we note that if the specific 
form of the coefficients i.1 andi_!> as given by Eq. (A3), 
is used, Eq. (A1) can be rewritten in the form 

(A8) 

If in addition we use as boundary conditions, bo =AO and 
bl = 4Ao + iA4' Eq. (A8) reproduces the values of b2, b3, 
and b4 as given in Eqs. (A7b) , (A7c), and (A2), 
respectively. 

Finally, by way of a numerical example, if AO = 1 
and A4 = - 12, then Eqs. (A 7) give bl = 1, b2 = 0, and b3 

=- 3. 
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Radial wavefunctions are defined for the 11 -dimensional scattering problem (11 > I) with spherical 
symmetry by conditions of regularity at the origin or by conditions of behavior at infinity. The existence 
of translation kernels can therefore be discussed in both instances. The problem of representing regular 
solutions appears to be essentially different from that of representing irregular solutions. The essential 
difference originates from the type of domain used in the representation: It is bounded in the first case 
and unbounded in the second. If one can still compare the ranges of validity of the two types of 
representation when one is dealing with a scalar situation, upon proceeding to a matrix situation, a 
comparison is no longer possible. 

1. INTRODUCTION 

Our first intention was to bring new elements into the 
discussion of the role of the translation kernel in the 
potential scattering discussion begun in Refs. 1-3. The 
first motivation for seeking new elements was noted in 
Ref. 3: it was the existence of a connection between the 
partial wave translation kernel and the partial wave 
Green function. This connection appears when the 
equations 

if!l(X) = <PI (x) + J K(l, X,Y )<Pli.y) dy, (1 ) 

</JI(X) = <PI (x) + J G(l, k; x,y )V1(Y )<PI(Y )dy (2) 

containing <PI, the radial solution for the "reference" 
Schrodinger equation, and </JI, the radial solution for the 
complete equation, are considered simultaneously. A 
second motivation was the tecllOique due to Blazech. 4 

From the partial operator KI one can construct a global 
transformation operator /( using any of the two equations 

K(X,Y; nl • n2) =6 (2l + l)K I(x ,Y )P1[cos(nt . n2)] (3a) 
I 

or 

K(x, y) =6 (2l + 1)K1(x,y )Pz[cos(x· y)]. 
I 

(3b) 

Along these lines in Ref. 2(a) we investigated the con­
ditions for the existence of K z for the three-dimensional 
potential scattering problem when the potential possess­
es spherical symmetry. A first extension of the study 
was obtained in Ref. 2(b) where the many (finite)­
channel scattering problem was solved. A second possi­
ble extension may be investigated. It is realized when 
one wants to consider the n-dimensional problem (n> 0). 
In the study the separation of the n = 1 case from the 
n > 1 cases becomes necessary. While for n > 1, a 
radiation condition emerges as a prerequisite, 5 in the 
n = 1 case, such a condition cannot be verified. The 
n == 1 case was therefore separated and studied in Ref. 
3. However, in Refs. 2 and 3, we kept the restrictive 
condition that the number of channels remain finite. The 

a)Chercheur IISN. 
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original purpose of the present paper was therefore to 
subject the n > 1 dimensional scattering problem to 
discussion and to present indications on how the restric­
tion upon the finite number of channels could be re­
moved. However, during the work it became more and 
more evident that the representation of regular solu­
tions (Gel'fand-Levitan representation) and of irregular 
solutions defined by an asymptotic condition (Marchenko 
representation) were not two parallel problems. Con­
sequently while considering possible extensions to the 
cases considered in Refs. 2(a) and 2(b) the interest 
shifted to the differences between the two types of 
representations. Reasons for the differences were 
brought to light. They were two in number. The first: 
the Marchenko contour is not closed whereas the 
Gel'fand-Levitan is closed. This latter is built up of 
four segments and it is one of these segments which is 
troublesome. The second: the essential element for the 
discussion, the Riemann solution itself, has different 
analytical properties in the two cases. As a by-product 
of our study, appears the necessity of choosing a com­
plete system of functions which may lead either to a 
finite set of differential equations or to an infinite set 
of equations which can be truncated. In Ref. 6 this 
problem of truncating an infinite number of channels 
has received some consideration. In the results pre­
sented here the condition for the existence of a transla­
tion kernel are expressed in terms of requirements 
imposed on the matrix elements of the potential between 
two channels. 

To avoid any misunderstanding we want to emphasize 
that we have made no attempt in this paper to apply 
hyperspherical systems to the many-body problem. 
(The poor convergence of hyperspherical systems7 and 
the lack of "compactness" of the Lippman-Schwinger 
equation forbid the use of translation operators in the 
many-body problem. 

The present paper is divided into four sections: The 
Introduction is in Sec. 1, the study of the radial equa­
tion for the n-dimensional Schrodinger equation is found 
in Sec. 2 where the condition for the existence of the 
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solutions is stated. In Sec. 3, translation operators 
are applied to the n-dimensional Schrodinger equation, 
while in Sec. 4 the existence of translation operators 
for the matrix n-dimensional radial equations are 
discussed. 

To fix the notations throughout this work the number 
n denotes the dimension of the space. 

As usual with any function of one or many variables, 
one associates its absolute value by I - I I I. To each 
matrix A, one will associate the matrix of its absolute 
value IA I defined by 

IA I iJ = IAu I , 
and its Marchenko's norm 

IIA II =' sup 6 IAu I· 
i j=1 

2. THE RADIAL EQUATION 

One considers the time independent n-dimensional 
Schrodinger equation 

6.n</J(x) + [J,,2 - Vex) NJ(X) = O. 

In Eq. (4) one has 

n a2 
6.n = 6-:;:::z 

;=1 aX i 

(4) 

and </J(x) denotes the n-dimensional scattering wave. 
SUppose the interaction potential Vex) possesses spheri­
cal symmetry and satisfies the following conditions,,8; 
At the origin and at infinity 

.ror s I V(s) I ds < 00 and .C I V(s) I ds < 00. 

Then with a sufficiently large r = Ix I, one can find a 
solution of Eq. (4) of the form, 10 

,,,(x) - exp[i(k. x)] +/(k e) exp(ikr) + 0 (r)-(n+O /2 
'f - , r(n-!)/2 • 

An alternate way of posing the problem is to seek a 
solution u(x) = I/i(x) - exp(ik. x) which satisfies a 
finiteness condition: 

(5) 

I r(n-l) /2u (x) I ~ const, (6a) 

and verifies uniformly in all directions the Sommerfeld 
radiation condi tionl !, 5 

l,:~ r'~" "~ :r U (x) - iku (x) t ~ o. (6b) 

This condition is not satisfied by the one-dimensional 
Schrodinger equation solution. 3 The Sommerfeld con­
dition means, in physical terms, that no energy can be 
radiated in from infinity. 11 A more satisfying version 
of conditions 3(a), 3(b) was given by Rellich,12 

lim r ds\f</J(X)-ik</J(X)!2 =0. (6c) 
R-"j':c'=R r 

Condition ([(6a) and 6(b)]='6(c)} expresses simply 
the characterization of the wave function I/i(x) as a 
vehicle for the energy. It does not tell whether I/J(x) is 
a solution of a Schrodinger equation for an energy 
operator H, or whether it is not. The conditions for the 
existence of H are not hard to satisfy (see Ref. 13); but 
even if H does not exist, condition (6) may be valid. 
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In what follows, we use Eq. (5) without assuming the 
existence of H. Let us set 

k·x=krcose. 

The n-dimensional plane wave expansion follows: 

(2) (n-2) /2 
exp(ikr cose) = kr ra(n - 2)] 

xE ip(P + n; 2)Jp+(n_2)/2(kr) 

X c~n-2) /2(cose), (7) 

with the Gegenbauer polynomial C ;"-2) /2 (cos e), see Ref. 
14, defined by the generating function 

~ 

6 r Pc;n-2) /2 (cose) = (1 _ 2r cose +r2r(n-2) /2. 

1>=0 

Gegenbauer polynomials are related to Jacobi poly­
nomials by (A + 1 )pC;(x) = (2A)pP;''' (x). 15 Therefore, ex­
pansions may be found in the literature which employ 
the Jacobi polynomials. 16,17 

Obviously C!/2 =Pp , see Ref. 14. 

Since 

Jr~~- Jrr (:ry/2~in kr- (V-1)i)(18), 

one has 

1 (2)1/2 [ ( n-3)1TJ ~!;,(n-2) /2 --;rn. ky sin kr - P +-2- '2 . 

One introduces hyper spherical Bessel functions by 

(2) (n-2) /2 
jp(kr)=1r[1(n- 2)] kr Jp+(n_2)/2(kr). 

They behave asymptotically as 

jp(kr)-1r[1(n _ 2)1(:r) (n-2) /2 (}n-) (:r) 1 /2 

x sin ~?r -0 + n; 3) i]. 

