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A first step in determining all the global projective unitary representations describing free particle systems
in imaginary Lobachevsky space is made. Essentially we determine explicitly the global form of any
representation describing a free particle of spin j on the group generated by rotations and translations of
space-time at time ¢ and time translations. We also discuss whether or not positional observables should
be preserved under physical equivalence and determine the effects this has on the representation theory of

free particle systems.

In this paper free particle systems in imaginary
Lobachevsky space with symmetry group SO.(1,4) are
considered. We start by describing imaginary Loba-
chevsky space and its interpretation as space-time and
its symmetry group. Space-time at time ¢ is shown to
be Euclidean space, and Euclidean motions, that is

translations and rotations, form a subgroup of SO.(1,4).

Their products with time translations form a subgroup
P of 80,(1,4); P is a minimal parabolic subgroup of
S0.(1, 4).

Next we discuss free particles, physical equivalence,
and equivalence. The difference between physical
equivalence and equivalence is the latter insures pres-
ervation of the positional observables while the former
does not. If one does not insist on the preservation of
the positional observables, it will be shown that any
representation describing any particle of spin j has the
same explicit form on P. Since P contains time trans-
lations, the Hamiltonians of all free particles of spin
j are identical, This leads to some confusion in re-
gards to their masses. There has already been some
confusion in this regard as the Hamiltonians for sys-

tems using SO.(1,4) fail to have a minimum eigenvalue.

If one insists the positional observables be preserved,
then we show it is possible to find all particles of spin
j once at least one is known from each physical equiva-
lence class. In this case, however, there are many
more free particles, and one can question their signi-
ficance.

Our eventual goal will be to list the representations
describing free particle systems having symmetries
S0.(1,4). We have reduced it to finding the extensions
of certain representations of P to the whole group
SO.(1,4). We decided to use SO4(1, 4) rather than
S0.(3,2) for the former’s global theory is better under-
stood. Eventually we hope to look at similar problems
for 8043, 2).

There are several papers dealing with elementary
particles in spaces of constant curvature. We mention
those of Hannabus and Fronsdal. Hannabus has looked
at the same problem we have and has claimed to have
obtained all the real mass representations; see Ref. 1.
The results here show there may be some question as
to the meaning of real mass representations. Fronsdal
has worked extensively in both positively and negatively
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curved Minkowski space, using SO(3, 2) as the invari-
ance group. He however has studied elementary parti-
cles by analysing the differential operators of the
group. For more details see Ref, 2.

We have included an appendix defining projective rep-
resentations, induced representations, projection val-
ued measures, and central projections for those who
may be unfamiliar with these concepts.

1. IMAGINARY LOBACHEVSKY SPACE, ITS
INTERPRETATION AS SPACE-TIME, AND THE
SYMMETRY GROUP SO, (1, 4)

Imaginary Lobachevsky space is the four-dimensional
manifold M obtained by identifying antipodal points in
the submanifold xZ —x2 —xZ —x2 —x2=—1 of R®. The
pseudometric K2(dxZ - dx? — dx2 ~ dx? — dx2) turns M into
a pseudo-Riemannian manifold with positive curvature
K2, This manifold is a space-time model for an infi-
nite, expanding universe in general relativity; it is one
of a collection of models known as De Sitter spaces.
S0O.(1,4), the component of the identity of the real 5 by
5 matrices preserving the quadratic form x2 -x2 - x2
-x2-x2, acts isometrically and transitively on the
manifold M. It will be used as the symmetry group for
quantum mechanical systems in M,

Absolute time in M is defined by ¢(x)=In|x,+x, |
where x =x(x,,x,,%,,%,,x,) M, For > =, M(t)=1{x
€ M:t(x)=t}={(sinht+zef|p|? cosht ~zef|p|?, e'p):p c R%
is 3-space at time /. This coordinatization of M(¢) de-
fines a diffeomorphism of R® onto M,. It suggests de-
fining for each element p+R of the Euclidean group E,
the linear transformation p+R of R® by

(P+R)xo, %, @)=((1+3 |p| o+ 2 [P %,
+p*Rq, ~z|p |2+ (1 -3 |p| 2,
—-p*Rq,{x,+x)p+Rq).

That each element p+ R belongs to SO.(1,4) is easily
shown. Hence p+R is an isometry of M. It leaves each
time-slice M(t) invariant, and the diffeomorphism be-
tween R® and M(¢) interwines rotation by R followed by
translation by p with p+R. In particular (p,+R,)p,
+R,)=p,+R.p,+R R, Hence E,={p+R:pcR® R
€S0(3)}; the Euclidean group, is contained in SO(1, 4).

Time translation which we denote by (Z,¢) or some-
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times just by ¢ is the hyperbolic rotation (x,,x,,p)
t (x,cosht +x, sinhf,x sinhf + x,coshf, p) where p = R®,
Clearly (I,t)c80,(1,4) and (I,{)* M(s)=M(t+s).

The following identities are easily established:
(1) d,0)R=R(,t) for t= R, R=S0(3),
(i) ¢, )Mp+D= (e p+ D 1),

Hence the subgroup P of SO.(1,4) generated by E,
and time translations is the group consisting of the
products (p+R)I,t) pcR®, ReS0(3), and fcR. We
denote the element (p+ R, ) of SO(1,4) by (p+R,¢t).
By (i) and (ii) one sees (p+R,t){g+Q,s)=(p+e"'Rq
+RQ,t+s). This defines multiplication in P. P isa
closed seven-dimensional analytic subgroup of
S0.(1,4).

2. FREE PARTICLE SYSTEMS INV/

The states of a quantum mechanical system are the
one-dimensional subspaces of a complex Hilbert space
H; the observables are the self-adjoint operators, and
more specifically the questions are the observables
given by orthogonal projections. Invariance of physical
laws under space-time symmetries is reflected in the
existence of a projective unitary representation U of
SO.(1,4). Two quantum mechanical systems (U,,H,) and
(U,,H,) are physically equivalent if there is a unitary
map V from H, onto H, with VU,{(x)=U,x)V for x in
SO.(1,4). The equivalence class obtained is a quantum
mechanical physical system.

If U is to describe a free particle, to each Borel sub-
set E of R?, there is a projection Py; it is the question:
Is the particle in E? The map E~ Pg is a projection-
valued measure. Furthermore, U and P are related by
the following:

() UpugPeUgtr =P (erre>

(ii) If A is a bounded operator on A and AU,,,=U,,z4,
APp=PzA for all p,R and E, then A=cl, wherec is a
scalar.

The probability the particle lies in set £ when the
system is in state ¢ is (Pro,®)/ll¢ll>. Condition (i) re-
flects invariance of this probability under changes of
coordinates while condition (ii) states that the pair
| £, P) is irreducible. Essentially this means that
there are not two or more noninteracting particles ap-
pearing as a one-particle system, Using (i) and (ii) to
describe free particles was developed by Wightman in
Ref, 3.

Let (U, P') and (U?,P?) be two pairs satisfying (i) and
(i) above. They are said to be equivalent if there is a
unitary map V from H, onto H, with VU, =UZV for x
< 80,(1,4) and VPL= PZEV for Borel subsets E inR?3,
Equivalence classes under this equivalence are the
distinct free particles in M. In this equivalence, the
positional observables are preserved. Physical equi-
valence defines an equivalence relation on free parti-
cles. The equivalence classes under this equivalence
are the free particle physical systems alluded to earli-
er.
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3. RESTRICTIONS OF SO, (1,4) COCYCLES TO P

Let U be a Borel projective unitary representation of
S0.(1,4) with cocycle 0. Hence Uxy=o(x,y)UxUy where
lotx, v)[ =1 and ¢ is Borel. By Theorem 5.5, p.34 of
Ref. 4, 0 may be assumed to be locally tr1v1a1, that is,
o(x,y)= 1 for all ¥,y in a neighborhood of the identity of
SO(1, 4).

To analyze o further, a concrete realization of the
universal covering group Pof Pis given. It is well
known that SU(2)=S® is simply connected and is a 2-
covering of SO(3). Let ¢ :SU(2)~SO(3) be the covering
map. Ker¢={xl}, the center of SU(2). Set F=R?

X SU(2)xR. Define @:P~P by ¢(p,u,t)=(p+o@),t).
Multiplication in P is given by (p,u,)(p’,u’,#')=(p
+e o’ ,un’ ¢+ '), (P, @) is the universal covering
group of P. It is a 2-covering of P and Ker@={(0,
+1,0)}, the center of P,

Let B be a Borel cross section of SU(2)/+I}, B may
be taken so that B contains a neighborhood of the iden-
tity of I. Let y=¢|y™. Define a cocycle 7 on P by

T((py+ Ry, 1)), (Py+ Ry, t5))

_V1ify®, v (R,)e B,

T is locally trivial for B is a neighborhood of the iden-
tity 7 in SU(2).

Proposition: Let o be a locally trivial Borel cocycle
on P. Then there is a Borel coboundary 8 on P such
that either B(x,y)o(x,v)=7(,v) on P X P or Blx,v)olx,v)
=1onPxP,

Remark: B is Borel coboundary if there is a Borel
function b:P~C, |b(x)| =1 for all x, and B(x,v)
=b(x, )b)b(V).

_Proof: Let U be an irreducible ¢ representation of
P, Choose a neighborhood N of 1 in P such that @|, is
a homomorphism and o|5y,x5v = 1. Define U, =Uy,,
for xeN. U is a local homomorphism of b and hence
has an extension to P, Since U is irreducible, U is ir-
reducible. If H, is the Hilbert space for U and 7 is the
canonical map of the unitary group {/(H) of H onto the
projective unitary group U, (H)= U(H)/{d lc| =1}, one
has 7(U )=U s, for all x. Since U and U are both
strongly Borel, there exists a Borel function b on P
with |b] =1 and U, =b(x)U .

Let B=R®*x BxR. B is a Borel cross section for
P/Kew Let 7= (@|3)?. Hence U, =7 (¥, for v
=P, Since Ker¢={(0, +1,0)}= {3:1} belongs to the center
of P and U is irreducible, U_;=+/. Now Uyyys
=o(y,,¥.)U,,U,,. Hence

(31, VIUF Y DOF (v D) U5, U505, = BF (3,9 M 504,50
Hence
Py v NOF (2 NAHF (v Do (v, 0

= U&'(ylyoﬁ(yz)'l?wl)'l

VU it y(e w(y,)e
]U i PP (y, )éB
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Hence A7 (y,y DOF(y DTy No(v,,9,)=1if T =1
while &(F(y,y ,N0(F (¥ NOF(y.)=7(y,,y,) if U-:— ~1.
Q.E.D.

4. LOCALIZABLE REPRESENTATIONS

In Ref. 3 Wightmann calls pairs (U,P) which satisfy
(i) and (ii) of Sec. II localizable. By using Mackey’s
imprimitivity theorem he showed U I B4 18 induced from
an irreducible cocycle representation of SO(3) and P is
the canonical projection-valued measure associated
with the induction. '

Let us assume (U,P) satisfies (i) and (ii) of Sec. II.
By Sec. III we may assume the cocycle ¢ is either 1 or
7. By (i) and (ii) (U]E ,P) form an irreducible system
of imprimitivity for the action (p+R)*x=p+Rx. Since
this action is transitive, one may apply the foremen-
tioned imprimitivity theorem, p. 291 of Ref. 5. It
yields an irreducible o representation L of the stabi-
lizer SO(3) of the point 0 and a urutary map V from H to
L*R?®,H;) such that VU, V™= (1ndso(3)L),,R and
(VPgV)=xy*f where x is the characteristic function
of E. But the irreducible projective representations of
S0(3) are known to be parametrized by nonnegative
half-integers j. The representation D’ of SO(3) corre-
sponding to j operates on the finite dimensional space
C?#1. it has cocycle o=1 when j is an integer and cocy-
cle o=7 when j is a half-integer. Hence in the case when
when L =D’ one has (indL),f (x)=DLf(R (x -p)). j is
called the spin of the localizable system.

Proposition: Let U be a ¢ representation of SO.(1, 4).
Let P be a projection-valued measure defined on the
Borel subsets of R®, Assume the pair (U,P) satisfies
(i) and (ii) of Sec. II. Then there is a nonnegative half-
integer j and a unitary operator V from H to
L*(R®, C%*') such that VU, V™Y (x) = DLf (R (x
VP Vi =y f.

Furthermore V is unique up to a scalar of modulus 1.

-p)) and

Proof: All that remains to be shown is the uniqueness
of V. Assume W:H -~ L3R? C%*!} is unitary and
WU pog W= VU, xV, WP W=VPV?, Then
Viw commutes both w1th Ul g, @nd P, By (ii) VW
=cl where |c|=1. Q.E.D.
5. EXTENSIONS OF INDS ., 0/ TO P

Our goal will be to show that for each representation
ind 3,D’ there is, up to unitary equivalence, one and
only one extension to P.

Theorem: Let U be a projective unitary representa-
tion of P with cocycle o=1 or o=7. Assume (UppfNx)
=Dif(R™(x —p)) for f= L3(R®,C**1), Then there is a
unitary map V of L*R?, C**!) such that VU ,,z, s V-f(x)
=exp(3/200DLF (R x ~p)).

Proof: o is locally trivial. Hence by the same argu-
ment as in Sec. III, there is an ordinary representation
U of B such that U.=Ug;y, in a neighborhood of the iden-
tity. Since U’m(s)xsom) is locally trivial one also can
obtain an ordinary representation D’ of SU(2) with 1’)5
=D}, for u near the identity. .. U, , ,,f(x)
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=D} (@) (x -p)) for (p,u) near (0,1). .
=Dif(¢() (x -p)) for all pe R uc SU(2)

Let F be the Fourier transform of L3(R?, C¥*1),

" Ff(x)= Jps e 3f(y)dy when fe L} (R®, C*™)
N LE(R3 C?*1), Then FU“, oy () = @B PDif(@ ) ).
Let Wy, 0y=F0(p, 0, F™. Then Wio, 1,0, Wi, 1,0 Wik, s,

= Wior, 63, 1,0000,1,-t) = Wa=tp, 1,0 Define for each # the
unitary operator A, of L3R?, C?*) by H, f(x)
= m3t 20 o

et Pf (e7lx). AgamH Wi rooo= Witp 1,0y
S HPW o, ) commutes with W, ., for all pc R®,

U(P.u o)f(x)

Consider the projection-valued measure P defined on
R3*py Pof=xgf. One knows these projections are the
central projections in the commuting ring of W| R3: see
p. 18 of Ref. 6. Hence H;'W , 1\ Pe=PpH W, 1. ¢)e
Therefore, W, 1 yPeWit 1, ¢,=HP =Ptz Define a
left action of £ on R® by (p,u,t)* x=e*@u)x. Then
W PpWt=P_ gforallx inB. Since theactionistransitive
onR®*/{0}, the pair (W, P)forms a transitive system of im-
primitivity. By Mackey’s imprimitivity theorem, there
is aunitary representation L of dimension 2j+ 1for the
stabilizer subgroup 4 of (1,0,0)and a unitary equivalence
SonL%R?,C¥*") suchthat SW,S™ = (ind5L), and SPS™ = Py,
Here we have used the natural identification of P/H
and R340} Clearly H={(p,u,0):9@)(1,0,0)=1}. Let
T={ueSU(2): () (1,0,0)=(1,0,0)}. Let B be a Borel
cross section of the left coset space SU(2)/T. Define
7 :R*/{0} = B by ¥(x)=(0,a(x), In|x|) where a(r) is the
unique element in B such that ¢(a(x))(1,0,0)=x/|x|.
Then (indL ),y )/ () =€ L () 1(p,u, 1 yrte-to Loy
Xf(e"t @) ™). But y(x)=(0,a(x), In|x|), e @h)™x)

= (0, (@ ()W), —t+1n'x[) Hence Y)Y p,u,t)

XA e t@luyx)= (x| o a (), e (xualel )“lx) 0).

Since SP;S™' =Py for all Borel sets E in R®, there is
a Borel, unitary matrix-valued function x = S(x) such
that (Sf)(x)=S(x)f(x); see Theorem P&, p. 92 of Ref. 6.

. SW(p'I’O)S-lf(x) = e'zm'x-?f (x)

=L (x1ocaxn-1p,nS &)

Hence e =L 1 oai)1p1,00 2-€. ¥, Since both are
continuous, they are equal everywhere. But
exp(—2mix * p)=exp[-2mi(x/|x|)* |x|p]=exp[-27i(1,0,0)
* |x|@a(x))?p]. Hence L, ; o =e2m100"2,

Since SW 4,0 S™f (¢)=S)DIS(¢ () %)™ (¢ () x)
=L(0,a'1(x)ua(w(u)'lx))f(qo(u)-lx)’ one has S(x)DiS((p(u)'lx)'l
= Lo, a~1(x)ualo (1)=1c)) 2.€. ¥ for each v € SU(2), Choose
x,# 0 such that

M={uc SU(2):S(x )DIS(¢ @) x)?

= L(O.ot'l(xo)ua(w(u)‘lxo))}

is conull in SU(2). Let 7 ,={uc SU(2): @k, =x,}. Let
#u,< T,. Since M is conull there exists a u = SU(2) such
that u5'u and « both belong to M.