(8) 

Using Eq. (8) the plane wave expansion of Eq. (7) reads 
as 

exp(il?r cose) = 6 (2p +n - 2Wjp(hr)c~n-2) /2(cose). (9) 
p 

To obtain the scattering amplitude, the asymptotic 
form for Eq. (9) is used, 

1 (;2~ 112(2 )(n-2) 12 
(</Jpw) - ::r7!' L; (2p +n - 2)iP -k z:-

r-~ 7f P r "r 

xr[!(n- 2)li ~++r- ~ + n; ')ill 
- oxP{+{kr - 0 + n; ')il»c;~""(,O"). (10) 

In Eq. (10) we have used the subscripts PW to denote 
the words plane wave. From Eq. (10) we get </JSCATTERED 

defined by the equation 

exp(ikr) 
?jIsc = r(n-15 /2 I(k, e); 

by identification the transition amplitude I(k, e) is 
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obtained, 

.2(n-5)/2 r[(n-2)/2] 
j(k, £J) =z---;m- k(n-!) 72 6 (2p +n - 2) 

7T P 

xexp[i(n- 3)7T/4](Sp-1)e~n-2)/2(cos£J). (11) 

Equation (11) can be assumed therefore from the scat­
tering radiation condition without the adjunction of the 
assumption that some Hamiltonian exists. 

In our work, a Hamiltonian is assumed and Eq. (11) 
comes from the partial wave decomposition of the scat­
tering solution in a way similar to that followed for the 
n = 3 dimensional case. 

A time dependent Schrodinger equation is considered, 

. a ff2 
zff at cp(x,t) = - 2M ~n<I>(x, t) + U(x)<I> (x, t). 

We write CP(x, t) = I/J(x)g(t) to obtain the stationary 
equation, 

ff2 
- 2M ~nI/J(x) + U(x) = EI/J(x) , 

from which the reduced equation results, 

~nI/J(x) + k 2 I/J (x) - V(x)I/J(x) = O. 

Let us assume a special form for the interaction V(x), 

V(x) = V( Ilx II). (12) 

We indicate now the behaviors of the radial functions 
used in the scattering descriptions when r goes to zero. 

For the Bessel and Newman functions, as r goes to 
zero 

Jp+1!2-rP+1I2 or Jv-rv, 

Np+1!2-r-P-1/2 or Nv-r-v• 

When n is even, v =p + (n - 2)/2 is an integer and the 
Newman function N v is defined by lim e_o (l/e) 
x [Jv+e - (- l)vJ_v_e]' 

For hyperspherical Bessel functions the behavior at 
the origin is 

(1) (n-2) 12 
J. - - J _r-(n-2) 12rPrnl2r-l - r P P r p+(n-2) 12 - , 

1) - - N - r-(n-2) 12r-Pr-nI2r+l- r-(p+n-2) (1) (n-2) 12 
P r p+(n-2)/2 , 

while for the Riccati-Bessel's it is 

Up - jpr (n-1) 12 - r p+(n-1) 12, 

V p = 1)pr (n-t) 12 - r-P-(n-3) /2. 

We had introduced previously the hyperspherical 
Bessel functions. This is their equationI8.19; 

(13) 

[~ + (n- 1) !!:.... +k2 _ p(p +n - 2)] jp-o (14) 
dr2 r dr r2 1)p - • 

To arrive at the analogous one for the Riccati­
Bessel's we use the reducing factor j(r) =r-(n-O 12 and 
we get the reduced equation 

[
d

2 
k2 _ p(P +n - 2) __ 1_< -1)( _ 3)~UP-0 

d 2 + 2 4 2n n -. r r r vp 
(15) 
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It is obvious that the product of the behaviors of up, v p 

at the origin, namely the product [p + (n - 1)/2] 
x [_ p - (n - 3 )/2] should equal the coefficient of r-2 in 
Eq. (15). 

Together with the Riccati-Bessel functions we should 
introduce the Riccati-Hankel functions which behave 
like imaginary exponentials when r goes to infinity. 

After these preliminaries we can concern ourselves 
with the solutions for the radial equation 

(16) 

with v=p + (n - 2)/2. In the discussion of Eq. (16) the 
authoritative treatment of Newton in Ref. 20 is followed. 
Regular and irregular solutions I/J(p,k,r), j(p,±k,r) 

are respectively defined by conditions at the origin and 
conditions as r goes to infinity. We write the integral 
equations which define these solutions, 

cp(p,k,r) 

=U(P,k,r)+.r g(p,k;r,s)V(s)cp(p,k,s)ds, (17) 

j(p, ±k, r) 

=w(p, ±k, r) - .Cg(P, k; r, s )V(s)j(p, ± k, s)ds, (18) 

where g is the Green function for Eq. (15). 

Equation (16) including the factor (v2 - t) allows the 
use of Levinson-Newton upper bounds21 which read, 
with the notation 

k = x + iy and v = a + ib, a > 0, 

Iu(p, k, r) I ~ ell +~k Ir] .+1/2 exp( Iy Ir), 

[
1 + Ik IrJ .-1/2 

Iv(p, k, r) I ~ e r exp( Iy Ir), 

g(p, k; r, s) ={u(p, k, r)v(p, k, s) 

- u(p, k, s)v(p, k, r)}jWr(p, k), 

where Wr(p, k) is the Wronskian of u and v, 

1 [r J.+1/2 
Ig(p,kjr,s)1 ~e IWr(p,k) I 1+ Iklr 

[1 + Ik IS] a-1/2 
X exp( Iy Ir). 

s 

With these bounds we can obtain the existence for the 
regular and irregular solutions provided that 

.r IV(s)1 ds <00. 

3. THE TRANSLATION KERNEL (UNCOUPLED 
EQUATIONS) 

Having established the existence of regular and ir­
regular solutions for the reduced radial equation, we 
turn to the existence of translation kernels. 

While the existence of the solutions depends on prop­
erties of the Bessel solutions which do not discriminate 
between values of p, the problem of the existence of the 
translation kernel is dependent upon the properties of 
the Legendre functions, with an order p which can be 
either an integer or half an integer. 
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The translation kernels are used as in Refs. 1-3 
either for the representation of the irregular solutions 
f(f,±ll,r), 

f(P, ± 1<, r) - exp{± (illr)} expi[ (n - 3)7T/4] expip7T/2, 

or for the representation of the regular solution 
(solution which behaves at the origin as a Riccati­
Bessel). 

We introduce first the operator 

L(x) = ~ _ (p(p +n - 2)) _ (/I - 1)(n- 3) 
dx2 x 2 4x2 

d2 A(A + 1) 
= dx 2 - x 2 

where we have defined A = lJ - i =p + (n - 3)/2. 

The translation kernel K(x, y) is the solution of the 
Darboux equation! 

L(x)K(x,y) =L(y)K(x +1') + V(x)K(x,y) 

(19) 

with appropriate boundary conditions which depend upon 
whether the regular solution or an irregular solution 
is represented. These conditions are: 

Irregular case 

(Marchenko) 

limKM(x,y) 

y>x 

ReKular case 

(Gel' fand- Levitan) 

limKG(x,y)=O 
y~O 

KG(x, x) = i fox V(s )ds 

x?'y 

(20) 

The kernels K(x,1') are the solutions of integral equa~ 
tions which incorporate their boundary conditions. 3 

To find these integral equations one uses Riemann's 
method. LetR(x,1';s,u) be the solution of the equation 

L(s)R(x,1'; s, u) =L(u)R(x,y; s, u) 

with the conditions 

R (x ,y ; x, y ) = 1, 

aR aR 
when x +y =u +s, as au 

oR oR 
3$=- au' when x-y=u-s. 

(5 ) 

(O,x+y) 

0,(Hy)/2) 

(O,x) 

o 
(y ,0) (,+y,O) (u) 

FIG. 1. Marchenko domain. 
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(5 ) 

u=y-x+s 

(O,x) 

(O,x-y) 

(0 ,(x.. y)/2) 

(O,(x-y)/2) 
s > U 

x < y 

(O,y) 

o (x-y,O) (x+y,O) (u) 

FIG. 2. Gel'fand-Levitan domain. 

Let f) be any of the two domains f)M, f)G speCified in 
Figs. 1 and 2 and let C. be the boundary of the domain. 
By Green's theorem one obtains 

ffi[L(S) - L(u)]K duds 

= r (~RdS +~RdU)K J c. au as 

-/ R -a a Kds+-a
o 

Kdu . 
c. u s 

(21) 

The left-hand side is replaced by f fo RVKduds and 
the integrations are performed on the right~hand side. 
By so dOing, one obtains the integral equations. 

IrreKular case: 

KM(x, 1') = i .h:~) /2 ds R(x ,y; s, s)V(s) ds 

+i I If) R(x,y;s,u)V(s)K(s,u)duds; (22a) 
M 

f)M is the Marchenko domain shown in Fig. 1 where we 
have 

s>x; u-s~y-x; u+s~1'+x; 1'>x; u~s. 

Regular case: 

1 f (X+Y) /2 
KG(x,y) = - ds R(x,1'; s, s)V(s) ds 

2 (X-Y) /2 

f 
(X_Y) d 

+ a[R(x,1';S,-S +X-1')] 
(x-Y) /2 s 

XK(s, - s + x - y) ds 

+~ f.iDG R(x,1';s,u)V(s)K(s,u)duds. 

The domain f)G in Eq. (22b) is the Gel'fand-Levitan 
domain of Fig. 2 where we have 

s~x; u-s?y-x; u+s~x+y; s?u; 

s+u~x-y; x?y. 

At this point a word on Eqs. (22a) and (22b) is 

necessary. 

(22b) 

Equation (22a) was obtained under the assumption 
that the contribution of the contour C. is negligible when 
l' goes to infinity. Remembering that the kernel KM(x,y) 
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is such that 

limKM(s, u) = lim;- KM(s, u) = 0, 
u"<Xl u .. oo uU 

the conditions upon R(x,y;s,u) so that 

I (R(X,y; s,u) :uK(s,u) - :uR(X,y; S,U)K(S,u)dU) =0 
C+(u+s .. oo ) 

are not particularly stringent. 

The contour C. of Eq. (22b) is closed at finite 
distance. It is built up of four segments. Two of these 
segments are characteristic segments. A third one 
carries the boundary condition 

d 1 ( drK(r,r) =:2V r). 

We are therefore left with a fourth segment whose 
contribution will in general be different from zero. 
However in the case of uncoupled equations considered 
in this section in the presence of the centripetal poten­
tialonly, the Riemann function is 

R=n(>C,>c) 
xl> X2 

=P~(1- 2xI) - 2X2 /1 P~(1 - 2xI + 2xlt)P{(1- 2X2t) dt 
o 

=P~(1- 2x2) - 2xI /1 P~(1- 2x2t)P{(1- 2xj + 2x l t)dt 
o 

=P~ (1 - 2xI - 2X2 + 2XjX2)' (23) 

In Eq. (23), P). is the Legendre function of order >c 

[>c =p + (n - 3)/2], which is an integer or half an integer 
number according to whether the dimension of the space 
is odd or even. The Chaundy variables Xj,X2 are de­
fined22 as follows: 

(u + S - x - y)(x - y - s + u) 
XI= 4xs ' 

(x + Y - u - s) (x - y + U - s) 
4uy 

Z = 1 - 2xI - 2X2 + 2XIX2' 

Along the curve (x - y =u + s) the value of Z is - 1. 
Consequently when >c is an integer (space with odd 
dimension) 

R).(x,y; s, - S +x - y) =P).(- 1) = (- 1) •• 

(24) 

The derivative of R). with respect to s vanishes and the 
integral equation has the known reduction 

KG(x,y)=% J 10 dsR).(x,y;s,S)V(s) 
G 

+% 1 10 dudsR~(x,y;s,u)V(s)KG(s,u). (22c) 
'G 

If >c is half an integer, P). is not defined for the argu­
ment Z = - 1. The representation of regular solutions 
for spaces with even dimension will not be discussed 
here. More trivially, one can verify that applying 

L(x) - L(y) - V(x) 

to both sides of Eq. (22c) gives zero only if 

(:s- ~)R(X,y;s,u)=o for u+s=x-y, 

(:x+aOy)R(X,y;s,U)=o for x-y=s+u. 
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Such a circumstance happens when R is the Legendre 
function P).(Z) and >c is an integer. One can see it by 
using characteristic variables 

1)=x+y, 1)o=s+u, ~=x-y, ~o=s-u, 

and 

one gets 

oR). oR). oR). OP~ oP oZ -+--------ox oy - iJ1') - 01') - oZ 01')' 

Since 

oZ _ (~2 - e) 21')[1)5 - el 
01') - (~2_ ~h (1)2- ~2)2 ' 

- = or oR). 0 f {~=~oorx-y=s-u, 
(1) 1)o=~ or s +u=x-y. 

The result of Ref. 2(a) concerning the extension of the 
representation from the s-wave to the higher l-waves 
was dependent upon this circumstance. This important 
fact was not pointed out at the time. We can consider 
now the two types of representation. 

A. Marchenko representation 

In the representation of the irregular solutions the 
argument Z of the Legendre function is greater than 
one. Since 

Z =1- 2xj- 2X2 +2XjX2 

1 
(u + S - x - y) (s - u + Y - x)(u + y + S + x)(u + y - s - x) - + - ~n ' 

(25) 

and since the four factors in the numerator of Eq. (25) 
are all positive, we have Z?- 1. 

On the other hand, in the Marchenko domain we have 

and 

0'" _ (u+s-x-y)(y-x+s-u) 
~ - x, - 4xs 

K 2(s - x)2(s - x) K s 
~ 4xs ~ x 

(u+s-x-y)(y-x+s-u) 2uy 1 o ,,; x2 = ~--"-,~~.:.c--=-~.:..:.. ,,; --";:2 
4uy 4uy . 

We can write 

Z = 1 - 2xj - 2X2(1 - Xj)"; 1- 2xj ,,; 1 + 2s/x,,; 3s/x. 

Since Z > 1, one can use the Laplace integral 
representation23 

P).(Z)=.! f'[Z+(Z2_1)1I2cos¢Yd¢ TrJ o 

for all values of >C. 

According for all values of n, the upper bound 

Ip).(z) I,,; (~s). 

(26) 

holds and can be used in the study of the representation 
of the irregular solutions. 
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From the study of Ref. 2(a), the existence of transla­
tion kernels results. 

Theorem 1; The translation kernel K(x,y) used in the 
representation of irregular solutions is uniformly 
bounded, if the two integrals 

a\(x)=.CsIV(s)lds and a~(x)=lros~lV(s)lds 

(27) 

coverge. 

In the theorem we have defined V = (6)A I yes) I. To be 
precise one obtains the bound 

IK(x,y)1 <~(1/X)~aAt;y) expa\(x). (28) 

The existence of K is proved for any A. Therefore, 
K exis ts for any n-dimensional space with 1 < n < 00. 

B. Gel'fand-Levitan representation 

In the representation of the regular solution, con­
sidering Z defined by 

Z = 1 - [(x + y - u - s)(u - s + x - y)(u + y + S + x) 

x (s + x - u - y)(8usxy)"11, 

with four positive factors in the numerator, we find 
Z~1. 

On the other hand, since, in the Gel'fand-Levitan 
domain we have 

(x+y-u-s)(x-y +u-s) '" 2x(x-y) o ~ - X \ = 4 ~ 4xs xs 

~ 2x· 2u ~ 1 (29) 
4xs 

and 

o ~ x = (x + y - u - s)(x - y + u - s) ~ 2y • 2u ~ 1 (30) 
2 4uy 4uy' 

we also can write 

z =1- 2X2- 2x\(1- X2)? 1- 2X2? -1. (31) 

The argument Z of the Legendre function being between 
+ 1 and - 1, one must set apart the cases where A is an 
integer from the cases where A is half an integer; the 
latters will not be considered. 

Using the method of Ref. 2(b), when A is an integer 
we state the theorem. 

Theorem 2: If ;>, is an integer (n odd) and if the 
moments ao and a1 exist, the kernel K(x,y) used for the 
representation of the regular solution is bounded. One 
has 

with 

limK(x,y)=O if V is continuous. 
y-O 

(32) 

The existence of K is proved when the dimension of the 
space is odd. In addition the integral 

foX IK(x,y) I dy (33) 

exis ts when x goes to infinity. 
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The present Sec. 3 on uncoupled equations has sep­
arated even dimensional from odd dimensional spaces 
when the potential possesses spherical symmetry. The 
study already made can be extended without difficulty 
to the generalized axially symmetric Hamiltonian of 
Gilbert. 28 For the extension one has simply to consider 
the Hamiltonian equation 

[~n + ~ -d!- + 1?2 - v(r)lljJ(x) = 0, 
Xn uXn J (34) 

where s is a fixed parameter. The asymptotic behavior 
of the solution ljJ(x) of Eq. (34) is this time 

. . f(fl, B) exp(ikr) 
hm ljJ(x) = exp(zk· x) + ,1/2(n+8-15 
Irl-ro 1 

+ O[r-\ /2 (n+8+1) J. (35) 

Equations (34) and (35) together with the method of Sec. 
2 lead to the construction of a reduced radial equation, 

(~+k2_p(p+n-2+S) 1 ( )( ) 
dr2 r2 - 4r2 n - 1 + s n - 3 + s 

- Vcr») IjJ(P, k, r) = O. (36) 

Translation operators can be applied for representing 
irregular solutions. The Legendre functions to be used 
in the representation are never polynomials (their order 
is no longer an integer). The result expressed in The­
orem 1 continues to hold provided an appropriate value 
is given to A. Needless to say the representation of the 
regular solutions for this generalized axially symmetric 
equation is excluded. 

4. TRANSLATION KERNEL (MATRIX EQUATIONS) 

In Sec. 4, the results of Sec. 3 are extended to 
matrix differential equations. Solutions, as are custom­
mary in the case, are matrices which are built up USing 
vector solutions. After a discussion of an important 
Riemann solution in Sec. 4 A, the extension to the 
n-dimensional problem is attacked in Sec. 4 B. Exis­
tence theorems are formulated when a many-channel 
approach is menaingful. 

Before proceeding further, we feel it is useful to dis­
cuss the introduction of hyperspherical systems in 
m-body problems. 29,30 Although the n-dimensional space 
shares with the m-body (3m =n +3) the same number 
degrees of freedom, the hyperspherical scattering solu­
tions do not possess the exact asymptotic form. 
Furthermore, the kernel of the Lippman-Schwinger 
equation associated with the m-body problem is not 
compact. 31 Faddeev equations (or any equivalent) are 
needed to reach compactness. 32 Whether the method of 
Zachariev33 and Rayna134 removes the "dangerous 
contributions" is not the point here. The fact is that 
Refs. 33 and 34 construct nonhomogeneous differential 
systems, unfitted by nature to linear translation 
operators. Consequently the m-body problem is not 
discussed here except when it reduces trivially to a 
many-channel problem. 35 We will allow, however the 
number of channels to become infinite. 