LS )DIS(@ ) ) = Lo, amixguat o L))

and

S(wo)Diz 1 SO WY 5™ = L (g, et e gy tua o urtegh -
S(xo)ﬁ,{OS Ceo) = Lgg, amt (xglugaux )

5 5 5 -1
S (xO)DOt (xo)D a(xg) "Luga(xy) (S (xo)Dgt (xo)) 1= L(O. alxy )'1u0a (xp))*
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But a{x,)"'T,a(r,)=T. Hence S(Jc(,)D-{,‘(,‘0,1')'ﬂ(s(xo)ﬁg‘%))'1
=L forueT,

Consider the unitary map R of L(R? C?*!) defined by
RA&)=Df ya0eyS o) (¥). Since

Dy (xS W)L o, u)s(xo)ﬁm(xo)
=g 2 WaIGS for pe RY, uc T,
one has
R(indL),, . s,R"Yf (x)
= exp(—3/2t)ﬁ,{‘(x)D-a"(\xo,qS(xo)“
XL st otatatp, el x)uato w)=tx))
x S(xo)ﬁﬁ(,o,ﬁ,{,(0(“,-1,,-1f(e't(p(u)"x)
= exp(~3/2t) exp[-27i(1,0,0)* |x| @ (x)p]
Dl D}

a(x) o (x)"loa{e (u)~1lx)
X D, g i1 (€0 () )
= exp(-3/20)e D] (e () ™).
Hence

(FRSF) ¢, (FRSFY Y (x)

= fezuixwe-stlze-zﬂy-ﬂ

x DIFf (et o) y)dy
= exp(3/2t)D}

x [ exp(2miet @) (x —p)* vIEFf (y)dy
=exp(3/28)D} (et )™ (x —p)).

But U,=Uyg,, for x near 1 and Dj=D!, ,, for u near I,
Hence if V=F"RSF, VU, , ,,V7f (x)=exp(3/2t)
X D}y et @) (x ~ p)).

LVU oy VY 0) = exp(3/26)D] f(e*R™ (x — p)) for (p
+R,t) near (I,0). Since both sides are o representa-
tions, equality holds for all (p+R,{). Q.E.D.

6. FREE PARTICLES AND FREE PARTICLE
PHYSICAL SYSTEMS IN /1.

From the theorem in Sec. V, one sees that every
equivalence class defining a free particle physical sys-
tem of spin j contains a o representation U on
L2(R®, C?*1) such that U(p+R, t)f (x)= **/2D{ f(e'R™(x
~p)). Hence U is determined on the group P. As P
contains time translations U,, the free Hamiltonian
may be calculated. It depends only on the spin j and
the inherent geometry of M. Other information must
then be determined from the behavior of U on the re-
maining part of SO.(1,4). Some examples of free par-
ticle physical systems are given by Hannubus in Ref. 1.
They are those described by the principal unitary ser-
ies N*'7 u=0, j=0,%,**+ of SO1,4). They are de-
find on P by N*'9 ¢ o f (¥)= €% /2" D1 f(e'R™ (x - p)).
Hannubus, by comparing with the Poincaré group, con-
cluded u is the mass of the free particle,

Free particles in M are equivalence classes of pairs
(U, P) which satisfy (i} and (ii) of Sec. II. Equivalent
pairs define the same free particle physical system.
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Here we shall work with the converse problem. Given
a free particle physical system F_, determine all the
free particles which define F .

Hence let F| be a free particle physical system of
spin j. Choose a representation U in F; such that
Upar, 1)/ (£)= €32D}, f(e!R™x - p)) for f in L3(R?, C37*1),
Let P be the projection valued measure defined by P
=xzf. Letl (UXU(U)) be the group of unitary inter-
wining operators for U on SO.(1,4) (on E,}). Clearly
UWYCY*U). Let QU) be the left quotient space (/*(U)/
U(U). For x € Q(U) consider the pair (*U,P) where *U,
=WU, W1, Wex,

The pair (*U,P) certainly satisfies (i) and (ii) and
hence determines a free particle,

Theovem: Any pair (V,Q) defining the free particle
physical system F, isequivalentto (U, P) for some uni-
gue x. In particular the (U, P) are pairwise nonequiva-
lent.

Proof: Since (V,Q) defines F, U is unitarily equiva-
lent to V. Hence we may assume U=V. By the propo-
sition of Sec. IV, there is a unitary operator 7' of
L*(R®,C%*) such that T-U,,,Tf (x)=D} f(R™(x —p))
=U,pflx)and TQgT ' =Py, Hence Tc{/°() and if
x=T{ W), (U,Q) is equivalent to (*U,P). To show x is
unique assume (*U,P) is equivalent to (*U,P). Since
*U|z="U|g=U| and (U,P) satisfies (i) of Sec. II, *U
=* by the proposition of Sec.IV. ..v=x. Q.E.D.

If F, is irreducible, one sees the defining free parti-
cles are in one-to-one cor;:respondence with the unitary
intertwining group for indgj 5, 0°.

Pyoposition: If V is unitary and V intertwines
indg? D, then V=F"MF where F is the Fourier
transform and (Mf)x)=M(x) (x), M being a Borel,
unitary matrix-valued function satisfying M(Rx)
=D{M(x)DE", Such functions M are in one-to-one cor-
respondence with the Borel, diagonal, unitary matrix-
valued functions on the nonnegative real line,

Pyoof: Let U=FindD'F™. Then (Uygf)x)
= ¢"2ix°?D, f (R"'x). Now FVF™ commutes with U | gs.
Hence it commutes with the central projections P,
where Pg f=xg*f. Hence FVF™'=M where Mf=m(x)f (x)
and x +— m(x) is a Borel, unitary matrix-valued func-
tion; see p. 92 of Ref. 6, Since UpM=MUy, D{pm(Rx)
=m(x)DL a.e. x for each R. Therefore, m(Rx)
=D} m(x)DL" a.e. R for almost all x. Let pu be the
Haar measure on SO(3), 1] =1. Then M(x)
= [Di*m(Rx)DLd u(R) is a Borel, unitary matrix-
valued function; M (Rx)=D{eM(x)D,’;1, and M=m a.e.
Hence V=F"MF.

If M(Rx)=DiM(x)D}.,, M(x,0,0),x> 0 belongs to the
commuting ring of D’|,; T={R:R(1,0,0)=(1,0,0).

T is commutative and D*{ . is a diagonal direct sum of
distinct characters of T; see Ref. 7, Chapter 2. Hence
Mix,0,0) is diagonal. Q.E.D.

Consider a representation U of SO.(1, 4) with
Upar, orf (¥)= €%/?D} f(e'R™(x —p)). Let Pyf=xzf. Set
V=F"MF where Mf (x)= |x|**f(x). A straightforward
calculation shows VU g ¢ V7f (v)=e* 2el4tD],
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X f(e'R™(x —p)). Hence V does not commute with U on
SO(1,4). Therefore, (U,P) and (VUV™,P) define dis-
tinct free particles in M, however they define the same
physical systems. What the mass is for such a system
is not clear.

CONCLUSION

To find the free particles of spin j in imaginary Lo-
bachevsky space, it suffices to find all the projective
unitary representations of SO.(1,4) whose restriction
to P have form U g ;,f (¢)=€*/2D} f(e'R™ (x - p)).
Having these will determine all free particle physical
systems of spin j, and if one desires the positional ob-
servables be preserved, all free particle systems.

APPENDIX

Let G be locally compact, separable group. A pro-
jective unitary representation of G is a map U : G
- {{(H) where H is a Hilbert space and {/(H) is the group
of unitary operators on # such that U,=I, U,,
=0,y U,, and x - (U,9,¥) is Borel measurable for
all ¢, Yy H, U is a unitary representation provided o
=1. o is called the cocycle of U.

Let K be a closed subgroup of G, Then G/K, the

left cosets of K in G, form a left Borel G-space. In-
deed, let 7:G - G/K be the map 7{g)=gK, Then the
smallest o algebra on G/K making 7 Borel makes the
map x,gK —xgK Borel. Let ¢ be a Borel cocycle on G,
Let L be a projective representation on X with cocycle
o. There is a2 measure 4 on G/K such that for each

£ <G there is a Borel function p,> 0 on G/K such that
u{gnE)= prg(xK)d,u(gK). There is also a Borel map
¥ :G/K~G such that n(y(gK))=gK. A map with this
property is called a Borel cross section. In specific
cases both ¢ and y may be determined from the struc-
ture of G and K. We now define ind$.L. Let H be the
Hilbert space for L. Thenthe Hilbert space H® for indL
is H~={f|f:G/K~H xK~(f(xK), ¢) is Borel for all ¢,
and [If (xK2du(xK)<=}. For gc G, (indSL)(g)f (xK)
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= p (X KN 2oy (xK), y e K)Ty (e KYY, y (xK)2g, ¥ (g% K))
X Lytzi)1grg=1erey S (87%K). Theterm involving p, is the
weight necessary to make the operator unitary, the terms
involving o and the fact that L is a o representation
force indL to be a ¢ representation.

A projection valued measure on G/K is a map E
— P(E) from the Borel subsets E of G/K to the ortho-
gonal projections on a Hilbert space H such that P(#)
=0, P(G/K)=I; P(ENF)=P(E)P(F); and P(U}_E,)
=2u;.,P(E;) if E, NE,=@fori#j. The canonical projec-
tion-valued measure associated with indéL is the pro-
jection-valued measure defined on G/K by (P(E))(xK)
=xz(xK)f (xK) for fc - where x z(xK) is 1 or 0 accord-
ing to whether or not xK is in E.

A central projection for a representation U is an
orthogonal projection which commutes with all the
bounded operators commuting with U,

For more information concerning group representa-
tions and particularly induced representations, we men.
tion Refs, 5, 6, 8, 9, and 10.
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A tachyon dust universe
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In the present paper some investigations have been made on the model suggested by Ray for a tachyon

dust universe and the results obtained have been compared with the results in the flat Friedmann universe
filled with ordinary dust (here called bradyon dust) moving slower than light, by various scientists, on the
ground that the role played by time for ordinary matter is played by spatial coordinates for tachyons. The
effect of the cosmological constant (A) on the expanding tachyon universe also has been discussed here.
The tetrad technique has been used as a mathematical tool for handling the problems of gravitational field

equations and perturbation of momentum flux.

1. INTRODUCTION
A. Background

Many surprising astronomical discoveries have been
made during the past several years. Many unusual
physical phenomena happened in the universe that were
guessed previously by theory and these phenomena
have been explained by putting the general theory of
relativity into service. For instance, the expansion of
the universe neutron stars, 3 °K microwave background
radiation, cosmic rays, pulsars, supernovae, quasars,
and exploding galactic nuclei are some examples, It is
with this background that we turn to a study of tachyon
cosmologies, It is possible that the universe with all its
diversity actually contains tachyonic matter as an im-
portant constituent.

In the present paper, we start with the spacelike
line element proposed by Ray! which is based on Petrov
classification® of gravitational fields by the symmetry
of the space—time, regardless of the weak point that it
allows dust solutions only. The energy—momentum
tensor for dust is given by T;;=pu;u; where p is the
momentum~flux of the tachyon dust and u; the 4-
velocity. For bradyons, p is the energy density.

In Sec. 1 B we give a brief note on comparison of the
tachyons with ordinary matter, called bradyons here,
In Sec. 1C we describe the tetrad notation used in the
paper which has been earlier used by Srivastava and
Pathak. ®

In Sec. 2, which is composed of four subsections, we
deal with the theory. In Sec. 2A we derive tetrad field
equations and their solutions for tachyon dust. In Sec.

2 B we report the results obtained by Johri ef al. in the
flat Friedmann universe filled with dust like bradyons
for the sake of comparison with our model. In Sec. 2C
we apply perturbation theory on those field equations,

In the succeeding section also we report the results ob-
tained for flat Friedmann universe after a slight pertur-
bation for the same purpose.

In the concluding section we discuss the results ob-
tained in the theory section. Here I have stressed the
similarity between a tachyon dust universe and a flat
Friedmann universe filled with bradyon dust.
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B. A brief account on comparison of tachyons and
bradyons

For our purpose let us choose a particular inertial
frame s;. The light speed ¢ owing to its invariant char-
acter allows an exhaustive partition of frames fc {1} in
two subclasses {s}, {s} of frames having speeds u <c
and U> ¢ relative to s;, respectively. For simplicity in
the following we consider ourselves as “the observer
sp.” Frames s e {s} will be called subluminal and frames
se {S} superluminal. The relative speed of two frames
Sy, 8y (or Sy, S;) will always be smaller than ¢ and the
relative speed of two frames {s}, {S} will always be
greater than ¢, The important point is that the above
exhaustive partition is invariant when s; is made to vary
inside {s} (or inside {S}). On the contrary, when we pass
from s, < {s} to a frame S, €{S}, the subclasses {s}, {S}
are interchanged one with other. One confusion may
arise here on the physical ground, “how can an ob-
server pass from subclass {s} to subclass {S}.” We do
not actually mean that an observer of class {s} goes
to class {S}, but we mean that when we consider the
observer of the class {s} and afterwards the observer
of class {S}, both are not the same observers.

Further it is well known that the linear transforma-
tions L, making the transition between two inertial
frames fi, f, must be such that

P -x=x (}-x7)
for every 4-vector x = (x,,x) where x means either 4-

position or 4-momentum or 4-velocity or 4-current
density and so on. In particular

6224/2 — }2 — i(02t2 _ %2)
or
2+ ([ = (P + (ix)P).

For the physical validity it follows that objects must

exist, which are at rest relative to S and tachyons
relative to frames s, From the further fact that luxons
[ show the same velocity to any observer s or S it can
be deduced that a bradyon relative to an S, B(S) will be
a tachyon relative to any s, 7(s) and vice versa, *

B(S)=T(s), T(S)=B(s), I(s)=U(S).
Now it is concluded that when frames s, S observe

the same event “timelike” vectors transform into
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spacelike vectors and vice versa in going from s to S

or from S to s. That is to say that the role of space-
like coordinates and timelike coordinates are inter-
changed while considering tachyons and bradyons. What-
ever role the time coordinate plays for bradyons is in-
terchanged with spatial coordinates for tachyons, and
vice versa.

C. Notation

In this paper, space—time is represented as a four-
dimensional Riemannian space with metric tensor gy,
of signature (+, +, +,-), Covariant differentiation is
indicated by a semicolon (;) and covariant differentiation
along the lines (x‘,xz, t), constant ¢, is indicated by a
prime over the variable, i.e., prime denotes 9/9x%.
Round brackets around the indices indicate symmetriza-
tion and square brackets antisymmetrization. Here we
have taken 871G =c*=1.

The Einstein’s field equations for dust filled cosmo-
logical models are

(.1

where u® are the spacelike 4-velocities for the tachyon
fluid so that 2%, =1,

Rab - %Rgab + Agab = Tab = Py,

The acceleration of the fluid is

;=ug; u',  where the dot denotes 3/3¢, 1.2)

The velocity gradient may be further split up as

U j=W;+ 04+ 56H;, - l}ij,

where 6="U!, is the expansion scalar. 0;;=Uy,;

+ U Uy, — 56H,, is the trace-free shear tensor. W;,
=U,;,;; + U;U,; is the vorticity tensor. Here H;; is a ten-
sor which projects a quantity from x% = constant to
(x!, %%, f) = const defined by

Hyy=g:;- U, U;

i~ i

or (1.3)
H,U'=0, Hi=3,

Here g;; and U; have their previous meaning,
The Ricci rotation coefficients are defined by
Tpe=e,Vee =eles, e}
so that
Lase * epa =0.

Here ¢, are four orthonormal vectors hereafter called
tetrads of vectors which do not, in general, always re-
main the same,

The Lie derivative of ¢, with respect to ¢, is
(€as @) =YarCer Voo = Yias1e
It follows that v§, and I'{, are linearly dependent,
Yas = Lgs ~ I'tas
Lase= é('yabc + Yeab = Ybod)o

Now the Einstein field equation (1.1) can be written
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down in the tetrad form as
Ry= adfﬁu- ¢ 217" Figf‘ﬁb + Fibfﬁa
=~ (A~ D/z)HM" A+ p/Z)UbUd,

The antisymmetry property of the curvature tensor is
equivalent to the Jacobi identity

(1.4)

Bta¥ ey T Yhaevdi =0 (1.5)

The tetrads are so chosen that the spacelike vector
ey is the tachyon fluid flow vector U? so that

UU: 6%7 Ua: 63'

In a cosmological model filled with pressure-free
tachyon fluid, the lines of flow are spacelike geodesics
and the contracted Bianchi identities are

p'+p6=0, where 0=20,+08,+86,, (1.6)

Suppose the perturbation of the model results in the
formation of momentum flux p + 6p so that the ratio of
increase in momentum flux to the model, the contrast
momentum flux for tachyons is K =8p/p, the contrast
energy density for bradyons is u=6p/p, and the rela-
tive expansion in this region is ~ 56,

Perturbation of (1, 6) gives

33(0p) + 08p + pdo =0, t.m
Therefore,
8p\_ 33(6p) &p
Og{— =" - —5p'=- 56, 1.8
3(0) p P 1.8)

This gives the ratio of growth of K with respect to x°® in
the condensation.

2. THEORY
A. Momentum flux of the tachyon dust universe
Let us consider the metric?
ds? = A% (dx')? + C? exp[x!] (dx?)?
+ (dx®? = Crexplx!] (dx%)? (2.1)
as the metric for the background model,

The nonvanishing tetrad components corresponding
to the components of the fundamental tensor in the line
element (2.1) are given by

(€Diy=1/4,
1 x?
(e%)ho = (ei)ho =C exp [— E]

The components of 14, are given as

[91]t=0 == 7131 :A'/A, (2. 2)
[Oe]eg=— Yo =C"/C, 2.3)
[64]t=0 == ,)/‘.134: CI/C) (2. 4)

and other components of 14, vanish,

The tetrad field equations (1, 4) for the tachyon dust
model are

D6+ 6,(0y+ 8, + 6,)=— A +p/2,

DOy + 6,(8;+ 8, + ) == A +p/2,

(2. 5)
D(6y+ 8, +6,)+ (3 + 63+ 6 =-A—p/2,
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DO, +6,(6,+06,+8,)=—A+p/2,
Here D=3/3x°,

Computing the components Ty; and T3, of the energy—
momentum tensor for this model with the help of (1,1),
we find that

1/C A

from which it immediately follows that
A=C, apart from a constant.
Now (2.2), (2.3), (2.4), and (2, 6) together yield
(61 )m0 = [82)ea0 = [Pa)iuo =A"/A= 8, (say).
Hence Egs. (2.5) and (2.7) give
DBy +303==A+p/2,
3D6,+365=-A~p/2.
These equations further yield
2D6, + 363 =- A,

(2. 6)

2.7

(2. 8)

(2.9)
Case I: when A =0
In this case (2. 9) is reduced to
2D6, +362=0 (2.10)
which is easily integrable, giving
A=GCGE%*/3+B,
where G and B are integration constants and

2

6= 50 - (2.11)

This leads to the momentum flux variation relation for

tachyons

4
p= 3(x3)2 (2.12)
in the background model.,
Case II: when A#0

In this case the solution of Eq, (2.9) is given by

A%2= 37K siny and 6,=VA/3 coty, (2.13)
where
3
p= T8R4 @.14)

2

Here 3 is the measure of x%, the proper distance for
tachyons playing the same role as the proper time for
bradyons. 7 is an integration constant.

In this case we find by solving Eq. (2. 8) with the help
of (2.13) that the momentum flux variation relation for
the model is

p = A cosec®d. (2.15)

B. Energy density variation relation for dustlike bradyons
in the flat Friedmann universe

Case I when A=0

In this case the energy density p for the model is
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given by®
p=4/38, (2.16)
Case II: when A#0
In this case p is given by?®
p=A cosech®(vV3A/4)t, (2.17)

C. Perturbations of momentum flux in the proposed
tachyon dust model

Dust is characterized as pressure-free fluid hence we
can take p=0. Moreover for the sake of simplicity we c
consider o, w also vanishing. Hence Raychaudhuri’s
equation for tachyons, ®

6" +36°+2(0° - )+ 3(u-3p) + A =0,

where p is the total relativistic energy of matter mea-
sured by «® given by the relation g =p(1 +¢) where ¢ is
the specific internal momentum flux of the tachyon
fluid, is reduced to

8+ 56+ 3p+A=0, (2.18)
After a slight perturbation, we have from this equation
D*0+26,D6 + 3Dp =0, (2.19)
Now with the help of (1. 8), (2.19) reduces to

24’

D2K+——Z—DK—— 1pK=0, (2. 20)

Case I: when A=0
Equations (2.11), (2,12), and (2. 20) yield

4 2

2+ -2 pre - _
DK + 305 DK 3K =0

332
which gives an integration
K=E;(x%3+ E,(x%", (2.21)
where E; and E, are constants.
Case II: when A #0
In this case Egs, (2.13), (2.15), and (2. 20) imply
DK + 2VA/3 cotdDK — (A/2) cosectyK =0, (2.22)

Now changing the independent variable %% by ¥ through
the transformation =x°v3A/2+D, we have Eq. (2.22)
in the form

2 Ak
%{; +4cotd—— - % cosec® = 0.

a7 (2.23)

On solving this equation we find two solutions
K;=F coty (2.24)
and
Ky = Fycoty [ sin®/* sec’ydi, (2. 25)
where

$=>B8>0,

D. Energy density perturbation for bradyons in the flat
Friedmann universe

Case I: when A =0
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In this case after slight perturbation of the energy
density, contrast density p (= 3p/p) obtained by solving
the differential equation®

du, 4du_2u_g
dt* 3t dt 3t

u,:B‘fz/B‘*'le(-i, (2° 26)
Case II: when A+0

In this case after perturbation of Raychaudhuri’s
field equation’ the differential eguation is obtained in
the form®

dzll (4/\)1/2[ (3/\)1/2](1ﬁ
—Ei—tﬁ-"’ 3 coth 2 t a4t

i\_ 2(§A>1/2] =0
-5 [cosech 2 Hue=0,

having its solution as
(2. 27)
(2.28)

.y = F{cothr,
- T
By =Fjcoth [ ' sinh’/*7sech’rdr,

where 7> 3> 0 and T7=¢$V3A/4,

3. DISCUSSION

Equation (2. 12) shows that, in the case of A vanish-
ing, as x° increases the momentum flux of the model
decreases and also space—time is singular at x3=0,
Applying a different method Ray has also derived a
momentum flux variation relation for tachyons in this
model when A =0, which is given as p=(3/4B%)

x (sin}x®)? where B, is a constant, This relation can be
interpreted to mean that space—time has a singularity
at x%=0 but for the maximum value of sinx®, p=3/4B%
which is a constant and minimum value of p, while our
result yields that p would be zero when x? tends to in-
finity, i.e., the minimum value of p would be zero.
Now from the comparison of the two results we find that
the idea of infinite distance for tachyons carries ne
physical meaning and it is reasonable for a particle
moving with such a high velocity. The analogous result
for bradyons is given by Eq. (2,16) where there is an
interchange of x*% into ¢,

Equation (2. 15) implies that in the case of nonvanish-
ing A, momentum flux for tachyons decreases with the
increase in ¢ to its minimum value p=A which is in-
variant and also space—time is singular at $=0. The
corresponding relation for bradyons is given by (2. 17)
which is hyperbolic in nature showing a little difference
between a tachyon dust universe and a bradyon dust
universe,

One thing more is notable here; the nature of the
momentum flux relations for tachyons in the case of A
vanishing and in the case of nonvanishing A is different.
If physical considerations are not seriously taken, ac-
cording to the solution (2, 12) the minimum value of p
is zero in the first case while the minimum value of p
is A in the second case. Butl near the singular point
x3=0, momentum flux becomes infinite in both cases,
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This implies that A has its effects at larger scales only,

To make the situation clearer, let us assume that the
tachyons were created at or after a big bang along with
many strange particles but they being superluminal
soon went out of the boundary of bradyons due to repul-
sion between bradyons and tachyons, #%? where every
physical phenomena is spacelike for a subluminal ob-
server, This caused the continuous decrease of the
momentum flux for tachyons and this decrease con-
tinued up to a fixed value of p and vanished afterwards
with the result of expansion of the tachyon universe.

Another notable point here lies in the fact that A is
more effective in the case of tachyouns than in the case
of bradyons. As it is evident from (2.186) and (2. 17), up
to the remote future the energy density of bradyons
tends to zero in both cases (when A =0 and when A #0)
but in the case of tachyons it is not so,

Let us further assume that there exists a region at
some distance from the point source of tachyons where
its momentum flux is p + 6p against p. Now for further
discussion we first take up the simpler case (when A
=0), In this case we find that two relations for contrast
momentum flux K (= 8p/p) for tachyons as K, ~ (x*)*/?
and K, ~ (x®)1, K~ x%?/% shows that condensation of
tachyons increases algebrically as (x®)?/® with increase
in x3 which would create meta galaxies. But the solu-
tion K, ~ (5c3)'1 shows that the contrast momentum flux
decreases with increasing x° meaning thereby that no
condensation among tachyons would take place, But this
goes against the fact that tachyons attracts tachyons,
Now the question arises, “How is it proved that tachyons
attract tachyons?” For answering this question we
would have to go back to velocity addition formulas in
the special theory of relativity and from those formulas
we find that a tachyonic observer observes a tachyon
moving with a subluminal velocity, not with a super-
luminal velocity, Therefore, we are able to say that
tachyons are subluminal with respect to tachyons and
superluminal with respect to bradyons, This fact has
also been stressed in Sec, 1 B, On this ground there is
no harm in taking the idea that tachyons attract tachyons
because classification of the fundamental particles
bradyons, tachyons, and luxons is primarily based on
velocity consideration. It can also be proved by some
analytical methods as considering spacelike geodesics,
etc. It is why we discard the solution K, ~ (x*)"!, The
similar case happens for bradyons as it has been dis-
cussed by Johri® through Eq, (2.28).

In the case A #0, from solution (2, 24) we find that
when ¢ —0, K —~« and when ¢ ~7/2, K—0, and as ¢
increases K decreases. It means that no condensation
would occur. Hence this solution is also not of interest
on the grounds mentioned above. But solution (2, 25)
follows in that, as ¥ increases from a fixed value 8> 0,
K increases which means that condensation takes place
resulting in the formation of meta galaxies in this case
also. The cosmical constant A is found effective here
also if we compare the results in the two cases (when
A =0 and when A #0), In the first case contrast momen-
tum flux of tachyon universe increases algebrically as
(x*)?/3 which is faster than that in the second case where
contrast momentum flux increases with the increase in
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¥ (the measure of x3). The parallel results also hold in
the flat Friedmann universe filled with bradyon dust as
it has been discussed by Pathak® through solutions (2, 27)
and (2. 28).

Thus from the above discussions we find that a
tachyon dust universe also expands as a bradyon dust
universe and there is the possibility of the formation
of galaxies as there is for the bradyon universe, More-
over, it is also found here that the cosmical constant
A has similar effects in the tachyon universe at larger
scales but it is somewhere still more effective.
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K matrix for the Woods-Saxon potential*

B. Talukdar and M. N. Sinha Ray

Department of Physics. Visva-Bharati University, Santiniketan 731235, West Bengal, India

(Received 13 December 1976)

The s-wave part of the off-shell K matrix elements for the Woods-Saxon potential has been obtained in
terms of elementary transcendental functions by using the differential equation approach to off-shell

scattering.

The purpose of the present note is to obtain the s-wave
part of the off-shell two-body K matrix for the Woods—
Saxon potential in close anlaogy to our recent work on
the T matrix! (cited as paper I hereafter). Recent
interest in the K matrix calculation has been stimulated
because of its potential application to nuclear scattering
reactions.?

The differential equation approach to off-shell scatter-
ing can be adapted to the K matrix calculation by impos-
ing standing wave boundary conditions on the solution
of the van Leeuwen and Reiner equation. For a central
potential the relevant off-shell wavefunction regular at
the origin is given by’

q>(1e,q,r):—%que|K(E)Iq>[f(k,r)+f(—/e,r)]

oL, a,m) — e, =g, )], )

where (k| K(E)|q) represents the half off-shell K matrix
written as

2Imf (k,v)

K45 8) = o coss ) °

(2)
In Egs. (1) and (2) %k is an on-shell momentum related to
the energy by s =k°+ie=E with e<<1 and ¢ is the off-
shell momentum. The objects f(k,r), flk,q,7), f(k),
and f(k,q) are the appropriate Jost solutions and Jost
functions. Here 8(k) stands for the s-wave phase shift.

In terms of the wavefunction ¢(k,q,¥) the off-shell K
matrix can be written in the form

(P'K(S)‘(IFK(P,‘I,S)
. (3)
=157 J. dr sinprV{r)ok,q,r).

Using the values of on- and off-shell Jost solutions
fl&k,v) and f{k, +q,7) [Eqs. (14) and (16) of Ref. 1] for
the Woods —Saxon potential,

-V

V(T):l‘j'_e—(,_,%m ’ (4)

in Eq. (1) we get
m+ial¥-R)

3 ; 1
¢, q,7)= 2 {B(k,q)[cﬁf’e‘”<ﬁe—<r.m;

m=0

+ G(2) v 1 mtig(k'+p)
m €\ ¥ R a

+ QZ,Z_?,D Hm'"(A,B, C,q,0,7,R)ei?r

1 min+ig(¥-¢)
(i)
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-H

myn

i myn+ia(k'+q)
x (1 n e(r-R)/a) : (5)

Each quantity in Eq. (5) has been defined in paper I
except

ay_ el (k-k’)R(A)m(B)m

(A,B,C, -4, U') T,’R)eik.y

B R (o) Nl R (62)
. _ei(k*b’)R(Ar)m(B;)m
Gn'= (C’),m! ’ (6b)
and
Blk,q)= - frq{k|K(s)|q) (6c)
with

A'=ialk+k"), B =ialk+k)+1, C'=1+2ka. (1)

For the sake of clarity we note that in writing Eq. (5)
we have used the series representation for the hyperge-
ometric function.* Substituting Eq. (5) into Eq. (3) we
find

K(p,q,sﬁ%ﬁcdr sinprggo{B(k,q)

i 1 mel+i (Wek)g
irr
X Gm e (1+ezr-R)7n

2. in 1 m+l+i(p+d)e
ik'r
+Gm e (1+C(r-R)7a>

+ QZZ%{Hm,n(A, B’ qu, g, T9R)eivr

e
1 min+l+i(h'~g)a

x <1 +e r<R) a)

+Hm.n(A’B’ C; -q, 0'; leR)eik’T

1 man+leig(+q)
x<1+e(r-R)7a) " (8)
As usual we break up the integrals in Eq. (8) as
- ® -
fo dy oo — fo dy oo + fR dr veo

and perform the latter integrals to obtain the K matrix
in the final form,

2V, ©
K(p,q,s)= ;p-jmzjo B, ) GG, )+ 12, (1))
+ G(Z)(I(l)

my 0,8

(=R)+I2, (=)

+Q22[Hm'n(AsB’qu’0: T!R)

=0

(IR @)+ I (q)

Copyright © 1977 American [nstitute of Physics 2097



—Hm,n(A’B,C) -q,9, T’,R)(](“ (—C])

Mmyn, S

+ 1.2 (=Dl (9)
where

I (g) and I® (&)

HsVyS H,v,8

are exactly the same objects as defined in paper I. The
triple sum in Eq. (9) is uniformly convergent.' Thus it
can be used to check on programs which attempt to
compute the K matrix by iteration techniques.®
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Stability, equilibrium and KMS for an infinite classical

system
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The stability condition as a property which characterizes the thermodynamic equilibrium is studied from
an abstract point of view. Furthermore, an application of the main result to the case of an infinite classical

harmonic system is given.

1. INTRODUCTION

The goal of equilibrium statistical mechanics is to
give a reduced description of large and complex sys-
tems in terms of a few parameters which satisfy the
laws of the thermodynamics. The macroscopic cbserv-
ables are usually obtained by averaging the microscopic
ones (measurable functions on the phase space) with a
measure which is required to describe the equilibrium
state, and then by performing the (thermodynamic)
limit for N, V— « (with some care), since the finite
volume averages have the unpleasant property of de-
pending on the particles number N and volume V. The
use of such finite volume equilibrium measure is justi-
fied by the so-called ergodic hypothesis, which seems
very hard to prove whenever it does not fail.’

Another point of view is to consider infinite systems
directly. In this case the macroscopic equilibrium state
is described by a measure on the phase space of the
infinite system, that is the limit of finite volume equi-
librium measures or the solution of the DLR equa-
tions; we will refer to such measures as Gibbs or
equilibrium states for the system.? Obviously, besides
the well-known results obtained by the equilibrium
statistical mechanics, there remains the problem of
justifying our making use of the Gibbs measures instead
of the stationary (with respect to time evolution) ones.
In this context it seems quite natural to look for some
“physical condition” that forces any invariant measure
satisfying it, to be a Gibbs state. Such kind of an
approach was proposed by Haag, Kastler, and Trych-
Polmeyer® (see also Ref. 4) for quantum systems. A
classical analog of this result has been obtained by
Aizemann, Gallavotti, Goldstein, and Lebowitz.® (Also
see Ref. 6.)

The basic result in Ref. 5 may be summarized as
follows. Let us consider an infinite classical particles
system and a class ﬂ of stationary states on it, such
that the following properties are satisfied:

(a) there exists an algebra /) of functions on the phase
space that is invariant for the time evolution of the sys-
tem and on which the Poisson brackets make sense;

(b) each state of g is three-fold mixing with respect
to the time evolution.

(c) D is supposed to verify the classical analog of the
L, asymptotic Abelianness, the so-called dispersivity.

With these conditions it is shown in Ref, 5 that the
only states in }7 which are stable under local perturba-
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tions are KMS states, The KMS condition is a good
candidate to describe the thermodynamic equilibrium
by itself and it proves in many cases to be equivalent
to the Gibbs condition.’

Unfortunately, besides the free gas case, it is diffi-
cult to verify or disprove the assumptions (a), (b), and
{(c) in the case of interacting systems. In fact the ergo-
dic properties as stated in (b) have not yet been
proven,® and furthermore the choice of /) seems prob-
lematic since it must be simultaneously large enough to
satisfy (a) and small enough to satisfy (c).

In this paper the same result as in Ref. 5 is obtained
in an abstract framework, without reference to any
physical system by means of relaxed assumptions.
More precisely it is required:

(a’) the existence of an algebra a of functions on
which the Poisson bracket makes sense, and which is
a core for the dynamical infinitesimal generator;

(b’) the systems are assumed to be weakly mixing.
No dispersivity property is required.

Though the properties (a’) and (b’) are implied by (a)
and (b), it is still hard to prove them in the most in-
teresting physical cases. In particular, property (a’),
that is the self-adjointness of the Liouville operator on
the algebra of the cylindrical observables, seems to
require a deeper knowledge of the infinite motion than
we have thus far for the classical continuous system.®

We conclude by observing that we need to strengthen
the stability assumption with respect to that used in
Ref. 5. This means that, in selecting KMS states in
the class of the invariant states satisfying (a‘) and (b},
we need a stronger condition.

The main result (Theorem 2.1) of this paper is
formulated in Sec. 2, and an application to a concrete
system is discussed in Sec. 3. In Sec. 4 the proof of
Theorem 2.1 is given, making use of the following
theorem [it may be found in Ref. 10].