A. The Riemann solution C(I, m) 

The solution C(l, m) is constructed because of its use 
in the following subsection. 
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We consider the two operators 

A = [:;2 +k2 _12] - V(l, m,x), 

[ 
d2 2 12] AO= (f;(l+l? - , 

(37) 

where 12 may be a continuous or simply a discrete 
threshold energy. The partial differential equations for 
the continuous "matrix" K(l, 111; x, y) are 

02 

-2K(I, 111; x,y) -12K(I, 111; x,y) + m 2K(I, m; x,y) ax 
-

a
2 f = -2K(I, m;x,y) + V(I,n,x)K(Il, m; x,y)dn. ay 

In the case of a discrete index the integration is re­
placed by an ordinary summation. 

To Eq. (38) boundary conditions are to be added. 
We are led to consider the Riemann solutions for the 

Ia~2- (12 -m 2JC(I, m;x,y) = :;2 C(l, mix,}'). 

These Riemann solutions which we briefly denote 
ca, m) are given in Ref. 2(b) where we followed Ref. 
36. In characteristic variables they are 

with 

v = (12 - m2)(~ - ~o)(1) - 1)0) 

= ([2 _ 11I2)[(X _ S)2 _ (y _ u)2]. 

(38) 

(39) 

(40) 

Since the inequality (x- S)2 > ()' - u)2 holds for both the 
Marchenko and the Gel'fand- Levitan representation, 
one has 

and therefore 

IC(I,m)lq for 1111I~jll, (41) 

IC(I,m)j ';exp2-IV for Iml.; jll. (42) 

From Eqs. (41) we can obtain the bounds to be used 
later: 

Marchenko representation: Since s > x, we have 

IC(I,m)1 <exp211Is, 'dm. (43) 

Gel' fand-Levitan representation: One can use u +y 
~x-s>O, 

11 < (u +y)2(l2 _ m 2), 

jC(l, 1/1) I '" exp211lu exp211ly, 'd m. 

B. The n-dimensional space 

One expands the wavefunction in hyperspherical 
variables, 

(44) 

(45) 

In Eq. (45) we included in the hyperspherical defini­
tion the "order" II and the set QI of all the "quantum 
numbers" necessary for their definition. See Ref. 
30(d). 
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Noting (ll,QI)=i and (1l,{3)=j, we define the elements 
of the matrix potential between the i and j "channels" 
by the integrals 

Vjj(r) = J p",,(Q)V(x)P .. ,,(Q)dQ. (46) 

Recalling the definition 

AI =Pi + (n - 3)/2, (47) 

we introduce a priori the system of coupled equations, 

Lj(x)Uj(X) + Vjj (x)u i (x) 

[ 
d2 2 Aj (Aj + 1) )~ () = ~+kj- 2 +Vji(x Uj x 
dx x 

= 6 Vjj(x)Uj(x). 
itj 

In Eq. (48) one has 

1i2 

k~ = (E - E j ) 2M' 

(48) 

(49) 

In Eq. (49), E is the incident energy and E j is the 
threshold energy of the ith "channel. " The case where 
all the E j are set equal to zero (all the k~ are equal to 
k2 ) is discussed first. The extension to the general case 
which makes use of Sec. 4 A follows. 

In the physical applications the system of equations 
(48) may be infinite. Concerning infinite systems, the 
question of the existence of translation kernels may be 
raised. In the following the conditions for the existence 
of translation kernels are stated first when the order 
of the system is finite. We indicate hereafter how the 
conditions should be supplemented when infinite sys­
tems are considered. 

To obtain our results we use the Riemann solutions 
Rjj(x,y;s,u). They satisfy the equations: 

L j (x)Rjj(x,y; s, u) =L j(Y )Rjj(x,y; s, u), 

Rij(x,y;s,u) 

=rr(Aj'AJ) 
xI> x 2 

=Pxj (l- 2xI) - 2XzIa
I 
P xi (l- 2Xl + 2xjt) 

xP{.(l- 2x2t)dt 
J 

=Px,(l- 2X2) - 2Xjfl P),.(l- 2X2t) 
J 0 J 

XP~j(l - 2xj + 2Xlt)dt, 

where xI> X2 have already been defined in Eqs. (24). 

(50) 

(51) 

Again we separate the representation of solutions 
defined by a condition at infinity (Marchenko represen­
tation) from the representation of solutions defined by a 
condition at the origin (Gel'fand-Levitan representa­
tion). When the latter representation is considered, 
along the segment u +s =x - y, x2 equals 1. In the last 
equation, (51), P),} is defined only if Aj is an integer, 
that is if n is odd; the representation of regular solu­
tions for even n is again therefore excluded. 

(a) Marchenko representation: The representation of 
irregular matrix solutions is discussed for even and 
odd dimensional spaces. Since we have O-""-Xl .;slx 
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and 0"" X2 "" t, all the arguments of the Legendre func­
tions which appear in the last of the Eqs. (51), are 
positive. Consequently, we can use the bounds derived 
from the Laplace integral. This can be done whether 
the dimension of the space is odd or even. Following 
the methods used in Ref. 2(b), we obtain 

( 7S)~i IRu I "" -;- . 

We introduce now the notation 

Vjj(S) = (7s )~t Vij(s), 

Wjj(s) = (7S)~IVii(S) (s~~j' 

TI(X2+Y) =f~ 1[v(s)llds, 
<XH) /2 

~(x) =.C s II W(s) II dx, 

Djj(x) =x~i6iJ 

(52) 

(53) 

and we can state the existence theorem when the system 
(48) is finite and all the k~ are set equal. 

Theorem 3: If the system considered is finite and if 
all kI are equal, and if in addition the two integrals 
a~O) and a~\) converge as follows: 

a;~) (x) = Ix ~ tAl I Vi j(t) I dt < 00, 

ag)(x) = lro t I Vij(t) ItIAI-~jl dt < 00, 

a translation kernel for the n-dimensional irregular 
matrix solutions exists. To be precise one has 

(54) 

(55) 

By Theorem 3, a restriction has been set on the non­
diagonal elements of the matrix potential Vu(x). In addi­
tion to this restriction, the theorem requires the exis­
tence of absolute moments for the matrix Vij(x). When 
the order of the matrices introduced in the proof is 
finite, these matrices have a finite norm but this is not 
necessarily so when their order is infinite. Then one 
needs additional requirements. First one must assume 

IIVII = sup 6 Ivljl <co, 
i j=1 

so that V possesses a finite norm. Afterwards one 
should require the existence of the following limits: 

li?ljro tIAi-~jl+jl Vij(t) I dt < co, 
it J" x 

(56) 

(57) 

(58) 

The exponents (Ai' Aj) of Eqs. (57) and (58) represent 
the angular momenta of the i and j channels. They may 
remain finite even if the number of channels become 
infinite. 

In the same way as the norm for V was defined in Eqo 
(55), norms for the infinite matrices V and W, Eq. (53), 
have to be introduced and should be assumed to exist. 
Writing 

(59) 
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(60) 

and assuming inequalities (57), (58), (59), and (60) are 
satisfied one takes into account the possibility for i and 
j to assume infinite values. In this way the upper bound 
expressed by Eq. (55) remains finite. Now according 
to Eqs. (48) and (49) threshold energies are included. 
Assuming the existence of an upper bound K on the set 
of positive numbers K~ defined by 

(61) 

and using the Riemann solutions C(Kj,K j ) of Eq. (43), 
the existence of a translation kernel can be proved in the 
extended case where the k1 are different. The extension 
is obtained at the price of requiring an additional expo­
nential decrease of the matrix potential; the measure of 
which is expressed by 

4 sup ( I k~ - k~ I )1/2 • (62) 
i, j 

As one realizes, the system of operators introduced in 
Eq. (37) is a discrete system. 

(b) Gel'fand-Levitan representation: We recall a 
first restriction. No consideration is given to even 
dimensional spaces. The Riemann solutions introduced 
in the possible integral representation are defined in 
Eqs. (44) and (51). When x2=1 these Rij(x,y;s,u) are no 
longer constant. The contribution of the segment u + s 
=X - Y to the integral representation has to be included. 
We are therefore obliged to consider the full integral 
equations, namely 

!
(X+y) /2 

Kij(X, y) =t Ri/x,y;S, s)Vu(s) 
(x-y) /2 

! (X-Y) d 
+ (i[Rij(x,y;s,-s +x-y)] 

(x-y) /2 s 

x Kij(s,-s +x-y)ds. (63) 

In this form Eq. (63) does not seem suitable for the 
method of successive approximations. A variant is 
given which is obtained by integrating the last term of 
Eq. (63) by parts. Denoting this last term by I, one 
gets 

( 
x-y 

I=Rij(x,y;x- y, O)Kij(x- y, 0) -Rii x,y;-2-' 

XKii(X -2 Y, x -2 y) - (ix..,;) Ru(xj, X2) 
1<x-y)/2 

d 
x ds KiJ(s, - s + x - y) ds. (64) 

Using the boundary conditions Ku(x, y) has to satisfy, 
Eq. (64) reduces to 

1 ( x- y x- y) (x-y)/2 
1=- 2R lJ x,y;-2-' 2 10 VfJ(s)ds 

1<x-Y) d 
- Rij(Xj,X2)(i Ku(s,-s +x-y)ds. 