Theovem 1,1: Let (X, T, u) be a probability space and
H be a self-adjoint operator on L,(Z, ).

Let us suppose the existence of a self-adjoint algebra
of functions 4 C /)(H) such that

(i) A is a core for H,
(ii) ¥ f,g<A then H(fg)=fHg + gHf. Then exp(iHt) im-

plements a group of automorphisms of L_(Z, u).

Copyright © 1977 American Institute of Physics 2099



2. DEFINITIONS, NOTATIONS, RESULTS

Let (K, T, w) be a Lebesgue probability space'’ and let
a denote a representation of the real line R as measure
preserving automorphisms of the measure algebra =(w);
the following measurability condition is required:

if A, Be T(w), then R2/ ~ wlA N @,B)

is a measurable function. (2.1)

On the basis of a well-known theorem of Halmos,
Von Neumann, and Rokhlin,** we may think of a,, tc R,
as a family of almost everywhere defined point trans-
formation on K. Furthermore the above condition (2.1)
implies the existence of a weakly measurable (and hence
strongly continuous) unitary group U, on L,(w), such that

(U, k) =1(a,x)

fora.a. ke K,V IeR, V¥ fe Ly(w).

Let H be the self-adjoint operator on L,(w) that
generates U,; we put / =¢H and denote by /{/) its
domain.

Let us suppose that a is a self-adjoint algebra of
functions with the following properties:

W 0L@100);

(ii) there exists a self-adjoint subalgebra AC a of
essentially bounded functions such that /€ A and A is a
core for /;

(iii) a bilinear form (the Poisson bracket) {-, -}: @ x a
- a is defined such that for any f, v, h € a the following
properties are verified:

@ 1, b= 17, &

B 1, g=-1s1h
) U ent=1s, gtn +{f, i} g
(iv) La Ca;
W) wd/fg, hP=-wlg, Lk}, ghca.

Definilion 2.1: A system Y=(K,w, a,a, {-,}) with
the above properties is called a Poisson system.

Definition 2.2 (KMS): A Poisson system Y is said
to verify the (static) KMS condition at some inverse
temperature B€ R if for any f, g<€a

- Buw(fLe)=wd{r, g

Definition 2.2 (KMS): A Poisson system Y is said
to verify the (static) KMS condition at some inverse

(i) V¥ fea, 30:¥ 2e(0,8) 3 p,;€ [o(w)

such that w(p,;) =1 and the bounded measure defined as
follows:

dw = pysdw

is formally invariant for the perturbed dynamics, i.e.,

WM(Lg+M7, D=0, gea.
.. . dpr N
-I)/a =+ exists
(i) lim(p,, - /A =—7 .
in Ly(w).
2100 J. Math. Phys., Vol. 18, No. 11, November 1977

(1) If {£,}<, a is such that f,— 0 in L,(w),
then

dhxs,

o 0 in Ly(w).

The main result of this paper may be summarized in
the following theorem:

Theovem 2.1: 1f a weakly mixing Poisson system Y is
stable, then there exists an inverse temperature B
for which Y is KMS.

We recall that the weak mixing condition means:
T

1 |
im— U,g) = (f, Eco)| dt =0
lim= (1, Ug)=(f, Ee)

V¥ f, g€ L,(w) and E, is the projection on the constants.
In the proof, that we will give in Sec. 4, only the
ergodicity and the equality SpH = IR will be used as
consequences of the weak mixing condition. **

3. HARMONIC SYSTEMS

In this section we will show by means of Theorem
2.1, that for some physical system, the only states of
a certain class that are stable in the sense of Definition
2.3. are the equilibrium states.

The main difficulty we meet in using Theorem 2.1 is
to describe the physical models in terms of Poisson
systems and in particular to show property (ii) of Sec.
2, which, as we will see later (Remark 3.3), implies
a unicity property of the time evolution with respect to
the considered class of invariant states. We specify
these considerations by studying the simple model of an
infinite system of interacting harmonic oscillators. The
equilibrium and the dynamics for this model have been
studied in a more general context by Lanford and
Lebowitz'® and by Van Hemmen, **

Harmonic Sysiem (one dimension): The phase space K
is (R®)Z, i.e., the space of all the sequences V:{Xa}aez
where x, =(p,,q,) is the point of the one-particle phase
space. The inlevaclion is described by an infinite

dimensional matrix V, , with the following properties:
(i) translation invaviance:
Va,B: Vour,Bc/ ’ ‘ Y ' a,B,ve?,

(ii) shor! vange inlevaclion: For each a, < Z there
exists ¥€Z* such that > & +v implies V, ;=0.

(iii) positivity: For all finite nonzero sequences {qa},
one has 3, , sV,39,95 > 0. Then the finite volume
Hamiltonian is

n n n
Hn:éaE P?‘; + /—/ BL ‘/l7113(1c1qB2 0‘
=n Qz==nn B==n

The infinite equations of the motion are
i)a = ;Vaﬁqﬁ’ Go=Da,

that may be written as

\’ ::AX, (30 1)
where A: K — K is the linear operator defined by
(Ax)uc = (—‘;B:/ Va ,BqB’ poz))
where
M. Pulvirenti 2100



xOL = (pa) (Ia)'
Let us denote by A, the subset of X such that for each
x € K, one has
(3.2)

where |x,| =max(ip,l,lq,l); then K, is a Banach space
with the norm

’ElinIRoexp(— lal)|x,] =0,

x|l = sup exp(— | @|)|x,|. (3.3)

Let us set

A= sup |V,, and x=max(a,1).
BE L-r,r) 7

Then we easily get for each x & K|,
A x| < @y +1)a {1

Hence the operator ¢*': K, — K|, gives a solution of the
problem (3.1) with initial data in A,

We now introduce the following pariial dynamics. For
all n€Z" let us define the projection operator on K|,

% if |8l <,
(P,,'\')L;:
0 if |B|>n.

Then by (3.2),
[Px—xll=0 (n—x) ¥ xc K,

As a consequence, setting A =P A one has
exp(A, 1) x—~explA/)x (n—=) ¥ xeK,.

exp(4 ,/)x is obtained by evolving the oscillators in
[=#n,n] under the action of themselves and freezing the
oscillators in [, n|° in their initial positions.

Let F": R*"*"*'’ — € be an infinitely differentiable func-
tion such that for every I ¢ Z there exists a k¢ Z for
which [ &1 [{2*F}(£)| — 0 as 1£i — o, where 3*F denotes
a derivative of order » and £ ¢ R*®"", Starting from F"
we define the function f¢ K + € as follows:

V ve K,
We denote by a the algebra of all functions f of this

kind, and by Z< a the subalgebra of all bounded func-
tions with bounded derivatives,

f(,\’) :’F"(,\'_n R AR )

n

(3.4)

The Poisson brackel is defined on a by the usual
formula:

~fOF" 3G™  AF" aGn
{f’ /g} B %/<ap@ F’(]a - a{IC( apa )’

(3.5)

where f and g are obtained by F” and G™ via (3.4). The
sums in (3.5) are finite by definition and the Poisson
bracket is a bilinear form on o X a which verifies (iii)
of Sec. 2.

The Liowville opevatoy [ is defined by the composi-
tion of the infinite formal Hamiltonian with the functions
of a via the Poisson bracket. By definition if F" gener-
ates f as in (3.4), then (/ Ax)=tim {4, F}{x)
=(V,F", P,Ax) where (, ) denotes the following scalar
product:

(X, W=2,%, v,
o
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and v, - v, is the usual scalar product in R?,

We denote by /) the set of all probability measures w
on K with the following properties:

1) wlK = Ko)=0;

(ii) w is a regular Borel measure on Ko;
(iii) w is invariant for the dynamics expA¢;
(iv) [IxIPdw(x) <+e;

(v) e € Ly(w).

Proposition 3.1: If we /Ml then Y={K,w, a,8,{, *}) is
a Poisson system.

Proof: The measure space (X, w) is Lebesgue, since
K, is a separable complete metric space and w satisfies
the properties (1) and (ii) above. The algebra a is an
L,(w) dense self-adjoint algebra of unbounded functions.
This may be shown by approximating any | - ll-continuous
bounded function f: K, —~ C with a sequence defined as

f{x) = f(P,x) and then approximating any f, with elements

of A. Denoting by a  the algebra of all f€ a depending
only on the first 2(2»z +1) coordinates and moment, then
[a,Ca, and hence /a C a sincea =U,a . If fca, then
for n large enough, / f={#,, 7/}. The Jacobi identity,
together with the invariance of the state, gives property
(v) of Sec. 2.

Let us define
(U, Nx) = fla,x), (UI(0) = fa}x),

where @, —expAl, af=expA,/. Then U, is a strongly
continuous unitary group by the invariance of w and the
continuity of the motion. To complete the proof we need
£ to be a core for /.

If now / denotes the infinitesimal generator of U, it
remains to show that

™
Since [/ I18=/ |8, it is enough to prove that
U,re D | %), (c€Randfep."

(3.6)

In other words, we must find a sequence {g,}7.,C £,
such that g,—~ U,fand /g, ~ /U, fin [ ,(w).

Let us put
8. (xX)=(Uf)x), neZ "

since f€ f for n large enough g, depends only on the
variables in [-n —#,%n +v|. Furthermore g, < a wer A
and [l g ll. =7, Since ofx— a,x ¥ x & K,, then

g,—~ U, f, wa.e.; the estimate | U, f—g,! < 2[lfIl_ and the
dominated convergence theorem imply that g,— U, f in

[ s{w). Furthermore we have

(Leg ) =(LUIAx)=(V U}, P, A%
={Von f, @} P, AY)
=(Vn,f, @ P,A%)

+(Von.f, @UP,., = P)AX).

The first term in the rhs is U/ f and the second one is
bounded by

cl(p,,, -PJAx|l, ceR

n+r
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by the Schwarz inequality. Hence: /g, —~ /U, fw a.e.
Finally the estimate:

[L0, 7= Le, | ()= [0, = UNLA) +2ell AN 1<
<20 L 7, +2c11All )l x]]

and the property (iv) for the measures in/}, allow the
use of the dominated convergence theorem to achieve the
proof. We can now use Theorem 2.1 to obtain:

Theovem 3.1: The KMS states are the only weakly
mixing stable state of the class /}.

Remark 3.1: The above Proposition 3.1 and Theorem
3.1 hold for a y-dimensional lattice since our dynamical
arguments do not depend on the space dimension
crucially.

Remark 3.2: In Refs. 13 and 14 the ergodic proper -
ties of the dynamical flow (X, w, @,) where w is a KMS
state, are also studied. In particular it has been shown
that @, is ergodic if and only if V has no point spectrum,
and that @, is Bernoulli if and only if V has absolutely
continuous spectrum.

Remark 3.3: Let us consider the dynamical flow
(K,w, @,) where w is K. M. S. and «, is a time evolution.
The property / | *B*:L implies that (K, w, @,) is the only
flow constructed by solving Eq, (3.1). Otherwise / I3
should have other self-adjoint extensions. Furthermore,
the above self-adjointness property means that the
dynamics is essentially local, since the knowledge of
the infinitesimal generator on local guantities is enough
to get the whole dynamics.

4. PROOF OF THEOREM 2.1
By Definition 2.3, (i) we have
WML @)= -rM{S, gD, o€ a.
The invariance of w then gives
w(( [Pxf —1]//)\)11,?) == OJH(JLf, g})

Finally by Definition 2.3, (ii), one obtains

ol 2oz £8) == wlls, 2.

Y (4.1)

Denoting by E, the projection on the constants, we put
H = Lo(@)EE, L y(w).

Then by renormalization w((lpr/dk|l=0)=0 and hence

%’;4 A, (4.2)
By the ergodicity
[Ran/ |*=ker{~/)=E, L,(w) (4.3)
and so
La=H (4.4)

because a is a core for /.

By (4.1), (4.2), and (4.4) we see that the mapping

dpxy
drx o

is a well-defined linear operator. Furthermore Defini-
tion (2. 3) (iii) forces T to be continuous. Let 7 be the

I = f,f, f€a
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continuous extension of 7 on all L,(w). We shall prove
that 7T is self-adjoint and that it commutes with the
spectral family of H=—-i/.

Putting f,g<a, by (4.1),
(T Lg) = - wllF,eh) = - w7, 2])
= w(TFLg) = w(TfLg)

and hence
T/ =17, (4.5)
Furthermore if f=/h, h€a, by (4.1) and (4.5),
(f, TLR)=(Lh, TLg)=w(T[g[h)
=-wllLg, k) =wlg, L))
=-w({f g} =w(TFLg)
=(T7, Lg). (4.6)

Combining (4.2) and (4. 6) we obtain T=T%*,
Finally ¥V f,¢< a we have
(T, L8) == w({f, gD =g, N=-(Tg, [
=~(L1,Tg)=-(TLf,g)
and so Tfe (/) and [ Tf=T/{.

Let us now fix v € /)(/). We can choose a sequence
{f,Iz., < a such that

fo—=, LF,—Lu.
By the continuity of T
Tf,—Tu, T[f,—~Tlu
and hence
Tuec (L) and [ Tu=T/u.
Defining
Ra=( +A07" Y reR
and putting
g=R, 7)), felsw)
we have
TR,f=Tg=R,([ +\DT¢=R,T(/ +M)g=R,TY,

so we can conclude that 7 commutes with the spectral
family of H.

The antisymmetric operator: D,=T/ | Sacts as a
derivation on £ [that is Dy(fg) =fDog +2D.f, ¥ g€ 5]
and this in virtue of (4.1) and property (y) in the defini-
tion of the Poisson bracket (Sec. 2).

We want to show that 50 is essentially antiself-adjoint
on A in order to show that expD,/ implements an auto-
morphism of L_(w), {cIR. (See Theorem 1.1),
Suppose the contrary. Then there exists k€ J(Dg) such
that

D¥h==zh,

VY fefweput (/[ +I)f=g€ a; then
(h, D=7, 1),
(h,TLR,g)=%(h, R, 2),

— (R h, T[g)=+(R,h,g).
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if / spans A the g’s span a dense set by the core proper-
ty of R and hence

[TR_ h=%FR_h

This is a contradiction since / T defined on (/) is
antisymmetric.

Let us define the two parameters group of automor-
phisms of L_(w):

V({,s) =exp(DI) exp(/ s).
Then SpV, defined as
SpV={1 e IR?| 7f(A)=0 for all fe L (IR
1 Ve= [V £t )dt =0}

is additive.'® (This may be seen by using Theorem 4.1
of Ref. 16, in Abelian case recognizing that in this
context it is enough to have the commutativity of V, with
the ergodic flow U, to obtain the conclusion.)
On the other hand,
SpV={xu,\)|xe SpH, ueSpT;r, u#0}U{0}. (4.7)

Then combining the additivity of SpV with (4.7) we can
find, for fixed u,# u,< SpT, a i€ SpT with this form

= Ak F AU,
Ay T2,
A=A
:%{ul + iy +—AT+A2 (y "P'-z)}

where A, A, € SpH. Since SpH =1R by the weakly mixing
assumption, the number [I may be arbitrarily large and
this is in contradiction with the continuity of T'. Hence
it is possible only an eigenvalue 8 (different from 0) for
T. So we conclude that

T=8( -E,)

and the KMS condition is proven.
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We exhibit the logical connection between two mathematically and physically interesting notions of
Markov property due to Nelson [J. Funct. Anal. 12, 97 (1973)] and to Wong { Ann. Math. Stat. 40,
1625 (1969)], respectively, in the case of Gaussian generalized stochastic fields.

INTRODUCTION

Markov property, or probabilistic causality, is a
statement of conditional stochastic independence of
random variables and the notion of “conditioning” was
first introduced by the Russian mathematician Markov.®
His compatriot, Kolmogorov,? then gave this important
concept a very rigorous mathematical basis by invoking
measure theory. What are now known as Markov
stochastic processes intervene in many important physi-
cal and mathematical considerations and a theory of
these processes utilizing various mathematical methods
is at an advanced stage of development. However, the
definition of Markov property for stochastic processes
indexed by R explicitly utilizes the ordering relation of
points of . In trying to extend the notion of Markov
property so that it may apply to a stochastic field,
generalized or ordinary, one is, therefore, initially
handicapped by the absence of a corresponding ordering
of the points of 7, d >1, In spite of this apparent diffi-
culty, one can still consider Markovicity of stochastic
fields, but because different localizations are now
possible, there are several notions of Markov proper-
ty®*~" for these fields. In Ref. 3, for example,
Hegerfeldt discusses the connection between a notion of
Markov property introduced by him and that due to
Nelson. Here, we deal exclusively, with generalized
stochastic fields, and we consider two notions of Markov
property for these fields due to Nelson® and Wong, ®
respectively. Nelson's notion of Markov property has
been employed in recent investigations in constructive
quantum field theory®” and it has led there to develop-
ments of no small significance. By imposing a regulari-
ty assumption on a Euclidean invariant (see below)
scalar Gaussian generalized stochastic field, Wong was
able to show,® much earlier than Nelson, that such a
field would be Markov in his sense if and only if it is
the same scalar generalized stochastic field which now
leads, via Nelson’s recent reconstruction theorem,® to
the free massive scalar Wightman quantum field. It is
therefore, mathematically and physically interesting to
investigate the connection, if any, between these two
notions of Markov property which we formulate below.

1. EUCLIDEAN COVARIANT GENERALIZED
STOCHASTIC FIELDS

The d-dimensional Euclidean space E? is a couple
(R4, 1-1) where

}.‘ :/\)d—’/%+:[0’ °°)7 /2
A'I(A’l,...,xd);——|x|:<2xzi> )

i=1
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E? is a group space® whose group of transformations is
the Euclidean group M(d).® The latter is the semidirect
product of the additive group E? and the d-dimensional

orthogonal group O(d), i.e.,

M(d)=E"(0(d).

Thus, each g€ M(d) is a pair g= (o, k) with o € E* and
h € O(d). The orthogonal group O{(d) is compact and
hence it admits finite -dimensional representations. °

Let §(R% be Schwartz space of rapidly decreasing
complex-valued C~ functions on R". Let (2, /A, i) be a
probability space and let

Q) =1e(N="(&,(N:i=1,...,N):fc S(RH}

be an N-component generalized stochastic field™ on

(Q, £, u). We assume throughout that H(Q) is of second
order, i.e., & =(&(/),..., () € H(R) implies
t(Nel?Q, B, ), i=1,..., N. In that case, each

£(f) € H(®) necessarily has an expectation functional
because L&, /3, 1) contains L"(2, A, 1), for g <v.

Let M (f) and B(f'Y, /) denote the matrices whose
entries are (/) =<1, £(/D 29 8., and {&,(/'V),
£/ )12 B uy» Tespectively. Thus the column matrix
M {(f) contains the mean values of the components of
£(f) € HYR), while B(f 'V, £'?’} is the matrix of their
correlation functionals. Let i}~ V(#) be an N-dimen-
sional unitary irreducible representation of O(d). We
are interested, in this paper, in N-dimensional general-
ized stochastic fields which transform covariantly with
respect to M(d) in the following way.

(1.1) Definition: Let HY(Q)={e(H=(£,(f; i=1,..., N):
Je S{RY} and let h—~V{(h), he O(d), be as just described
above. Then, we say that H°(R) is a Euclidean covariant
generalized stochastic field transforming according to
the unitary irreducible representation A+ V(h), k€ O(d),
if it satisfies the following conditions:

(i) the induced action 7, on H%(Q) of the transformation
g of R? onto itself is specified as follows

(TN =2V,WEAV,A, i=1,...,N.

(ii) the mean matrix //f (f) and the correlation matrix
B(F'V, ) are such that

@M (H=vuIMv,.n

(b) B(f(l),f(Z)): V(h)B(ng(l), ng(z)) V(h)—l
where (V, N){x)=f(g"x) and

g=(a,h) cM(d)=E'G®0d).

Copyright © 1977 American Institute of Physics 2104



(1.2) Remark: It is clear that (ii) (a) is readily satis-
fied if M (A)=0, i=1,..., N. Hence in what follows, we
assume this to be the case, i.e., that the components of
each £(f) € H(R2) have zero mean. For a detailed analy-
sis of the structure of the most general form of
B(rV’, £2’) and the spectral representation for
£(f) € H°() such that (ii) (b) holds, we refer the reader
to Refs. 12 and 13.

2. THE SPACES H( R 9) AND #( RY)
Let HYQ) ={¢(f)={&;(N: j=1,...,N): fe SR"} be

an N—component Euclidean covariant generalized

stochastic field on the probability space (2, £, u); let

(), £,(0)12(0,8,u)=By; (x —y), and let B(p) denote the

N XN matrix whose entrles are given by
Eij(p):fde”(x) exp(ip . x).

Set ( SRNY = Sy-

The random -variable -valued generalized function £
may be regarded as a bounded linear operator with do-
main §, and range contained in L%, 8, u) as follows':

£ Sy~ (S LR, 8 u),
:(fu-"’. Hg(f Z/& fz

Let
('; ')-SN : £(SN) XE(SN) -

be the following sesquilinear functional:

(E(f(l)), g(f(z))) — (g(f( l)), g(f(Z)))SN

N
= Z‘/ E,i(fi(“)’ gj(fj(Z))>L2(§2,B,u)

i,§=1

S [ ap P B (p) {2 p).

NDIJZ

-

i,

The positive -definiteness of B(p)= (B”(p

=1,..., N) now allows us to assert that (-, ) v 1S indeed
an inner product, and ll£(Dlls, = (5(f), g(f))l/z_g”:O, if
and only if =0, and hence, if and only if £(f)=

Next, let H(R") denote the Hilbert space delivered by
functional analytic completion of the pre-Hilbert space
((S5x), (-, +)¢ ) in the norm topology derived from the
following inner product:

<':'>H(Rd):§(5N)X£(SN)_’¢
(ﬁ(f“)), g(f‘z’))|—-<§(f(1)) (f(z) >H(/<"
=(6(7'), 8PN ¢

H(R") is isometrically isomorphic to the Hilbert space
#(R?) obtained by the completion of §,=(S(RM)" in the
norm-topology furnished by the inner product,

(', ’>)L/(Rd) : _S_NXSN" c,

(f(l), f(Z))._, <f(1), f (2)>H(Rd)

= (E(fV), f(f(z)»m/{d,.
H(R? is called the index space for H(RY).
Each of the Hilbert spaces H(R?) and #(R? has a

quasilocal® structure. Take H(R?), for example, and let
D be any bounded open subset of ¢ with complement D’

and boundary aD. Define H(D) as the completion in the
topology of L*(Q, A, u) of the linear space

2105 J. Math. Phys., Vol. 18, No. 11, November 1977

{t) e e(S):fe Sy, supp £C D}

The collection {H(D) : DR} of Hilbert spaces of
random variables is a net whose ordering relation is
isotonous inclusion,

it D,>D,, then H(D,) CH(D,).

It must now be clear that H{(R? is the completion, in the
norm topology of L*(8, £, i), of UDC/Q,,H(D)

In case A is a bounded closed subset of R%, we define

H(A):DgAH(D),

where the intersection is taken over all bounded open
sets D in A7 which contain A,

Any linear space of random variables which possesses
a quasilocal structure comes well equipped to sustain
the important notion of Markov property. In this com-
munication, we introduce two notions of Markov proper-
ty and study the connection between them -

(2.1) Markovicity in the sense of Nelson®: Let H%($)
={eN=((Nri=1,..., N): fe SR}

be a Euclidean covariant generalized stochastic field on
(2, A, u). Then, H°(Q) is said to be Markov in the sense
of Nelson if, for any bounded open subset D of R, and
for all n ¢ H(D),

(2.2) E(u|H(D")) = E(u|H{2D)),
except possibly on a set of y-measure zero,

For any bounded open or closed subset A of R¢, let
@, be the orthogonal projection of H{R?% onto H(A).
Then, !

EG |HAN=Q,
and (2.2) admits the following abstract formulation:

(2.3) @5, Qp=Q,,9p,
as an operator equation on H(R")

As already indicated in the Introduction, this notion
of Markov property has led recently to the clarification
of some mathematical and physical problems in the
study of relativistic quantum fields. The other definition
of Markov property of interest to us is that due to Wong.

(2. 4) Markovicity in the sense of Wong®: Let H%(R)
={&N=(¢,(N:j=1,..., N)} be as in (2. 1) above. Then,
H°(Q) is said to be Markov in the sense of Wong if, for
any nested increasing family 3D,, 3D, 2D, of boundaries
in %!, we have that

H(3D,) - P, H(3D,)

is stochastically independent of #(3.D ), where P, is the
projection of H(2D,) onto H(3D).

(2.5) Remark: Wong’s notion of Markov property was
originally formulated® only for Gaussian generalized
stochastic fields. The formulation given here is an ex-
tension and improvement on that in Ref. 5.

Most investigations®:®:1%:17 of the notion of Markov

property have dealt with generalized or ordinary
stochastic fields or processes obeying the Gaussian
probability distribution law, because of the relatively
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simple form to which the concept of stochastic indepen-
dence reduces for this type of random variables. In
what follows, we put the constraint on H°(Q) that finite
collections of elements from H°(R) have Gaussian prob-
ability distribution. With this assumption, stochastic
independence of two members of H°(Q) is equivalent to
their orthogonality in L%, A, u).

It is useful to obtain an abstract formulation as in
(2.3), for Wong's notion of Markov property. To this
end, there is the following result:

(2.8) Theorem: Let aD,, aD, and 8D, be any increas-
ing triplet of nested boundaries and let H(3D,), H(3D),
and H(3D,) be respectively, the associated boundary
data Hilbert spaces. Let P,, denote the projection of
H(?D,) onto H(3D). Then Wong's notion of Markovicity
is equivalent to the following condition:

QaleaD2 = Qaplpab Qanz
as an operator equation on H(R").

Pyoof: Wong’s definition of Markovicity is the follow-
ing statement: H(3D,) - P,, H(3D,} is always orthogonal
to H(9D,). This is equivalent to the following:

(Qap,1ts Qap, ) n(Rty=(Pap Qap, s Qsp, V) mR")
for every u, v belonging to H(R").
Thus, it follows that
<Q3D1Q8D2“! QaD17’>H(R”>
= <QaD1PaD Qapzus QaDlv >H(R")-
Hence
<(QaDlQaD2 ~Qyp, PypQap,)tts ") pRiy =0,
for every u, v € H({R?). In particular, this is true for
every » € H(R") and for arbitrary but fixed u € H(R").
Next, set
(QaulQanz "QaDIPaD Qauz)“: IR

Then, since u is fixed in H(R?), so is ¢(u). From the
preceding, we have then that the bounded linear
functional

F :H{R)—C,

v—F (v)= (plu), 7’>H(R">
is identically zero on H(RY). Hence, by the uniqueness of
any bounded linear functional on a Hilbert space, it
follows that

dlu) = (Qaul Qauz - QaDIPaD Qapg)u =0
for all u € H(RY).

Hence,

() QaleaDZZQaplpaD QBDZ’
as claimed, n

(2.7*) Remark: If H°(R2) is not Gaussian as we assume
it to be here, then (*) is a necessary but not sufficient
condition for Markovicity in the sense of Wong.

(2.7) Definition: Say that H(Q)=4£() = (&,(f:
i=1,..., N): fe S(RH} has the restricted Markov prop-
erty of Wong if E{ur |H(2D)) = E(u| H(3D))E(v | H(3D)) for
every u € H(D) and v € H(D').
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(2.8) Remark: There is the following connection be -
tween the restricted Markov property of Wong and
Wong’s notion of Markovicity.

(2.9) Theorem: Let H°(Q) have the restricted Markov
property of Wong, Then, H°(Q) is Markov in the sense
of Wong.

Pyoof: Let D,, D, D, be bounded open subsets of R
such that

D,DDD>D,,
Then, the boundaries 20,, 3D, 9D, form an increasing
family of nested surfaces in 7%,

Now, H(2D), H(2D), and H(3D,) are subspaces of
H(R"). Furthermore, H(2D,) is a subspace of H(D) and
H(2D,) is a subspace of H(D'),

Hence, since by hypothesis H°(Q2) has the restricted
Markov property of Wong, we have

EGu |H(AD)) = E{u|H(3D)) E(v | H(2D))
for every n € H(0D,) CH(D) and » € H(8D,) CH(D'). This
iast equation implies

Uty 1200, w =1, E(v |H(3D»L<Q,B,u)
or equivalently,

G, v ~E(11[H(P,D))>L2m’8'“,:0.

Hence, we have that for every n e H(3D,) and every
»e H(aD,), r - E(v|H(3D)) is stochastically independent
of #. This is Wong's definition of Markovicity, and
hence the claim is vindicated. .

(2.10) Remark: Let us now make contact with Nelson's
notion of Markov property. To this end, we can assert
as follows:

(2.11) Theovem: If H°(R) is Markov in the sense of
Nelson, then it has the restricted Markov property of
wong.

Proof: From Nelson’s definition of Markov property,
it follows that

E(uv ’H(D’)) =pE(u | H(D'))=nE{u ‘ H(2D))

for all nc H(D) and all » € H(D'). But H(3D) is a sub-

space of H(D'). Hence,
E(EGw |H(D')) |H( D)) = Elu| H(D)) E(v | H(D)),
by what precedes
= E(uv | H(3D)).
Thus, we have established that
EQuuv IH(D)) =E(u ]H(D)) E(v |H(81)))

for all » € H(D) and all » € H(D’). But this is the re-
stricted Markov property of Wong as we have defined it
in (2.7) above. Hence, our claim is justified. "

(2.12) Remark: We have obtained the following
sequence of logical implications:

restricted Markov
~ property of Wong

Nelson’s notion of
Markov property

Wong’s notion of
Markov property
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That Wong’s notion of Markov property is not only
apparently, but indeed genuinely, weaker than Nelson’s
notion of Markov property emerges vividly in a paper,
currently under preparation, by this author.
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Evolution of a stable profile for a class of nonlinear
diffusion equations with fixed boundaries
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A class of quasilinear parabolic equations with fixed boundaries arising in studies of cross-field diffusion in
toroidal multipole plasmas is presented. It is well known that these equations have separable solutions
which decay in time. Surprisingly, both octupole and numerical experiments show, in particular cases,
that the separable solution evolves from an arbitrary initial distribution of particles. The evolution and
stability properties of these solutions are demonstrated in this paper. When the coefficients of the
equations are independent of the spatial variable, infinitesimal perturbations decay as the fourth power (or
higher) of the separable solution time dependence; the separable solution is therefore stable. When the
initial particle distribution has no nulls except at the boundaries, an approximate analysis shows that large
perturbations decay exponentially causing the rapid evolution of the separable solution. The analysis
allows the asymptotic behavior of the system to be predicted approximately from knowledge of the initial

particle distribution.

. INTRODUCTION

A series of experiments on particle diffusion across
magnetic fields in the Wisconsin toroidal octupole plas-
ma containment device has been conducted by Drake,
Greenwood, Navratil, and Post.! These experiments
were performed with a purely poloidal field. They found
that a density profile developed which decayed in ampli-
tude but otherwise was essentially independent of time.
This remarkable time independent density profile was
dubbed the “normal mode” of the system and corre-
sponds (as we will show) to the separable solution of
the relevant nonlinear diffusion equation. Reduced to
standard form and normalized units, the equation of
interest is

F(x)%:%{D(n)%jl for 0=x=1, 1)
where »n is the particle density, x is the spatial variable
in one-dimension, and / is the time. The geometrical
factor F(x) is a positive function determined by the oc-
tupole geometry. The diffusion coefficient D{x) is a non-
linear function of the density. In the experiments of Ref.
1, D was found experimentally to scale like Okuda—

Dawson diffusion?
D(n) = n /2, (2)

but in other density and field strength regimes the scal-
ing is different. In general, the dependence of the dif-
fusion coefficient on the density can be parametrized

by taking

D(n) = ®, (3)

with 6§ = - 1. We may treat (1) with D specified by (3)
as a mathematical model of the physical problem and
determine what the predictions of that model are.

The present paper will treat the analytical properties
of Eq. (1). The questions to be answered are: (a) What

@ Present address: Courant Institute of Mathematical Sciences,
New York University, 251 Mercer Street, New York, NY
10012,
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is the nature of the separable solution and how does the
geometrical factor affect it? (b) Is the separable solu-
tion stable against infinitesimal perturbations? {c) Does
an arbitrary initial distribution of particles evolve into
the separable solution? These questions are given
satisfactory answers in the sections which follow. The
geometrical factor can cause the shape of the separable
solution to be asymmetrical and affects the decay rate
but has little effect on stability, Infinitesimal perturba-
tions are shown to decay faster than the separable solu-
tion so stability is established. Furthermore, it is
shown that the separable solution will rapidly evolve
out of an arbitrary initial particle distribution as long
as the density does not vanish anywhere except at the
boundaries. Numerical experiments confirm this
conclusion. In a second paper published elsewhere,®
the model equation (1) is derived phenomenologically,
and the theoretical predictions for the decay constants
and shape of the separable solution are compared to the
experimental results. A more detailed discussion of
the effects of the geometrical factor F(x) is also given
there.

Il. A MODEL OF NONLINEAR DIFFUSION

Equation (1) can be put into a form more convenient
for both analytical and computational purposes. The
proportionality constants for (3) can be chosen for con-
venience to give

D)= (1+6n for 6 >~1. (4)

(We exclude the case 6§ =— 1. A similarity solution ex-
ists for this case, * but the boundary conditions and an-
alysis must be treated by methods different from those
required in the remainder of this paper.) A new depen-
dent variable can be defined as

mx, t) =a'*® for 6> -1, (5)
which satisfies
F(x)(m*Y), = Mgy (6)
where
Copyright © 1977 American Institute of Physics 2108



g=(2+8)/(1+9) (7)

and subscripts indicate partial derivatives. For 6> -1,
we see that 0=m(x, t) <= when 0 =n(x, t) <= and fur-
thermore # =0 when #=0. We will call m(x, f) the
pseudodensity associated with z(x, #) since it is non-
negative and behaves very much like a density
distribution.

The geometrical factor F(x) is positive in the cases
of physical interest and has a singularity at some point
x =x,. This singularity is integrable. (For the toroidal
octupole, this singularity corresponds to the singularity
in the function giving the flux tube volume per poloidal
flux increment.) Typically, the singularity may be of
either square root or logarithmic type. To include the
case of physical interest in our studies of (6), we must
consider F’s which satisfy

F{x)>0 for 0sx=1, (8)
fol F(x)dx <, (9)

and allow F to have a singularity for some x =x,, In
addition, it is consistent and convenient to

F’(x)= 0 for x<x, and (x) =0 for x >x, where F’
=d/dx.

The general analysis that follows will apply for all
6> ~—1. Since the case of most interest in Ref, 1is 6
:—%, the detailed calculations will be restricted to
treating this case as an example. If in addition we as-
sume the geometrical factor F{x) is not of crucial im-
portance, we may study the especially simple case of
F(x)=1and 6=~3 or

2mm, =m,,. (10)

The density n(x, 1) =m%(x, 1) [from (5) and (7) with &
=-73 or g =3] obtained by solving (10) for m will be
shown to have many of the properties of the density pro-
files found experimentally.