(x-y) /2 s 
(65) 
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Equations (64) and (65) suggest that under proper condi­
tions of convergence the kernel Kjj(x,y) may exist in 
very general circumstances. When all the "channels" 
are coupled at the same angular momentum Aj and all 
have a zero threshold energy the value of the term I is 
exactly zero and the contribution of the segment u + s 
+x-y, toEq. (63) disappears. Then under the simple 
conditions that the matrix potential possesses finite 
moments of order zero and order one, a translation 
kernel exists. Due to the difficulty of providing the 
existence of K(x,y) for the most general form of Eq. 
(63), no more consideration is given to the Gel'fand­
Levitan representation. From now on we will consider 
only the Marchenko method. 37 

(c) Physical application: A physical application con­
cerning the many-channel case for the n-dimensional 
scattering problem is now discussed. The basic idea is 
to solve the A-body Hamiltonian 

HArf>n(?;) =Enrf>n(?;), 

before considering the (A + 1) Hamiltonian HA+l' Its 
solutions rf>n(?;) are separated in radial and angular co­
ordinates using hyperspherical variables 

rf>n(?;) = 6 Pm' (n)Um'n(?;)' 
m' 

Channels can be defined by coupling target-general­
ized angular momenta 111' to the incident proj ectile ones 
111" to a total angular momentum In, 

It is assumed, as is the case in three-dimensional 
nuclear problems that the target momenta rn' are finite. 
The projectile angular momenta rn" which can be 
coupled to some 1/1' to construct HZ (Clebsch-Gordon 
generalizations) are finite. The set of Aj's present in 
Eq. (48) possesses therefore an upper bound. The left­
hand side of expressions Eqs. (57), (58), (59), and (60) 
can be finite even under the assumption of an infinite 
number of channels. 

If we assume, in addition, that closed channels can be 
safely neglected if their respective threshold energies 
are large6,38 and the constants 1 and In which appear in 
the bounds of Sec. 4A for the Riemann solution C(l, 111) 
are themselves bounded. 

Theorem 3 can be used to assert the existence of a 
Marchenko kernel provided the matrix potential has, in 
addition to the conditions it expresses, adequate expo­
nential decrease. See Eq. (62). 
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We reconsider first the representation of solutions defined by a condition at the origin and recognize the 
difficulty of extending the representation outside simple cases. By eliminating the study of solutions 
defined at the origin in further studies the translation kernels for velocity dependent interactions are 
constructed only for solutions defined by their behavior at infinity. Two methods are proposed. Their 
domains of extension are compared and shown to be different. 

1. INTRODUCTION 

The translation kernels were brought to consideration 
in the early 1950' s within the framework of the inverse 
scattering problem. 1 Their use by Gel'fand-Levitan2 

and Marchenk03 was decisive in the mathematical solu­
tion of the inverse problem for systems without singu­
larities; Ref. 3 contains, in addition to this mathemati­
cal solution, an indirect attempt to solve a particular 
case of a system with singularity, the particular case 
which appears in the deuteron problem with a tensor for 
force. Almost at the same time, within his theory of 
perturbations, Friedrichs4 introduces the idea of simi­
litude between operators. 

Let A1 and A2 be two operators with the same domain. 
If there exists an operator V with a bounded inverse 
U-1 such that the equation 

holds, the operators A1 and A2 will be called similar 
and V a similitude transformation. The existence of 
U-1 leads to the equation 

(1) 

UA1U-1 =A2. (2) 

If A1 and A2 operate on a Hilbert space and are both 
self-adjoint, Eq. (2) leads to the equation 

UU-1A 1U+U=A1 (3) 

from which it follows that V is a unitary transformation. 
The point is important when the spectra of A1 and A2 
are compared. 

The translation operators satisfy Eq. (1); in addition 
we require they be integral transformations and belong 
to the category of Volterra operators. 

Recently the Clarkson school5 while developing an 
idea of Lax6 constructed a class of nonlinear equations 
whose solution is connected to that of an inverse scat­
tering problem. By so doing they renewed interest in 
the inverse problem and it becomes more compelling 
to specify the class of equations for which a transla­
tion kernel exists. 

alChercheur de l'Institut Interuniversitaire des Sciences 
Nucleaires. 
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In a first work on the inverse problem, 7 the theory 
of translation operators was re-examined so as to use 
them in the inverse problem at fixed energy. Recently, 
we moved to problems at fixed angular momentum with 
singularities but we restricted our investigation to 
differential operators and to systems of coupled dif­
ferential operators of the form 

d2 

d? I+V(X)=A, (4) 

where I is the unit matrix and A is a constant diagonal 
matrix. 8-10 The matrix V(x) called potential was 
separated into 

(5) 

with a reference potential Vo(x) and a nuclear potential 
VN(x). In most of the cases we took the reference po­
tential to be 

V( )_0(0+1) !l 
oX- X2 +x' (6) 

When Vo is defined by Eq. (6), it contains a centripetal 
and a Coulomb part, the usual singularities of the 
nuclear problem. 

In each case we examined, the task was to specify 
the conditions the nuclear potential VN(x) has to satisfy 
for a bounded translation kernel to exist. The conditions 
were, of course, sufficient conditions. However, the 
method of proof used for their specification was a con­
structive method. The translation kernel was, in prin­
ciple, constructed. It is a general remark that sufficient 
conditions obtained by a constructive method are hard 
to improve. The construction was obtained by trans­
forming partial differential equations of hyperbolic 
type into Volterra integral equations which incorporate 
their boundary equations. This latter transformation 
has, in our opinion, its own importance; therefore 
another distinct example which uses different boundary 
conditions is included in this present paper. Extensions 
of the transformations may be obtained by using the 
appropriate elementary solutions which are here the 
Riemann solutions. 

To specify the notations and the object of this present 
paper, we give the following definitions. Let Ao and A1 
be two (systems of) differential operators together with 
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boundary conditions necessary to specify the solutions 
their respective equations may possess. 

The two types of boundary conditions we studied were 
conditions of regularity at the origin or conditions of 
behavior at infinity. The new case discussed in the 
present paper incorporates conditions at the origin 
which do not involve regularity. The two first types of 
conditions are the usual conditions considered in scat­
tering problems. A translation operator X is defined 
as a bounded operator with an inverse X-I, 

X = 1 + K, X-I = 1 + K. 
The operator K of the definition is always an integral 
operator. As a consequence of the definition, X trans­
forms the solutions of the differential operator Ao into 
the solutions of the operator AI' The operator Al was 
written as Ao + VN ; Ao contains the reference potential 
which may be zero. If the solutions thus transformed 
are the regular solutions, we call the kernel K a 
Gel'fand-Levitan kernel: The notation of the Gel'fand­
Levitan representation is retained here, but it is ex­
tended here to any representation of solutions specified 
by a condition at the origin. In the case of solutions 
defined by their behavior at infinity, we will have a 
Marchenko kernel and a Marchenko representation. 

In all the cases we investigated, the conditions were 
expressed in terms of conditions the nuclear potential 
VN should satisfy; whether it was attractive or repulsive 
was unimportant. Its strength also was irrelevant. The 
conditions were dependent upon the absolute moments of 
the potential VN as are the usual conditions for the 
existence of solutions of the Schrodinger equation. It 
is important to note that they were, in addition, depen­
dent upon the choice of the reference potential. 

Systems of coupled differential operators defined by 
Eq. (4) belong to a restricted class of operators. How­
ever when, for the first time, Levitanll defined the 
concept of translation operation, he stated its use for 
differential operators of the more general form: 

d2 d 
a(x) p + b(x) -d - V(x) + A. (7) 

x x 

The extension was obtained, he said through a straight­
forward extension of the Liouville transformation. 12 
As we will see later, he was a little optimistic; the 
Liouville transformation cannot be used directly except 
for the b = 0 cases, but the idea of Levitan can be 
pursued and a transformation shown to exist. Already 
a desire for such an extension appeared in Ref. 7. At 
that time it was simply recognized that the conditions 
for existence depend upon the solution of a Cauchy 
problem but this quest was not pursued. Now many 
years have passed, progress has been made; not only 
do we possess, in the Riemann method, a tool for 
specifying the conditions a nuclear potential has to 
satisfy, but also we possess the il1otivation for pursuing 
the phYSical application of the extension which once 
seemed far away and has now become real. While 
the forms of operators discussed in Ref. 5 are related 
to the problem of the string amplitude,13,14 a subject 
dear to dual theorists,15 the Sturm-Liouville operators 
for Eq. (7) contain the differential operators with 
velocity dependent interactions. 16 The latter have been 
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shown to be equivalent to static interactions with a hard 
core. 17 After additional work on the inverse problem 
by Marchenk018 and Faddeev, 19 Zachariev20 had just 
formulated the inverse problem for potentials which 
depend on the velocity. He has, in addition, proposed 
a solution for the approximation which involves the re­
placement of the differential operator by a difference 
operator. 

Attention cannot be restricted however to differential 
operators; systems of coupled differential operators 
described by Eq. (8) have to be treated. The extension 
to such systems is actually realized in the present 
paper. 

The reader is warned that the advice of Levitan of 
using a Liouville transformation is not followed all the 
time; we found it more convenient to use a simpler 
transformation, precisely the one advocated for the 
construction of equivalent local potentials in Ref. 21, 
In Sec. 2 the Riemann solutions method is reviewed and 
a new representation for a solution which is not regular 
but is defined by a condition at the origin is given for the 
1 = 0 case. 