Two types of boundary conditions are of interest:
(a) For short times after the plasma has been injected
into the octupole, the bulk of the particle density is
localized and begins diffusing towards the boundaries.
Thus, for short times the density is essentially unaf-
fected by these boundaries. This situation is approxi-
mated by supposing there are no finite boundaries, i.e.,
consider —© <x <%, (b) For long times, a significant
fraction of the particle density is in the vicinity of the
boundaries. The experimental results on the toroidal
octupole are well approximated by taking » =0 at the
boundaries. Using our transformed variables, this con-
dition corresponds to the boundary condition for the
pseudodensity given by

m(0, £} =m(1, t) = 0. (11)

For 8>~1, (11) is consistent with the physical require-
ment of finite flux.

Exact solutions to (6) can be found when F(x) =1 as-
suming the boundary conditions discussed previously.
The method of similarity transformation discussed by
Boyer® and Ames® in a similar context (i.e., 6> 0) can
be employed. Since the method is well-documented
elsewhere, we will simply quote the results here.
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Assuming an m(x, t) of the form
m(x, 1) =S[x/R®IT@) (12)

satisfies (6), we find for @ #0

Sy(1 = az?/23)7°
S(Z) =

0 for 0z?>2z% when ¢>0, (13)
and for all o
T(t) = {Ao(l — it/ TV
0 for t>7,/¥ when r> 0, (14)
and
R(t) =R ,T*(t), (15)
where
22=28"! and 0=2-¢, (16)
T={(q- 1R and y=q - 2a - 2. (7

In Egs. (15)—(17), X is the separation constant and o
is determined by the boundary conditions. Aj, R;, and
S, are arbitrary constants.

Allowing x to range over all — © <x <, the physical
boundary condition® is that the total number of particles
is conserved during the diffusion assuming no sources
or sinks are present. This implies

Nt = [Tnlx, ) de=[TOFR(@) [ 5" 2) dz (18)

is a constant. Using (15), we find that (13) is a valid
shape function if and only if

a=qg-1. (19)

For the second physically interesting boundary condi-
tion, »=0 at the boundaries. It is easy to prove (and
physically obvious) that R must be time independent so
that

a=0. (20)

This is the case of principal interest in this paper and
is treated in Sec. III.

1. THE SEPARABLE SOLUTION

In Sec. II, we found that (6) could be separated for
0=x=1, The general time dependence was calculated.
A detailed analysis of the separable solution shape func-
tion is given in this section.

A. Exact results

For 6>-1, =0, and F(x) =1, the shape function
satisfies

S” 4+ a8t =g, (21)

where '=d/dx. Note that if S,(x) is a solution with sepa-
ration constant A, then S(x) =aS,(x) is also a solution
with separation constant A =X)a"~?, where a is any posi-
tive number. Therefore, we can scale S so that 0=8§
=1 without loss of generality. Equation (21) can then

be integrated to give the implicit relation

S
d
0 ¥

James G. Berryman 2109



where

Pt =2)/g. (23)

Since S is necessarily symmetric around x =%, S(x) for
£ =x=1 can be found using the identity S(1 - x) = S(x),

The integral on the left can be expressed in terms of
the incomplete beta function or in terms of Gauss’ hy-
pergeometric function as

1 11 1
1(s):aBs<a,§):s”“2Fl<é; 1+5,-s). (24)
No simple methods of inverting the hypergeometric
function are known except for special values of its ar-
guments. Therefore, Egs. (22)—(24) are not very useful
for determining S(x) analytically. If desired, these
equations can at least be used to determine the quali-
tative nature of S(x).

However, certain special values can be obtained per-
mitting the exact evaluation of some relevant constants.
For example, from (22) we find

p=2I(1)

_2T{/9T(3)

W CESY) (25)

where T" is the gamma function. Furthermore, the eigen-
value X is expressible in terms of p as

x=2qp’. (26)
Thus the eigenvalue is known exactly for all ¢. In addi-
tion, one can show that

y= ['1 SH¥)dv=4/qp 27

B
using (22). ¥ is just the integral of the physical density’s
shape function. The total number of particles in the
separable solution obeys

N = [ n(x, 1) dx =yTo(t)

4

(28)

for all time.

Table I gives values of ¢, p, ¥, and X for various val-
ues of the nonlinearity parameter 5. We note that as &
varies continuously between + < and - 1, ¢ varies mono-
tonically between 1 and +*, p varies between 4 and 2, ¥

TABLE I. Values of ¢,p,x, and v for selected values of 5.
The defining equations given in the text are (7), (25), (26),
and (27), respectively, The slope of the separable solution
shape function is +p near the boundaries, The separation con-
stant is A. The total number of particles in the separable
solution is proportional to v,

54 p A Y
w0 1 4 8 1

1 3 3,4495 8, 9242 0. 77306
0 2 ™ ™ %/

-5 3 2, 8044 11,7967 0.47545
-4 4 2, 6221 13,7504 0.38138
-7 5 2, 5075 15,7184 0.31905
-1 o 2 o0 0
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between 1 and 0, and A between 8 and + <. The values
given for & =~ 1 should be thought of as limiting values
as 0— - 1" since the analysis in the previous paragraph
is not valid for 6 =- 1. The value of y is important for
reasons to be discussed in Sec. V. The values of A are
important for determining the time constant (17).

B. Numerical methods

Since the shape function for the separable solution of
(6) is not known in closed form even with F(x) constant,
it would be useful to construct numerical methods for
calculating the shape functions. We construct a succes-
sive approximation method valid for arbitrary F satisfy-
ing Eqs. (8) and (9). The case 6= -3 is treated as an
example.

If the function F(x) containing the geometrical effects
in the diffusion problem satisfies conditions (8) and (9),
it is no more difficult to construct an iterative method’
for the more general problem

= S"(x} = M(x, ) = AF(x)S* (x) (29)

than it would be for (21). It is straightforward to show
that (29) is the equation for the shape function which
derives from (6).

It is natural to consider monotone iteration methods
such as those proposed by Keller and Cohen® and re-
viewed in an abstract setting by Amann. ® Straightfor-
ward application of these methods is not possible how-
ever. The convergence proofs given in Ref. 8 require
two assumptions which are violated here: (i) continuity
of f(x, S) and (ii) f(x, 0) > 0. The singularity in the geom-
etrical factor F(x) violates (i). More importantly, the
fact that f(x, 0) =0 when ¢ = 2 (thus admitting S=0as a
solution) violates (ii). In fact, it is easy to construct
examples where a straightforward iteration procedure
with A=1 will rapidly generate the zero solution in a
machine computation. A discussion of some relevant
aspects of Amann’s work is given later in this section.

The difficulties discussed in the previous paragraph
can be avoided by using the following device. First,
solve the linear boundary value problem

% {(x) == FSII(0)
(30)
b i(O) :Ei(l) =0

taking Sy(x) = ¢(x) where 0=¢ and ¢ is some continuous
integrable function, not identically zero. Then, define

At = max 3, (v) (31)
=x=<l
and
Si(X):MZi(X). (32)

Egs. (31) and (32) merely normalize the amplitude of
S; so its maximum value is unity. Defining the Green’s
function

x(1-¢&) forx=
6lx, &):{ (-¢ g )
£1-x) for x =&
we can write the solution explicitly as
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S0 =2, [, Glx, DF(DSH(E) dE.

Thus, if S;, =S;, (34) gives the solution of (29).

If the amplitude adjustment in (31) and (32) is not
done, then the results obtained depend strongly on the
amplitude of the initial guess ¢{x). A small initial am-
plitude leads to a declining (diverging) sequence {S;} for
q > 2 (g < 2) while a large amplitude produces the op-
posite result. On the other hand, if ¢ is not too large,
the normalization is not required at every step of the
computation. With high precision, the shape produced
at each stage is clearly the same with or without the
normalization. However, searching for the maximum
of Z; requires an insignificant expenditure of computer
time compared to the integration in (34). Therefore,
normalization at each step of the computation is
recommended.

The method proposed in the preceding paragraphs
has been tested numerically. It is both stable and con-
vergent for ¢ = 3. Whether this iteration procedure con-
verges for all admissible ¢ and F(x) is not known. How-
ever, it is clear that the iteration process is stabilized
by the normalization in (32): The possibility of generat-
ing either vanishing or diverging iterates is eliminated.
It has been observed empirically that, starting with
¢(x) =4x(1 — x), a monotonic decreasing sequence of
iterates is generated when ¢ = 3. It may be true that,
for some choices of ¢ and F(x), this iteration procedure
results in an oscillating sequence, i.e., S;~S;,; and
S;s —S;. If this happens, convergence cannot occur.
However, such oscillations have never been observed
in the cases tested by Drake and the author.®

One additional fact about Eq. (34) is worth noting.
Assume that F(x) (a) is symmetric about x=3, (b) is
monotonic nondecreasing on (0, 3), and (c) satisfies Egs.
(8) and (9). Then a tedious graphical analysis of the
class of functions S; which can be generated from (34)
shows that

4G(x, 3) =S;(x) = 4x(1 - x) (35)

for all7>1 and all 1 =g =, The Green’s function G is
given by (33). The equalities in (35) are satisfied for all
x if and only if (a) F(x) =6(x - 3) for the left-hand equal-
ity [6(x) is the Dirac delta function] or (b) ¢=1 and

F(x) =const for the right-hand equality. Equation (35)
implies that the slope of the shape function at x =0 must
be between 2 and 4. Table I shows that 2=p=4 in agree-
ment with this result.

Thus, the operator on the right-hand side of (34) maps
its domain into a compact set. If a monotonic sequence
S; is generated by (34) [this is true for ¢ = 3], that se-
quence must converge since it is bounded. A general
proof of convergence could be obtained using Theorem
6.1 of Ref. 9 if we could show that the operator [in-
cluding A; defined by (31)] on the right of (34) is “in-
creasing.” [An operator M is increasing if u(x) = v(x)
implies M(u) =M(v). ] The author has been unable to
show that this is true for (34). Although such a theo-
retical result would be gratifying, it is not essential
for practical computations. The computation itself will
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tell us very quickly whether or not convergence takes
place.

C. The geometrical factor

The geometrical factor F(x) can have three effects
on the separable solution: (a) It can alter the shape of
S(x). I F(x) is asymmetrical, then S{x) is asymmetrical.
In particular, if F(x) has an integrable singularity for
x¢#3%, then one can give a variational argument which
indicates that the peak of S(x) lies somewhere in [$, ],
not necessarily at x =x,. (b) As can be seen in (31), the
eigenvalue X depends inversely on the integral of F(x).
Hence, the decay rate of the separable solution is also
dependent on the geometrical factor. (¢} The stability of
the separable solution can conceivably be affected by
F(x) if the decay rates of perturbations to the separable
solution are altered substantially more than the sepa-
rable solution’s decay rate.

Of these three effects, the first two produce quanti-
tative changes but only the third can cause a significant
qualitative change in the temporal behavior of the den-
sity profile. The stability of the separable solution to
infinitesimal perturbations is examined in the next
section. As we shall see, the presence of nonconstant
F(x) does not appear to alter the qualitative behavior
of the density profile. Even an integrably singular F(x)
does not change the decay rate of the perturbations
enough to make the separable solution unstable for 6

1

= =3,

IV. STABILITY OF THE SEPARABLE SOLUTION

In this section the effects of infinitesimal perturba-
tions on the stability of the separable solution are ex-
amined. For 6 >-1 and F=1, Eq. (6) becomes

) (36)

Suppose that m is the separable solution plus a small
perturbation

m(x, t) =S)T(t) + ulx)v ().

0" =)y =y

(37)

The perturbation is assumed separable. This assump-
tion does not restrict the generality of the arguments.
Since the perturbation is small, linear equations for u
and v are obtained by substituting (37) in (36) and lin-

earizing. The result is

(g - DT In@wT* ), =1, S* " /u=-«,

where T and S are given by (14), for o =0, and (22)
respectively. « is the separation constant for the per-
turbation.

(38)

The equation for v can be integrated and yields v
within a multiplicative constant as

v(t) =T2(8), (39)
where
p=2-g+«K/x, (40)

Since T decreases as t —=, v decreases as long as

p >0 and decreases faster than the separable solution
for p > 1. Stability requires p >1 for all perturbations
which are not simply perturbations of the separable
solution’s amplitude.
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k (and therefore the time dependence of v) is deter-
mined by the eigenvalue problem

w0 + 1,872 ()t (x) = 0 (41)

with #(0) =«(1) =0. Equation (41) is a Sturm— Liouville
equation. A theorem of Coddington and Levinson'’ may
be applied. The theorem states that there are an infi-
nite number of eigenvalues xy, K, *+ - with K, = K S Ky- - -
and k; -~ as i -, The eigenfunction u; corresponding
to k; has exactly 7 zeros in (0, 1). Notice that u,=S
satisfies (41) with k;=2A. S has no zeros in (0, 1); there-
fore, ky=2>0 is the smallest eigenvalue. Such a per-
turbation corresponds to a change in the initial ampli-
tude of the separable solution, The exponent of the time
dependence for this mode is p=3-¢. For all
perturbations,

1 for 6=0
el

0 for 6=—1%. (42)

The separable solutions for 6 = 0 are obviously stable.
For 0= 6 =z~ 1, more argument is required.

To see that the lowest mode of (41) is just an ampli-
tude perturbation and therefore ignorable, recall the
form of the separable solution

m(x, t) =S()T(t) = SWA(1 - dAT 7, (43)
where d is a constant. Then it is easy to show that

a’iA qe3 3~ (}

aAO_S(x)AO T34(1). (44)

General arguments can be given to show that (44) must
satisfy the linearized perturbation equation since it is
the first (linear) term in a Taylor series expansion of
(43) in the amplitude. The result p =3 - g is not sur-
prising when seen in this light. This analysis also in-
dicates that this lowest mode cannot affect the stability
of the separable solution. Only perturbations with one
or more zeros in (0, 1) are important to stability. Such
perturbations must decay with exponents greater than
py=3-¢q. How much greater can only be determined by
solving the eigenvalue problem (41).

If we can show that «; is large enough so that p; > 1
for all &, then stability will be established. We seek a
solution of (41) which (i) vanishes only once in (0, 1) and
(ii) also vanishes at the boundaries. It is easy to find
a function which satisfies (i). The function S’(x) obvi-
ously satisfies this condition but it does not satisfy (ii).
Since S itself satisfies (ii), we try

1y (%) =S(x)S (v). (45)

Using the identity S? =p*(1 - §%), we find (remarkably)
that this ansatz does satisfy (41) for all ¢ and has
eigenvalue

Ky =qA+p") =(2+ ). (46)
Substituting (46) into (40), we find that for all q (1)
pr=4. (47

Thus, the lowest nontrivial perturbation decays four
times faster than the separable solution. All higher
perturbations decay still faster. The stability of the
separable solution has therefore been established in the
geometry free F(x) =1 case.
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When F(x) # const, another argument is required. Note
that substituting (37) into (6) gives an equation like (38)
whose time dependent part is identical but whose spa-
tially dependent part gives

uf(x) + 1, F(x)8 2 (x)u, (x) = 0. (48)

Clearly #;=S and x;=2A is again a solution. The trick
used above to find #; does not work in this case. Instead
we will attempt to find a useful lower bound for p;. Com-
bining the equations (48) for i =0 and i =1, we find in
general that

XS ()aef" (%) = Ky, (¥)S"(%). (49)
We now assume F(x) is symmetric about x =3. Integrat-

ing (49) on [0, ] and using the facts that $'(3) =0 and
$() =1, we find

Kl/')\:l—uf(é)[fu1 r 1 ()87 (x) dx ] (50)

For convenience, we make the convention that u,(x) =0
1

for 0 =x=3. Then a simple graphical construction
shows that

1 (3) <0, (51)

Furthermore, by integrating the denominator of (50) by
parts, we find that

[ 08 ) dx = [} PRS0 () dy > 0. (52)
Hence, the ratio of these two factors is negative and
the contribution to k; is positive.
For /=1, multiply (48) by »{(x) and integrate, We
find
12 (x) = u*(0) + 1y _fox dx 12[F'S* + (g — 2)FS-387]
— K F()S 20k (x). (53)

Assuming F'(x) =0 for 0=x =3, we see that the inte-
grand in (53) is nonnegative for 0=y =%. From the
symmetry of the problem, ;) =0 and also «(3) =0.
Thus, the last term in (53) vanishes at x =3 since
u}'(3) = 0 implies

lim F(x)u (x) =0. (54)
x=1/2

We conclude that
wt (%) = 12 (%) (55)

for all 0=x=1. Therefore, again using Sz) =1, we
find

1/2
| fU 1 (08" (x) dx | <|{ &) . (56)
Striet inequality in (56) is true because u;(x) must change
sign somewhere in (0, 3). Using (56) in (50), we find
K> 2, (57

Equation (57) is a rather weak result since we have not
used the oscillation of the integrand in (56) to improve
the bound. However, it is sufficiently strong to prove
stability for 6= — 3 because (57) implies
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Pr=2-~q+K/A>4-q. (58)

Thus, py >1 for all g =3 regardless of the geometrical
factor F. Stronger bounds can no doubt be found.