In Sec. 3, systems of coupled equations with velocity 
dependent interactions are discussed. The systems are 
transformed into Simpler ones prior to being subjected 
to the translation operators techniques. The use of a 
more direct method is discussed in the conclusion. 

2. INTRODUCTION OF THE RIEMANN'S SOLUTION 

Before proceeding to this introduction, we consider 
the construction of an irregular solution for a local 
Schrodinger equation defined by a condition at the origin. 
For this construction we consider the Volterra equation 

with 

gl(1z;X, y) = [u1(k, x) v1(k, y) - u1(k, y) 

x V1(ll, x)J!wr(u1, VI)' 

(8) 

(9) 

In the Green function gl of Eq. (9) the Riccati-Bessel 
u l and VI are inserted together with their Wronskian. 
One has 

If~1 v1(k, x) = (2l _ 1~! ! (kX)1 , 

. (kX)I+1 
llEIo1 u l(k, x) = (2l + 1)! ! • 

Obviously, Eq. (8) is meaningless for 1 *- 0 except for 
special classes of interactions. 

We will limit ourselves to the 1 = 0 (s-wave) case. 
Then Eq. (8) reads 

~o(k,x)=coskx+ IX Sink~-Y) V(yHo(k,y)dy. 

o 

(10) 

Together with Eq. (10), we consider the possibility of 
representing ~o(k, x) by an integral 

~o(k, x) = coskx + foX K+(x, y) COSIlY dy. (11) 
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is) u=s+y-x 

~ 
x 

iu) 

FIG. 1. 

In order to exist, the kernel K.(x, y) has to satisfy the 
partial differential equation 

(b -~) K.(x,y)- V(x) K.(x, y) =0, 

K.(x, x) = i r V(s) ds, o 

(12) 

(13) 

(14a) 

In order to prove the existence of K.(x, y) one has to 
transform Eqs. (12), (13), and (14a) into a Volterra 
equation. 

This can be done by using the identity 

sink(x - s) 1 I··x-s 
k cosku = 2" coskt dt. (15) 

u+S-x 

After trivial interchanges of variables valid if y "" x/3 
and which are justified by the Tonelli-Fubini's theo­
rems, one obtains 

K.(x,y) = Hfo(x.Y)/2 V(s)ds+ fo(X-Y)/2 V(s)ds] 

+ i[f.x V(s) ds lox-s,y K.(s, u)du] 
(X+Y) / 2 

+ HfX
-

Y
), V(s) ds IX-S-Y K.(s, u) du 

(x-y) 2 0 

+ fo
X
-Y 

V(s) ds loS K.(s, u) du 

+ fo(x-Y)/2 V(s) ds loS K.(s, u) du 

-F V(s)dsl"K.(s,u)du 
(x.y)/2 0 

+ j<x.Y)/2 V(s)ds r K.(s,u)du]. (16) 
x-y y+s-x 

As we said in the introduction we decide to call this 
representation a Gel'fand-Levitan representation, 
denoting K±(x,y) the kernels of the two Gel'fand-Levitan 
representations. Equation (16) of this paper and Eq. (16) 
of Ref. 8 can be summarized as follows: 

K±(x, y) = Ht x
•Y )/2 V(s) ds ± 1(x-Y)/2 V(s) ds] 

o 0 

+ H.r.x V(s) ds r- s
+

y 
K±(s, u) du 

(x.y)/2 0 

± JX-Y V(s)ds lX-Soy K±(s,u)du 
(X-Y) / 2 0 

l X- Y rs r(x-y)/2) 
+ V(s)ds Jr K±(s,u)du± Jr V(s ds o 0 0 
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x r K±(s, u) du - .r.x V(s) ds r K±(s, u) du o (x+y)f2 0 

+ 1 (X+y)/2 V(s) ds IS K±(s, u) dU]. 
(x-y) y+S-x 

(17) 

K_ must satisfy the same equations (12) and (13) as K. 
but the condition (14a) is replaced by 

Kjx,y)ly=o=o. (14b) 

At this point it is interesting to visualize the two 
domains. Let D j and D2 be the two domains described 
in Fig. 1, 

D± =Dj ± D2 , 

so Eq. (17) reads 

K±(x,y) = Hfo(x.Y)f2 V(s)ds± fo(x-Y)f2 V(s)ds] 

+Hj J V(s)K(s,u)duds±j jD V(s)K(s,u)dudsL 
D j 2 

(18) 

Retaining the same segments (u = 0, u = s, u + s = x + y, 
u-s=y-x), (u=O,u=s, s+y=x-y) as boundary, D j 

and D2 can be defined for 0"" y ""x. With this extension, 
one can prove that Eq. (18) is quite general and valid 
for O""Y""x. 

Using the method of successive approximations, the 
reader can verify that the two kernels K+ and K_ exist 
under the conditions that the local potential V possesses 
absolute moments of order zero and of order one. Inter­
est in the two kernels K. and K_ has been displayed by 
Mehta22 and more recently by Dyson23 but until now no 
integral representation has been given for both these 
kernels. Before proceeding further a discussion of the 
Gel'fand-Levitan domains is in order. Both are bound­
ed at finite distance and are built up with more than 
three segments. When one desires to extend the repre­
sentation to a reference potential p(x) '" 0, the Riemann 
solution R for the operator 

a2 a2 

W - 37 +p(x) - p(y) 

enters into the picture. Then the Riemann-Green 
formula for the domain D and its contour C. is used, 

f [R ( a~ K ds + a~ K dU) ] - [a: R ds + a~ dUJ K 
c. 

= Ii RVK(s,u) duds. 

Two segments C. are characteristics, a third u = s 
carries the boundary condition K(x, x). Consequently, 
except in special circumstances, the reduction 

+ t[j jD RVKduds± j jD RVKduds] 
j 2 

will not result. Such a special circumstance occurs 
when the reference potential is the scalar centripetal 
barrier 
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(5) 

u=s 

(y,Oilx+y.Oi 

FIG. 2. Marchenko domain. 

p(x);: -l(l + 1)/x2 

u=y+s-x 

u>s 

lu) 

and when the K_ kernel is considered. 

Because of this fundamental deficiency of the two 
Gel'fand-Levitan representations only the Marchenko 
representation is considered in the rest of the present 
paper. 

Although Riemann's method can be introduced, as 
it has been done by Riemann himself, a simpler heuris­
tic presentation is given here. In the following, D 
denotes Marchenko's domain (Fig. 2). 

Let L denote the scalar partial differential operator, 

02 02 
L=-;:;-::'l - -;:;-::'l -{p(x)-p(y)} ax oy 

and finally let R(x,y;s,u) be Riemann's solution for 
Eq. (20a), which follows: 

LR=O, 

(~ +~) R - 0 if Y - x = u - s, ox oy -

(~ -~) R-O if y+x=u+s, ox oy -

R(s, u;s, u) = 1. 

From the last three Eqs. (20) it follows that 

R(x,y;s,u)=l ify-x=u-s. 

(19) 

(20) 

One can now prove the two following equalities using 
Eqs. (19) and (20): 

L f fDR(x,y;s,u) W1(s,u)duds=2W1(x,y), 

L f~ R(x,y;s,s) W2(s)ds=0. 
(x+y)/2 

(21) 

(22) 

The conditions for Eqs. (21) or (22) to be valid are 
simply the usual conditions for the differentiation under 
the integral sign. 

In addition to Eqs. (21) and (22), provided that the 
convergence of the integrals is uniform, the following 
limits exist and have a common value which is zero: 

limf J R(x,y;s,u) W1(s,u)duds, (23) 
y .. «1 f) 

~~ru ~=+Y)/2 R(x, y;s, s) W2(s) ds, 

limf J R(x,y;s,u) W1(s,u)duds. 
Y-x IJ 

In addition to these zero-value limits one has 
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(24) 

(25) 

lim f" R(x, y;s, s) H1.(s) ds = r W2(s) ds. 
y -x (ny) 12 x 

(26) 

The Marchenko integral representation for the transla­
tion kernel is obtained as a consequence of these equa­
tions. Let us consider the partial differential equation 
the kernel has to satisfy: 

LK(x, y) = V(x) K(x, y), 

limK(x,y)=O=lim -00 K(x,y), 
y-~ y-~ y 

(27) 

K(x, x) = i r V(s) ds. 
x 

In view of Eqs. (21)-(26), Eq. (27) is equivalent to the 
Volterra integral equation 

K(x,y)=i r 1 R(x,y;s,s) V(s)ds 
(x+y) 2 

+i f f R(x,y;u,s) V(s)K(s,u)duds. (28) 
D 

Since we emphasized the dependence of the conditions 
on the nuclear potential on the choice of the reference 
potential, we report the following statement. 