We have proven that the separable solution is stable
against infinitesimal perturbations for all § > -1 when
F(x) =const. We have also proven stability for 6 = -3
when F(x) is symmetric and F'(x) = 0 for 0=x =;. We
conjecture stability for all 6>~ 1 and arbitrary F(x)
satisfying (8), (9), and the monotonicity condition
F'(x) =0 for x =xg,

V. EVOLUTION OF THE SEPARABLE SOLUTION

Infinitesimal perturbations were shown to decay more
rapidly than the separable solution in Sec. IV. Although
this is an interesting result in itself, the physically re-
levant problem is to consider initial density distribu-
tions that are far from the separable solution, i.e.,
with finite perturbations. The experimental situation is
clearly of this nature. Particles are initially injected
into the containment device with some arbitrary spatial
distribution. It is then experimentally observed® that
after a finite time, the bulk of the particles appear to
be in the “normal mode.”

Numerical experiments have been performed for 6
=—3% with F(x) =1 using Eq. (10). The initial values
m(x, 0) were chosen according to

3
m(x, 0) =2 a, sin(l + 1)x, (59)

1=0

using four different sets of values for the {a,}. The four
cases tested were (@, a,, a;, @,) equal to: (i) (1,0.4,0,0),
(id) (1, 0,0.3,0), (iii) (1,0, -0.3,0), and (iv) (1,0, 0,
0.225). Equatlon (10) was integrated using a linear
three-level difference scheme developed by Lees'! for
quasilinear parabolic equations. In all four cases, the
particle distribution decays into a distribution numeri-
cally indistinguishable from the separable solution by
t=0.1. In all four cases, all of the particles escape
before £ =0. 2.

Since both the plasma experiment and the numerical
experiment indicate that the separable solution evolves
from arbitrary initial data in a finite time, it would be
satisfying to show analytically why this should happen.
This analysis would be most convincing if we could pre-
dict the effective amplitude of the separable solution
that evolves out of an initial particle distribution. Such
an anlysis is given in this section.

A. Prediction of the asymptotic amplitude

An analysis predicting the final amplitude of the sepa-
rable solution 6 > -1 is given here. This analysis is
followed by comparison to the results of numerical ex-
periments for o = -

Since (48) is a Sturm— Liouville equation, *? the func-
tions #; form a complete, orthonormal set with

St dx P (e (O (x) = c6y, (60)
where by assumption 0=#,=1 and
1
fo dx F(xwi(x) = c, (61)
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The other #;’s are normalized to give (60).

An arbitrary function vanishing at x =0 and x =1 can
be expanded in the complete set {u,-‘r. In particular,
mx, ) =25 a;(t)u;(x) (62)
i=0
where the a;’s are time dependent amplitudes. The
equation of motion for the a’s is obtained by substituting
(62) into (36) and using (41) to simplify the right-hand
side. Noting that S =u,, we obtain

(g - 1)F(X)i£lj (Bu; (x) = = F0)ud™(x) i a; (£ wu,(x)
im0 =0
X [i a; (D, (x)]?-q. (63)
1=0

To simplify notation, a further definition is useful

= 14, ) gDy 2 [i ai(z)uim]“

i=0

i byt (x)
i=0

(64)
Equation (64) again uses the completeness of the set
{u;}. Equation (63) then becomes
X2 a,(Ou;(x) == (g = VD F(v)a *’2 Kb (%), (65)
j
Multiplying by #}-%u; and integratmg with the help of
(60), the equations of motion become
&i(t) -(q- 17 z-qll Kjbu” (66)

No approximations have been made in deriving (66),
which gives an infinite set of nonlinear equations for
the time dependent amplitudes. In this form, (66) is
actually harder to solve exactly than the original non-
linear equation. However, it is not difficult to obtain
approximations to the b,;’s which permit progress to
be made.

Assuming that m(x, #) does not vanish in the interior
of (0, 1), the product in (64) can be expanded as

© 2=
[00740(’()]"'2[2_1\0 aiui(x)] =1+(2-gx(x, 1)
+1/2(2 - ¢)(1 = ghx*(x, )+

67
where (67)

x(x, 8) =25 agu,/agw,. (68)
i=1

We will agsume that the expansion (67) converges and

that the first two terms are dominant.

To obtain a first approximation to a,(f) for finite am-
plitude perturbations, we must retain terms to O(aﬂ),
j#0, in (66) for i =0. Since the right-hand side of (66)
is of order b;;2;, we only need to retain O(g;} in com-
puting b;,. Furthermore, to obtain a; (i #0) correct to
O(a;), j#0, in (66), we only need to retain terms of
O(1) in b,; as is easily seen. Then retaining terms to
the specified order, we find

2-q

bj,-(l.‘):(sji-’rm (I,ul+0({lk(ll)-.._

2273
. axuy™uzpe,

(69)
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The most important special cases of (69) are, for i =0,
when

byo(t) =650+ (2 = @)a,(t)/ay(t) + O(a,a,) (70)
and, for i#0, j#0, when
by () =6, + O(a). (71)
In (69)—(71), % and ! satisfy 1=k, [ =,
Substituting (70) and (71) into (66), we find
© 2
(@-DdPay=-2r+(g-2)2 K;(%) +o (72)
i1 0
and
(g-Da;=-prat a;+- -, (73)
where p; is given by Eq. (40).
Equation (73) can be integrated to yield
~ &2_‘_ ‘ 2 =2
a{t)=a;(0) exp| - i1 ai® () dt |. (74)
-1Jy
If a, is nearly constant for small #, then
a,(t) = a,(0) exp{- [p,2/(g - 1 ]a*<(0)t}. (75)

Therefore, the perturbations of finite amplitude decay
exponentially at times short enough for g, to be approxi-
mately constant.

Substituting (75) into (72) and integrating, a, is found
to be

ag(t) = ag(0) exp(- M) for g =2 (76)
and
_9)2
d},‘z(t)za‘{)'z(O)—<Z:3)>\t+(q 22) a%-4(0)
XL:‘/ [@4(0) = &2(1)] for g#2. (7
i1

The linear case has g =2, and in that case (76) is ex-
act. Equation (77) is the principal result of this section.
Since a;(t) vanishes exponentially from (75), the asymp-
totic time dependence of a, for ¢ #2 is

ay ) =Af1=wt/TT", (78)
where v =q - 2,
N 7 ai(0) T
Ay=ay(0) [1 +7§,15@;(—0)] , (79)

and
T=(q~-1)AMn";
cf. Egs. (14) and (17).

In general, an arbitrary initial distribution of par-
ticles satisfying the boundary conditions will decay into
the separable solution. Furthermore, Eq. (79) predicts
the amplitude of the asymptotic state. A, can be cal-
culated from the initial values of the pseudodensity m
if S=wu, is known. This conclusion follows from the fact
that the integrals

[} Feowt (mlx, 1) dx = cag(t), (80)
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[YFEna?(m (x, £) dx = 35 @ (1) = cB(D),
=0
and

1
J, Foousd(x) de = ¢ (82)
can be found numerically if #, and m are known,

Certain features of the preceding analysis should be
given some additional attention before proceeding to
some numerical examples.

First, the principal approximation involves the ex-
pansion in (67). This expansion converges for all x
when 2 - ¢ = 0 and for all x except x’s for which m(x, t)
=0 when 2 -4 < 0. The convergence may be quite slow,
however, when 2-¢ << -~ 1. Thus, we may argue that the
approximations we have made are valid for 1=4=3
but will become less reliable for ¢ > 3.

Second, notice that it should be possible to obtain a
linear stability argument from this analysis by taking
ba;| <a, for i #0 and setting a,(t) = T(f) as given in Eq.
(14). This is easily done by substituting 7 for «; in (74)
and integrating. We find that, within a multiplicative
constant, @;(/) is again given by (39), as we would ex-
pect. Since these results are independent of the detailed
behavior of F(x), we can conclude that the conjectures of
stability for 1=¢ =3 in earlier parts of this paper are
true for all physically reasonable choices of F(x). How-
ever, hecause of the convergence questions raised in
the previous paragraph, it is still questionable whether
the separable solution is stable for all admissible F(x)
and g > 3.

Finally, we remark that the existence of the approxi-
mation (79) for the asymptotic amplitude is rather sur-
prising. Except for the approximation in (67), the argu-
ments leading to (77) are short time approximations. It
is not obvious that letting f —~ in (77) should result in
an expression for a,(f) which has exactly the right
asymptotic character. We interpret this result to mean
that, for this class of quasilinear equations, the solu-
tion of the initial boundary value problem is always
close to the separable solution except for cases with
extreme initial conditions.

B. Numerical comparisons

To demonstrate the accuracy of the amplitude pre-
diction given by (79), the formulas were evaluated nu-
merically for 6 =~ 3 with F(x) =1 and were compared to
the results of numerical experiments.

In order to make this comparison, a test to deter-
mine how closely the particle distribution approximates
the separable solution is required. First note that if
the density is in the separable solution then

N = [P (e, D dx =y THE) (83)

from Eq. (27). Recalling that for 6 <0, the separable
solution vanishes in a finite time, what that time will
be can be predicted using (17). The time at which the
density is zero everywhere in a numerical experiment
may be called the experimental termination time and
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is given by
tg =t + 2XYN@) /v ]2, (84)

The constants X and ¥ are known exactly (see Table I).
The number {; will not remain a constant during a nu-
merical experiment unless the density is in the sepa-
rable solution. However, as the perturbations decay,
tz rapidly approaches a constant. When /p is stationary
within some desired degree of accuracy, the perturba-
tions are negligible to that degree of accuracy.

A gross estimate of the termination time can be found
from the initial density distribution by finding Z; at
t=0,

2o =2XN(0) /v ] /2. (85)
Equation (85) is only an order of magnitude estimate.

The theoretical estimate for the termination time
obtained from (79) is easily shown to be

tp =[B(0) + a%(0)]/ ra,(0), (86)

The numbers B(0) and a,(0) can be obtained from the
initial distribution using (80)—(82) at #=0.

The results of these calculations are compared in
Table II. The values of #; in the numerical experiment
were stationary to six significant figures by £=0.10.
The order of magnitude estimate #; is seen to agree
with #z to two and sometimes three significant figures.
The theoretical estimate #; agrees very well with ¢z
being accurate to three and sometimes four significant
figures. The approximations made in part A of this sec-
tion are therefore valid to a satisfactory degree of ac-
curacy in this particular case. Similar comparisons
could be made for other values of 6 to check the accu-
racy of the predictions in general. Such a systematic
study will not be carried out here.

VI. CONCLUSIONS

We have shown that for the geometry free case
[F(x) =1] the qualitative behavior of plasma diffusing
across a magnetic field can be successfully modelled
using Eq. (6) and zero density boundary conditions
when § >~ 1, The principal effect of the geometrical
factor F(x) is to make the separable solution shape
function asymmetrical. A second effect of the geometry
is to modify the eigenvalue X [see (31)]. Since the rate
at which plasma escapes from the containment device
depends on A, F(x) also determines how long it takes
for all the particles to escape.

When F(x) =1, the separable solution has been shown
to be stable against infinitesimal perturbations for all
&> ~=1, The slowest decaying perturbation to the pseu-
dodensity m(x, t) =S(x)T(¢) has time dependence T%(¢).
Thus, all perturbations decay at least four times faster
than the separable solution. For finite perturbations
an approximate analysis valid for all F(x)'s being con-~
sidered [see Eqs. (8) and (9)] shows that initially the
perturbations decay exponentially for all § >~ 1, Fur-
thermore, an estimate (79) of the asymptotic separable
solution amplitude was obtained. For 6 =-%, this es-
timate satisfactorily predicts the time it takes for all
particles to escape in numerical diffusion experiments.
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TABLE II, Values of the termination time from the order of
magnitude estimate ¢q [Eq. (85)] and the theoretical estimate
tr [Eq. (86}] are compared to the value of {5 [Eq. (84)] found
in numerical experiments for 6 =— L. The initial distribution
of the pseudodensity is given by mi{x,0) =§,§’=oa, sin{l +1)mx with
the four cases of (ay,a,,a;,a4) equal to: (i) (1,0.4,0,0),

(ii) (1,0,0.3,0), (iii) (1,0,—0,3,0), and (iv} (1,0,0,0.225),
The value of t; in the numerical experiment was constant to
six figures by t=0,1,

Case to tr ty

i 0.1873 0.1825 0,1847
ii 0.1815 0.1675 0,1677
iii 0.1815 0.1893 0.1895
iv 0.1782 0.1762 0.1762

When F(x) # constant but symmetric, stability has
been rigorously established for § > -3 and is conjec-
tured for all 6 >~ 1.

We conclude that the solutions of the model diffusion
equation (6) behave qualitatively the same as plasma
particle density diffusing across the magnetic field of
a toroidal multipole. Stability of the separable solution
is assured on theoretical grounds for . A detailed
comparison with toroidal octupole experiments will de-
termine whether the quantitative predictions concerning
the shape function and decay rate are also in agreement.
Such a comparison is made and favorable agreement is
found in Ref. 3.

=1
=1
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Global structure of the “Kantowski-Sachs” cosmological
models
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A discussion is given of the “Kantowski-Sachs” cosmological models; these are defined locally as
admitting a four-parameter continuous isometry group which acts on spacelike hypersurfaces, and which
possesses a three-parameter subgroup whose orbits are 2-surfaces of constant curvature (i.e., the models
possess spherical symmetry, combined with a translational symmetry, and can thus be regarded as
nonempty analogs of part of the extended Schwarzschild manifold). It is shown that all general relativistic
models in which the matter content is a perfect fluid satisfying reasonable energy conditions are
geodesically incomplete, both to the past and to the future, and that at each resulting singularity the fluid
energy density is infinite. In the case where the fluid obeys a barotropic equation of state (which includes
all known exact perfect fluid solutions) the field equations are shown to decouple to form a plane
autonomous subsystem. This subsystem is examined using qualitative (Poincaré-Bendixson) theory, and
phase-plane diagrams are drawn depicting the behavior of the fluid’s energy density and shear anisotropy
in the course of the models’ evolution. Further diagrams depict the conformal structure of these universes,
and a table summarizes the asymptotic properties of all physically relevant variables.

1. INTRODUCTION

In the study of spatially homogeneous cosmological
models in general relativity, it is customary to formu-
late the subject in terms of the Bianchi classification,
or of some modification of this (see, e.g., Ref. 1).
This classification is based on the original works of
Bianchi, who gave the first canonical reduction of three-
parameter Lie groups. In general relativity, Lie groups
most frequently appear when one postulates that the
metric g, be invariant under a continuous transforma-
tion. The infinitesional generator of this transformation
is known as a Killing vector, and the set of all conti-
nuous transformations that leave invariant a given
metric forms a Lie group, known as an isometry group.
Spatial homogeneity of a cosmological model is defined
by requiring that (locally) the space—time be invariant
under an isometry group which acts transitively on
spacelike hypersurfaces.

For simplicity, we shall assume that the matter con-
tent of the models consists of a perfect fluid, satisfying
the Einstein field equations with zero cosmological con-
stant A. In this case the energy—momentum tensor T,
can be written in the form

Tab = (M +P)l¢a”b +D&an

where u is a unit timelike vector tangential to the fluid
flow lines, u >0 is the total energy density, and p is

the isotropic pressure of the fluid. We shall also assume
that the fluid obeys an equation of state of the form p
=p(K), satisfying the plausible inequalities 0=p =pu

and 0=dp/du=1. Under these conditions, the vector
field u can be characterized as the unique timelike
eigenvector of the Ricel tensor R,.

Suppose that a cosmological model is spatially homo-
geneous. Then it is invariant under an »-parameter
isometry group G, whose orbits are spacelike hyper-
surfaces (so that » = 3). At any point ¢ on any such
hypersurface §, there are three nonzero linearly in-
dependent Killing vector fields tangent to §, and, if
¥ >3, there are additional linearly independent Killing
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vector fields tangent to §, but which vanish at ¢. In this
last case there is a continuous isotvopy group H,, which
consists of those transformations that are isometries
leaving the point ¢ fixed. Each such transformation, 7
& H,, will generate a Lorentz transformation in the tan-
gent space, T,, of ¢, and this will leave invariant all
intrinsically defined vectors in T,. Thus % acts in the
subspace of T, orthogonal to u, and so H, is either one-
or three-dimensional; consequently, if ¥ =3, then
either ¥ =4 or »=6. If =6, the spacetime is not only
spatially homogeneous but also spatially isotropic, and
belongs to the Friedmann—Robertson—Walker class.’

If ¥ =4, the spacetime is locally rotationally sym-
metric.?? If either ¥ =4 or =6, then, in all but one
case, the full isometry group G, admits a three-param-
eter subgroup which acts transitively on spacelike hy-
persurfaces, and the corresponding space—times can
be regarded as being Bianchi models possessing addi-
tional symmetries. The exceptional case arises for the
following reason. Any four-parameter Lie group G,
admits a three-parameter subgroup G;, whose orbits
are either two- or three-dimensional.* In the latter
case, the space—time belongs to the Bianchi class. In
the former case, the orbits are necessarily of constant
curvature. If this curvature is zero or negative, then it
can be shown* that the group G, admits a second three-
parameter subgroup, whose orbits are three-dimen-
sional (so the space—time belongs to the Bianchi class),
but if the curvature is positive there is no such sub-
group, and G, is isomorphic to SO(3, R), or Bianchi
type IX. Although the detailed proofs of these state-
ments have already been given by Kantowski, * this re-
ference is not immediately available, and so similar,
but slightly improved, versions are presented in Ap-
pendices A and B, where it is also shown that the four
linearly independent Killing vectors &, &, &, and %
can be chosen so that their Lie algebra is given by

[51, 52]: 53’ [g‘p ES]: gl» [53’ gl]: ‘52’
(1.1

n, &£1=0, [m &1=0, [n &]=0.
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The three Killing vectors §, &, £; generate the sub-

group G, with two-dimensional orbits. Appendices A
and B are also given for didactic purposes, to exem-
plify the use and formalism of Lie group theory.