If the two potentials V1 and V2 belong to the class 
of acceptable potentials for the Marchenko representa­
tion, the reference potential Vo being chosen, then the 
potentials V1 ± V2 are members of the same class. We 
write V1, V2 E C(Vo) to denote this property. Further­
more the potential V2 E C(V1), resp. V1 E C(V2), belongs 
to the class of acceptable potentials, the reference 
potential being V1, resp. V2• The result can be obtained 
by estimates on the Riemann's solutions involved; it 
also results from a simpler argument. 24 

If V1 and V2 E C(Vo), then 

(29) 

(30) 

Equation (30) follows the fact that the existence of K20 
implies that of the inverse kernel K 02 ' 

We consider now the integral operator 

A(x, y) =K10(x, y) + K 02 (x, y) 

+ jY K10(x,z) K 02 (z, y)dz. 
x 

From Eq. (31) one gets 

r A(x,y) cf>2(y)dy 
x 

(31) 

(32) 

Using Eq. (30) and a permutation of variables, one gets 

;: Ix'" K 10(x, y) cf>2(y) dy + cf>o(x) - cf>2(X) 

+ f' K 10(x, z)[cf>o(z) - cf>2(Z)] dz ;: cf>1 (x) - cf>2 (x). 
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The law of composition of Marchenko's kernel is thus 
established and the statement proved. 

The kernel A (x, y) is identical to the kernel K 12 (X, y) 
we wanted to construct. 

An interesting feature of Eq. (31) follows. Let us 
assume V1 = V2, then 

o =K10(x, y) + K01 (x, y) + .r K 10(x, z) K 01 (z, y) dz. 

Equation (33) is an integral equation for the inverse 
kernel K 01 (x,y) of K 10(x,y). 

3. THE TRANSLATION KERNEL FOR VELOCITY 
DEPENDENT INTERACTIONS 

(33) 

In this section the use of the transformation for 
Schrodinger equations with velocity dependent interac­
tion (effective mass dependence) is discussed. Two 
types of methods are used. The first one transforms 
the velocity dependent potential into an energy dependent 
operator. The second one transforms the same poten­
tial into an angular momentum dependent operator, Ad­
vantages of both methods are compared and an exten­
sion is proposed for systems of coupled differential 
equations. 

In the n-dimensional space, the Schrodinger equation 
reads 

112 
- 2/l {V[1+p(r)]V-U(r)+E}if'(x1,X2,·"'x n)=0, (34) 

In Eq. (34) the following notation was used, 

V = (-}- , -!- , "', ~a -), y2 = t x~. 
(}x1 ,'X2 "Xn .=1 

(35) 

As in the three-dimensional case, a partial wave 
decomposition can be used followed by the construction 
of the reduced radial equation (um(r)/r) in the three­
dimensional case. For the reduced radial function um(r) 
one has the equation valid for all values of n, 

C~ [1 +p(r») :r -[1 +p(r)] ~ - W+k2]um(r)=0. 

(36) 

In Eq. (36) we have denoted by W(r) the potential 

W(r) = U(r) + (n - 1) p' 
2 r' 

and by the index v, the number obtained from the integer 
m by 

v=m+(n-3)/2. 

In the physical situations the form factor p(r) propor­
tional to the density p(r) of the medium, is 

p(r)- p(r). 

This proportionality leads to these two consequences: 

p'(O)=O (37) 

and 

lim y2p(r) = O. (38) 
r-~ 

In addition to this assumption, we impose a positivity 
condition 
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l+p(r»O 'tIr. (39) 

If this positivity condition is assumed, no singularity 
is brought into the operator through the effective mass, 
Also if Eq. (36) is a matrix equation and p(r) denotes 
the diagonal matrix 

(40) 

one can define two diagonal matrices, 

[1+p(r)]+1/2 and [1+p(r)]-1/2, (41) 

In what follows, solutions may be scalars or matrices. 
When they will be scalars, the index m is used. 

A. Method number one 

Let us define (see Refs. 21 and 25) 

um(r) = [1 + p(r)]-1/2 vm(r). (42) 

The factor [1 +p(r)] is the Wronskian of two linearly 
independent solutions of Eq. (36). The transformation 
defined by Eq. (42) is exactly the transformation from 
a nonlocal potential to its local equivalent used in 
Ref. 21. 

The new radial equation for vm(r) follows, 

(f}; -~ -W(r,k2)+k2) vm(r)=O. 

We have therefore defined: 

W(r, k2) '" Wo(r) + W1 (r) + k2 W2(r), 

Wo(r)=-[1+p(r)]-1 (_~P"+tP'2[1+p(r)]-1_ (n~l) 

W1 (r) = [1 + p(r) ]-112 U(r)[l + p(r) ]-1/2, 

W2(r)=p(r)[1 +p(r)]-1. 

E:) 
r ' 

When the equation for vm(r) has been obtained one is in 
a situation to inquire about the existence of translation 
operators. For this inquiry one introduces the two 
operators 

A 
- ~ v(v + 1) k2 

0= W - ---.;r- + , 

A"'~ -~ - W(x,k2)+k2, 
dx x-

and defines the solutions vom(x), vm(x) specified by their 
behavior at infinity, by 

Aovom(x) = 0, Avm(x) = O. 

The existence of the integral representation 

Vm(x) =vom(x) + J~ K(k2;x,y)vom(y)dy, 
x 

can be discussed. The kernel K(k2 ;x, y) satisfies the 
partial differential equation 

[
0

2 
v(v+1) 2)J (,2 ) --;;-:::r -~ - W(x,k K J<;X,y 

ox x 

_ [0 2 
V(V + l)J K(k2 ) - ~ - ----yr- ,x,y, 

limK(k2 ,x, y) = lim -l-- K(k2, x, y) = 0, 
y .. 00 y .. 00 uy 

2 I J~ ( 2) K(ll,X,X)=2 Ws,k ds. 
x 
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With the help of the Riemann solution R v' 

Rv =P,,(l- 2xl - 2x2 + 2X1XZ), 

for the equation 

[
0
2 

_ V(V+1)] R =[ 0
2 

_ V(V+1)] a? ----;;r- v ayz -yr- Rv , 

Eq. (43) with its boundary condition can be transformed 
into a Volterra equation. Using Eq. (28), one has 

K(k2 ;x, y) = tJ,~ R,,(x, y;s, x) W(s, k2) ds 
(x+y)/2 

+ tJ J Rv(x,y;s, u) W(s, k2)K(k2;s, u)duds. 
D 

(44) 
According to previous studies the existence of K follows 
the possession of moments of order 1 and order v by 
the energy-dependent potential W(x, k2). 

Since 

W(x, k2) = Wo(x) + W1(x) + k2Wz(x), 

and Wo and Wz contain the density related form factor 
per) and its derivatives, the condition reduces simply 
to the possession by the original nuclear potential V(s) 
of moments of order 1 and order v. 

A natural question arises, that of the analytical 
dependence of K with respect to the energy A = k 2• 

Let us define a new function 

o 
L(A, x, y) '" OA K(x, y;k2). 

The integral equation for L is 

L(A, x;y) = t J,~ Rv(x, y;s, s) p(s)[l + p(s)]-l ds 
(x+,)/2 

+iJ 10 R,,(x,y;s,u)p(s)[1 +p(s)]-l 

XK(A;S,u)dsdu+iJ f Rv(x,y;s,u) 
[) 

x W(s,A)L(A;s,u)dsdu. (45) 

Equation (45) can be solved by the method of successive 
approximations. The upper bound 

(x)v IK(A;X,Y)I~tav(x;y) expa1(x) 

can be used to obtain an estimate for the zero-order 
term 

Lo(A, x, y) = iJ,~ 1 ds Rv(x, y;s, s) p(s)[1 + p(s)]-l 
(x.,) 2 

+tJ 10 Rv (x,y;s,u)p(s)[1+p(s)]-1 

XK(A, s, u)duds. (46) 

By looking to Eqs. (45) and (46) it is obvious that the 
analyticity of K follows its very existence. 

The method just outlined extends itself to systems 
of coupled differential equations of the form: 

d [ ] d [ ] v.(v + 1) 
dr l+PI(r) druI(r)- 1+PI(r) '?' uI(r) 

- (n-
2

1) M(r) ul (r)-6 V/j(r)uJ(r)+k~uI(r)==O, 
r J 
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(47) 

where we have separated the diagonal operators from 
the nondiagonal ones. Defining the matrix solution 

v/(x) = [1 + PI (x)]-1/ 2 u/(x), 

and operating as we did, we obtain 

d
2 

v.(x) _ [ vl(v/ + 1) + ul,O)(x) + k~ ul,2)(x)] v/(x) 
dXI • x

2 
• • • 

-6 wljl(x)vj(x)+kiv,(x)=O. 
J 

Definitions used in Eq. (48) are 

WiO)(x) = (1 + Pi (x)]-t (- tp[, + t p/2 [1 + Pi (x)]-l 

_ (n - 1) Pf(x») 
2 x ' 

Wi]l(X) = [1 + PI (x)]-1/2 Vij (x)[l + pj (x)]-1/2 , 

HIl 2 lex) = PI (x)[1 + Pi (x) ]-1. 

The matrices 

WOl(x) = W/O)(x) °iJ' 

W(Il(x) = WW(x), 

W 2l (X) == Wl2l (x) oij' 

A = Vi (Vi + 1) 0ii' 

k2 =k;Oij 

are defined and the two operators 

a2 2 A 
AO=~d +k -::T, x x 

are introduced together with the matrix solutions 
llQA,UI\.. 

The translation kernel K which is now a matrix 
satisfies: 

(b +k2_ ~ - W(Ol(x)_k2 W(2l(x)_ W(ll(x») 
ox x K(x,y) 

= (b) K(x, y) + K(x, y) (k2 -? ) 

(48) 

(49) 

lim K(x, y) = 0 = lim -0
0 

K(x, y), 
y_oo y~~ y 

K(x, x) === tl~ [W(Ol(S) + W(ll(S) + k2 W(2l(S)] ds. 
(50) 

x 

For the discussion of the existence of K, the Riemann 
solutions 

are used. 26 Conclusions are identical to the ones we 
reported in Ref. 9; they don't need to be repeated in 
the present paper. 

When the matrix kernel K(k2;x, y) for the operators 
defined in Eq. (50) has been obtained, one writes the 
final representation for the matrix solution ul\. (x), 
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B. Method number two (the Liouville transformation) 

Although less extensive than the first method, this 
second method has the advantage of not introducing an 
energy dependence into the transformed interaction and 
consequently into the transformation kernel. Its lack of 
extension comes first from the requirement of the same 
effective mass in aU the channels, It comes also from 
the appearance of potential decreasing like x-3 infinity, 
The second method has nonetheless enough interest to 
be developed for its own merits, The Liouville trans­
formation takes place in two steps, In the first step, 
one defines a new radial variable x by 

I T dt 
x-- II + p(t) ]112 . 

o 
(52) 

The definition implies again 1 + p(t) > 0, Then one has a 
one to one mapping between rand x. With this definition 
and the assumption that p(t) goes to zero when t goes to 
infinity, 

1
. dx 1 

/.t;: dr = [1 + p(r)]ll2 = 1. 

So instead of Eq. (52) we write definition (53) for x 
which is its equivalent 

x=r+ jT {(1+p(t)]-1/2_1}dt. 

o 
(53) 

From Eq, (53) one sees that r goes to zero with x and x 
with Y. 

Using Eq. (52) one gets 

d d cf- II·d 
dr (1 + p) dr =:0 a;!I +"2 1 + p p dx ' (54) 

In Eq. (54) P denotes (d/dx) p(r(x)) (not to be confused 
with dp!dr which we denoted earlier p'). 

With the help of Eq. (54), Eq. (36) becomes 

(
d2 1 P d 1/(1/+1) 2) 
d?+"2 l+Pdx-(I+P)~-W(x)+k Um(x) ==0 

(55) 

with 

W(x) = U(x) + (n -2 1) J!. == U(x) + (n -1) P.. (1 + p)-1/2 • 
r 2 r 

(56) 

Again the index m denotes scalar solutions. 

The second step of the Liouville transfor mation is to 
renormalize the radial wavefunction so as to eliminate 
the velocity dependence from the equations, 

For this purpose one defines 

(57) 

and uses 

(58) 
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+ 1
5
6 p2(1 + p).9/4 V - to + p)-514 pv, 

Inserting Eqs, (57)-(59) into Eq, (55) gives 

( 
d2 [ ] 11(1/ + 1) ) (iXl- 1 +p(x) ~ - V+k2 vm=O 

w~ . 
V=(1+p)1/4U(x)(1+p)-1/4+ (n-1) p. (1+p)-1/2 

2 r 

- 1~ [3p2(1 + p)-l - 4p](1 + p)-1, 

As x goes to infinity the centripetal barrier goes to 

1/(1/+1) 
(x+ c)2 , 

where c is the constant defined by 

c = 1000 

{1- [1 +p(t)]-1/2}dL 

(59) 

(60) 

(61) 

In the same way, by a Taylor expansion, as x goes to 
zero 

rex) - x dr I =x (1 + p(0)]1/2, 
dx x:o 

The centripetal barrier at the origin is therefore 

[l+p(O)] 1/(1/+1) = 1/(1/+1) 
x 2[1+p(0)]- x 2 

Equation (60) is first rewritten as 

[
cf- _ 1/(1/+1) _ (v [1 ()] 1/.(11+1) dXl --xz-- +L +p x ~ 

_ 1/(1/)-1»)+ k2] vm(x) = O. 

To shorten the notations, we define 

V(1) -(1 ()] 1/(11+ 1) 1/(1/+ 1) 
- + P x }) (x) - x2 ' 

Notice that the potential 0 1) does not possess any 
singular point at the origin and decreases like x-3 at 
infinity, 

(62) 

Back to Eq, (61) where V is defined, and still assum­
ing the relationship between p(r) and the density, we 
have 

P(O) =0, 

The only singularities at the origin or at infinity of 
V + V{1) are those possessed by the original potential 
U(r), 

According to the normal procedure the two differen­
tial operators 

A=: L - ~ - (V(1) + V) + k2 
dx· .x- ' 

_cf- A 2 
AO=d?-?+k, 

where V may be a jX j matrix, If present, nonzero 
threshold energies would require an exponential de­
crease from V(1) and V, The x·3 decrease of V(t) obliges 
k 2 to be a scalar, Furthermore, av found in the bound 
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FIG. 3. 

for K, together with the x·3 decrease, restrict the ex­
tension to systems with maximum ", = 3. Matrix solu­
tions of the differential matrix equations 

AVA (x) =0, AOVOA(x) =0, 

are now related through an integral transformation. We 
write this transformation as 

(63) 

The equations for K(x, y) are similar to Eq. (27), within 
the restricted class of operators specified earlier. 
K(x, y) exists if the original potential U possesses the 
appropriate absolute moments. 9 From Eq. (63) one 
returns to the original variable x by 

UA(r) =[1 +p(r)]-1/4[vOA(X) + r K(x,y)vOA(y)dy] (64) 
x 

and 

uA(r) = [1 + p(r)-1/4{vOA[x(r)] + .C K(x(r) , yes)] 

x VQA[ y(s)]x [1 + p(s)]-1/2 ds}. 

From Eq. (53) one obtains the asymptotic relation 

x=r-c+ r {1-[1+p(s)]-1/2}ds 
T 

=r- c+O(r dsj(s)]. 
T 

(65) 

(66) 

For illustration in Fig. 3, typical curves x(r) are con­
structed. Returning to the scalar case we have the fol­
lowing asymptotic behaviors: 

um(r)~amsin (kr- ~1T + Om) , 
(67) 

¢m(x) ~ bm sin (kX - ~1T + 11m ) • 

Using Eq. (66), one sees that the limits (67) as x and r 
go together to infinity imply the simple equation 

k(r-c)+11m=kr+om 

or (68) 

11m = Om + kc. 

Equations (66) and (68) are the basis for Calogero choos­
ing a new variable x = r - c and identifying velocity de­
pendent with static hard core interactions. 
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4. CONCLUSION 

In the paper we assumed Schrodinger equations with 
an effective mass and showed the existence of transla­
tion operators, in the sense of Marchenko, between the 
free Schrodinger equation and the Schrodinger equation 
with an effective mass in addition to the nuclear poten­
tial. Two methods were used to achieve this; they had 
a common characteristic, the full Schrodinger equation 
was subjected to some transformation prior to being 
considered for translation kernel purposes. One may 
wonder whether this preliminary transformation is 
necessary: The answer is no, but it is convenient as the 
following will show. The two operators 

d2 d 
Ao=ao(x) dx'1 + bo(x) dx +co(x), (69) 

d2 d 
A=a(x) dx'1 +b(x) dx +c(x), (70) 

may be directly considered. When Eq. (1), XAo =AX, 
is developed one obtains the partial differential equation 
for the kernel 

K(x,y). 

They are 

02 a ar [K(x, y) ao(y)]- oy [K(x, y) bo( y)] + K(x, y) co(y) 

~ a 
= a1(x) a? K(x, y) + b1(x) ax K(x, y) + c1(x) K(x, y), 

(71) 

with complicated boundary conditions. The restriction 
for the translation operator to be of the Volterra type 
leads to the following two constraints on the coefficients 
of Eqs. (69) and (70): 

(72) 

and 

(73) 

Inspection of the system thus obtained, convinced us it 
was not worth pursuing except when the two conditions 

a=ao=scalar, b=bo=O 

are realized. 

At the termination of this paper we can assert the 
validity of the Marchenko representation in a wide 
variety of physical situations: many-channel scattering 
in a n-dimensional space with centrifugal force or 
Coulomb force or even both, with or without an effective 
mass. Along our study we were led to abandon the 
Gel'fand-Levitan representation. It is not such a dam­
ageable result, the connection of the regular physical 
solution with the physical solution is not maintained 
when the passage from a one-channel to a many-channel 
problem is operated. In addition one should say the 
Marchenko approach is the one which is appealing to the 
creators of the solution of nonlinear problems via in­
verse scattering methods. 5 

We must emphasize that the determination of the con­
ditions the nuclear potential should satisfy for the 
existence of the translation kernel, is only a first step 
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into the inverse problem. When translation kernels for 
a class of potentials have been proved to exist, one ob­
tains upper bounds for. these translation kernels. With­
in this class of potentials, it may be possible to con­
struct a fundamental equation between K(x, y) and some 
spectral matrix F(x, y) as Marchenko or Gel'fand­
Levitan did. The upper bounds satisfied by K(x, y) in­
duce upper bounds that the spectral matrix F(x, y) it­
self verifies. Considering now the fundamental equation 
as an equation for K(x,y), the necessary bound, which 
the spectral matrix verifies, becomes the important 
element in deciding whether or not the fundamental 
equation possesses a unique solution. This discussion 
is the essence of the inverse problem. 

lB. M. Levitan, Generalized Translation OPerators (IPST, 
Jerusalem, 1964). 
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