Perhaps the most familiar space—time admitting a
four-parameter Lie group with Lie algebra (1.1) is the
Schwarzschild solution, although here the vector field
7 is timelike outside the event horizon. The vectors
&, & and §; generate the spherical symmetry of the
model. That part U of the analytically extended
Schwarzschild space—time inside the event horizon has
exactly the same symmetries as the models presently
being discussed, since then all four group generators
are spacelike. In effect, what we shall now do is to
investigate what (nonempty) cosmological space—times
locally possess the same symmetries as that of the re-
gion U of the extended Schwarzschild solution, and then
analytically extend the resulting manifold to obtain its
global structure. Space—times so determined are known
most commonly as the Kantowski—Sachs models, follow-
ing the studies by Kantowski and Sachs® in the case
where the matter content is dust (i. e., incoherent mat-
ter, with equation of state p =0), and by Kantowski* in
the case where the matter content is dust (p =0), radi-
ation (ultrarelativstic Fermi gas, with equation of state
p=31) or Zeldovich’s “stiff” matter (with equation of
state p = i), Despite this nomenclature, such model
universes appear to have been studied first by
Kompaneets and Chernov, % in the case of dust and radi-
ation. (I thank Dr. L.P. Grishchuk for informing me
of this fact.) Further discussion of the Kantowski—
Sachs models, including exact solutions, is given in
the case of dust by Ellis? and Thorne,” of Zeldovich
stiff matter by Thorne,” of a general perfect fluid by
Stewart and Ellis, ® of a perfect fluid and an electro-
magnetic field by Doroshkevich, ® Thorne, ¥ and Stewart
and Ellis, ® and of a pure electromagnetic field (the
Bertotti—Robinson solutions) by Bertotti, 10 Robinson, 1
Stewart and Ellis, ® and Thorne.”*!? Ellis'® has discussed
the various topological structures that are possible in
the Kantowski--Sachs models.

In the present article it is shown that certain features
exhibited by the known exact solutions are in fact gen-
eric properties of the model. The most interesting such
feature is that any perfect fluid model will be geodesical-
ly incomplete both to the future and to the past, and that
the energy density of the fluid becomes infinite at both
of these singularities.

In Sec. 2, we give the general form of the metric
with the symmetries (1.1), together with the field equa-
tions. In Sec. 3, it is shown that all perfect fluid mo-
dels possess both a past and a future singularity, at
which the fluid’s energy density becomes infinite. In
Sec. 4, we examine the case where the perfect fluid
obeys a barotropic equation of state of the form p
=(y-1)u, where 1 =y =2, and show that for each value
of ¥ there are special models in which the fluid shear
remains finite at the singularity, and that there are
also models which are time symmetric about the mo-
ment of maximum expansion. Diagrams are drawn de-
picting the variety of possible types of evolution, and
conformal representations of the models are given. A
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table summarizes the character of the different types
of singularity, by exhibiting the asymptotic time depen-
dence of all physically relevant variables. Section 5
draws the conclusions.

2. THE METRIC AND THE FORMALISM

We shall be concerned with the Kantowski—Sachs
metric which admits four spacelike Killing vectors,
&, &, &, and 7, with Lie algebra (1.1). Since the
space—time is spherically symmetric, it follows that
there are coordinates {t ¥, 8, ¢} such that the orbits of
the Killing vectors &, & and & are the 2- surfaces
{t, =const}, in which the metric takes the form®*

ds? =~ f?d(it—r)+X2(t, ) dr* + YE(t, 7)(d6? + sin?0 do?),

where the coordinates (¢, ») are chosen in each two-
surface {8, ¢ =const} so that they are orthogonal [i. e.,
(2/3¢t) - (3/37) = 0], but are otherwise arbitrary. Since
the vector field 7 is invariantly defined, it lies in the
two-surfaces {6, ¢ = const}, and we can choose the ¢, 7
coordinates so that n=N{t, », 6, ¢)9/3¥. From Killing’s
equations we obtain N=N(r), so, by redefining 7, we
have 7=2/3», i.e., without loss of generality, N=1.
Killing’s equations then necessitate F=F(t), X =X(1),
and Y =Y(#), and, by redefining ¢, we have, without
loss of generality, F =1. Thus the final form of the
Kantowski—Sachs metric is

ds? = df* + X2(t) dr? + Y2()(d6® + sin®6 do?), 2.1
and the field equations are

92XV 14712

Xy v ok 2.2

2F 1472

F == (2.3)
and

X Y XY

S AR as o 2.9

where a dot denotes differentiation with respect to £.
Equations (2.2)~(2.4) are compatible if and only if the
conservation equation

A+ (u+p) (X sz) 0 (2.5)

is satisfied, by virtue of the Bianchi identities.

These field equations can be expressed as constraint
and propagatlon equations for the volume expansion
6 =X/X +2Y/Y and shear tensor, o,;, which, with re-
spect to any orthonormal frame whose “1”-direction is
aligned along 3/37, is of form o; =diag(20/V3, - 0/V3,

- 0/V3), where o=(1/V3)(X/X - ¥/Y). Thus

84362+ 22 +5(u+3p) =0 (2.6)

a+06-(1/V3)/Y" =0, (2.7

-2 +1/YV =y, (2.8)
together with

L+ (u+p)o= (2.9
Equation (2. 6) is the familiar Raychaudhuri’s equa-
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tion'®:*® of relativistic cosmology, !? whereas Eq. (2.8)

can be derived from the Gauss—Codacci equations re-
lating the curvature tensor of the space—time to that
of the hypersurfaces {t =const}, which therefore have
Ricci scalar B* =2/Y% > 0,

Any metric (2.2) of our class (i.e., containing a per-
fect fluid with £ >0, 0=p =y, and 0=dp/dp =1 and
obeying Einstein’s fluid equations with A =0) is neces-
sarily of Petrov type D (22) and not any specialization
thereof. This is proved in Appendix C.

The covering manifold of the space sections {t
=const} of the Kantowski—Sachs metric has topology
S§.xR!'. One can obtain other topologies13 by (a) a iden-
tification of points under a translation in the R (i. e.,
1) direction, or under a translation in the R! direction
together with a rotation or a reflection, (b) an identifi-
cation of antipodal points in each S* {¢, » = const}, and
(¢) a combination of (a) and (b).

3. SINGULARITIES—PAST AND FUTURE

If we define a characteristic length scale [ by P=xy
(so 0= 3l/l) it follows from Raychaudhuri’s Eq. (2.6)
that

3 /1+20% +5(p+3p) =0 (3.1)

Suppose that there is a time f, such that 8,=6(¢;) >0
Then, if 1,=1(t,), M,= (), and py=p(ty), it follows
from the energy conditions

p=pK), >0, 0=p=u, and 0=dp,/dp=1 (3.2)
and from (2, 9) that
0< pld/IP=p=plf/1° (3.3)

whenever 0</=/,. Since (3.1) shows that <0, we
deduce that 3 Ty <{, such that /~0 and p—= as {-~T;+,
provided that t can be extended that fav. It is conceiv-
able that there is an intervening singularity which
prevents us from extending the model as far back as
time t=T,. Such a situation is exemplified in the

case of the Friedmann—Robertson—Walker models

by simply cutting out and discarding a region I"(§) to
the past of any Cauchy hypersurface § or, less arti-
ficially, in the case of certain anisotropic cosmological
models by the onset of a milder type of singularity,
where u is finite.!® In order to circumvent any “arti-
ficial” singularity, we shall simply assume that if it

is possible to extend the universe to earlier times, then
the universe is so extended: I.e., we assume that the
manifold is inextendible. We now show that with this as-
sumption there are no other “intervening” singulari-
ties; that is, if /(¢) is bounded away from zero at time
T, it is possible to extend the space—time to values of
t<T,

Theovem 1: If 3 f, such that [,=1(t;) >0 and i (¢;) > 0,
then the Cauchy data for the field equations on the hyper-
surface f =%, is regular, and the model can be extended
back to earlier times /= ¢,

Pvoof: The proof of the theorem divides into two
parts, depending on whether or not ¥, =Y (/) is zero.
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We show first that the case Y, =0 is untenable, and
then proceed to examine the case Y, > 0.

Suppose that ¥, =0. Then ¥ -0+ as t-{,+. By in-
equalities (3.2) and (3. 3) it follows that ;= p(#;) and
b _p(t are bounded. By Eq. (2.3), if Y is ever zero,
then ¥ < 0, and so as Y approaches zero it cannot do so
in an oscillatory fashion; thus 3 #; > ¢, such that ¥ >0
forallte (to, t). Choose t, = (¢, ), and write Y, =Y(t,)
>0 and Y2 =Y(f,). By Eq. (2.3) it follows that
(YW) =

- (1+pY? (3.4)

Y
and hence 3 K =1 such that
Y,(1+ V) -Y=YV2=Y,(K+ 1}~

whenever ¥ <Y,. Consequently, Y ~+as t—ty+, and,

a forvtiovi, Y/Y +* as ¢ ~{,+. Recalling that u is
bounded, it follows that for all € satifying 0<e <3,
3ty (4, £,) such that

b= 1/72] <e¥?/Y?

for all te (¢, ¢;). Using Eq. (2.2), we obtain

(3~ s)l'//Y< 63l /1

p=1/Y2 4377
- v

for all t e (¢, ¢;). Since ¥ —~ 0+ as ¢ —/¢+, it follows that
[ ~0as t-fy+, which contradicts our assumption that
1{¢y) > 0. Hence, if I(f)) >0, it follows that Y =Y (¢) >0

Now suppose that I{#;+) >0 and Y =Y (¢,+) > 0. Since
P =XY? it follows that X(¢,+) >0, and X(¢;+) is finite.
By the inequahtles (3.2) and (3. 3) both u,= u{fy+) and
po=p p(t,+) are finite. From Eq. (2 3) we again see that
¥ =0 implies ¥ <0, and thus if Y(f,+) =0, then3 (] >,
such that I(#;+) >0, Y(f;+) >0 and Y({+)#0, i.e., w1th-
out loss of generality, Y(t,+)#0. From Eq. (2.2),
follows that X(t,+) ig finite, Using (2.3) and (2.4), we
see that X(t +) and Y( o+) are bounded. Fmally, from
Eq. (2.5) we find that {(f,+), and hence p(fy+), is finite.
Consequently, the metric components, X and Y, the
components X/X and V/Y of the second fundamental form
of the hypersurfaces {t =const}, and the fluid’s energy
density and pressure are all regular for £ ={;. By our
assumption of extendibility, the fact that the Cauchy
data is well defined on ¢ =/, means that the model can
be extended to values of f =/,. This completes the proof
of the theorem.

<(348)Y/Y

We shall now show that every model of our class is
geodesically incomplete both to the future and the past.
This is achieved by showing that, unless a singularity
intervenes, Y(¢) tends to zero in the finite future and in
the finite past and then by recalling from Theorem 1
that if Y -0, then -0

Theovem 2: The perfect fluid Kantowski—Sachs models
are geodesically incomplete both to the past and future.
At the associated singularities, p— -+, 8-+, and
either R* ~Rf>0and 0~+= or R*~+= (R} is a
constant).

Proof: Equation (2. 3) shows that if Y is ever zero
and 7#0, then Y <0 at that time (and so a maximum of
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Y =Y(#) is achieved). We show first that if 3 £, such
that ¥, =¥(¢) > 0 and ¥ =¥(¢) >0, then it is impossible
to have ¥ >0 for all £ =¢,;, and conclude that the only
alternative is that 3 # > ¢, at which Y(4) =0, 1(#) #0,

in which case a singularity is encountered at some later
time, at which /=0.

Suppose that ¥ >0 for all £ =¢,. By Eq. (3.4) we have
(YP?) =—Y(1+pY?) =— Y and hence Y(1+¥?)
=Y,(1+7Y? for all Y =Y. Hence Y is bounded above by

Y,(1+Y%). Since ¥ >0, it follows that 3 ¥ >0 such that
Y—~Y ~as t -+ . Define a new time variable T by T
= (l/Y1 %y d¢. Since Y~ Y- as £~ +=, it follows that
T - +°°, and, from Eq. (2.3), that (le/d‘r2 =4 for T=0,
Thus Y = 1'2 +Y T+ Y~ ®as T—+%, and this con-
tradicts our assumption that ¥ >0 for all =1, It is
therefore false that ¥ > 0 for all £ =£,; consequently,
assuming that the manifold is inextendible, either 3 a
time # >, such that ¥(#,~)#0 and I(t;~) =0, or 3 a
time ¢, >¢, such that Y(#,) =0 and I{#,) #0, in which case
Y<0for t=t, and so 3 a time #; >, such that ¥ {f;—)
=0 [and the time reverse of the argument in the proof
of Theorem 1 shows that I{f;3—) =0]. Hence, we have
shown that if 3 ¢, such that ¥, =Y(#,) >0, then there is
a singularity to the finite future of #;, at which/~0
(and so 8 =3[ /1~ ~), and, by the inequalities (3. 3),
at which ¢ -+, It also follows that there is a singular-
ity to the finite past of ¢y, since Eq. (2.3) shows that
Y <0, and, by our extendibility assumption and the
arguments in the proof of Theorem 1, the only possi-
bilities are that 3 #, </, such that Y (#,+)# 0 and 1(¢,+)
=0, or 3 t;<t, such that Y{¢;+) =0 and I{(f;+) =0. At
this past singularity, /~0, =3[ /1~ +%, and {~+%,

The time reverses of the above arguments show that
if 3 #{ such that Y(#]) <0, the same qualitative conclu-
sions hold: There is a singularity to the finite future
and finite past of #j, at which £ —+% and § -+,

In order to determine the possible behaviors of the
fluid shear ¢ and the Ricci scalar R* of the hypersur-
faces {¢=const}, we first recall that if Y=0and [#0,
then, by Eq. (2.3), ¥ <0, and so R* =2/Y? cannot oscil-
late. Hence either R* — + < at the singularity, or R*
approaches a finite limit. In this last case, R* cannot
tend to zero, since this would require ¥ ~ + %, which,
as we have already seen, is impossible. For any sin-
gularity at which R* tends to a finite (nonzero) limit, it
follows from Eq. (2.7) that without loss of generality
we can consider a time #; to the future of which ¢ does
not change sign, and so 3 K> 0 such that - K
<[In(o?®)]" <K for all t= ¢, Writing oy =o(t), L =I(t,),
we obtain exp[— K(f - ;)] = o1/ 01} = exp[K(t - ;)] for
t =4, and so, at the singularity to the future of ¢, of®
is bounded away from zero, i.e., o—~x%, A similar
argument shows that when R* is finite, o -+« at the
singularity to the past of #;,. This completes the proof
of Theorem 2,

In the next section we examine the subclass of models
in which the equation of state is barotropic, and obtain
examples of models with singularities at which R* ~ R}
>0 and o -+, and of models with singularities where
R* —+ and either 0 ~+* or o— 0, where g, is a
constant (possibly zero).
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4. QUALITATIVE ANALYSIS OF THE MODELS

We shall consider in this section those Kantowski—
Sachs models in which the perfect fluid content obeys
a barotropic equation of state, of the form p=(y~ 1)y,
where ¥ is a constant. For values of ¥ lying in the range
1=y=2, this equation of state is thought to be physical-
ly plausible. Of particular interest are the cases y=1
(dust), y =+ (radiation) and ¥ =2 (Zeldovich stiff matter).
We shall describe the models in terms of variables 8
and 2, defined by X =exp(- Q +8) and Y =exp(-Q -8/2)
(and hence I =(XY?)!/% = exp(~ Q)). The quantity 8 is re-
lated to the fluid shear by o:%«/'ﬁﬁ. The variable @
will be used as a time variable, and a prime will denote
differentiation with respect to ©; this description will
then be valid except at the instant when Q= 0, i.e.,
when the universe stops expanding and begins to con-
tract. The fluid expansion rate is 8 = - 3%, the dyna-
mical importance of the shear is measured by o/6
=(~1/2v3)8’, and the dynamical importance of the
fluid by x =34/6% = /302, This notation agrees with
that of previous works of a similar nature. lo-at

The first step is to reexpress the field equations
(2.3)—(2.5) in terms of coupled first-order differential
equations with two dependent variables, 8’ and x, and
with independent variable, £. Equation (2.2) becomes

B’ 4+ 4x — 4= (4/3Q2) exp(2Q + B). (4.1

The @ terms are eliminated from (2.3) and (2.4) to
obtain
B7=38"(4-B") - 38x(y-1)+(2~38"
- (1/39) exp(22 +8). (4.2)

Substituting for the exp(22 +8) term from (4. 1) into
(4. 2) we have

=384~ B"% -~ (3y-2)x

Equation (2.5), together with the expression for & ob-
tained by eliminating the 8” terms from (2. 3) and (2. 4),
yields

1-3[4-8"-4ax]. (4.3)

=x[(3y-2)(1-x)-8"]. (4.4)
Equations (4.3) and (4.4) are exactly the same as the
equations obtained in Ref. 19 for the locally rotationally
symmetric Bianchi Type III models (where, in the nota-
tion of Ref, 19, C=%k=1). These equations form a plane
autonomous system of ordinary differential equations,
and the qualitative behavior of the solutions can be
sketched in the x—8' phase plane (for a description of
this procedure, and for its applications to general re-
lativistic cosmology, see Refs. 18—24, and references
cited to the standard literature). The resulting diagrams
are, however, distinct from those of Bianchi type III,
since in that case the region of interest is {(x,8) :x>0
and B + 4x - 4 < 0} whereas here we shall be interested
in the region{(x,8") :x >0 and 87 + 4x — 4> 0}. This is
evident from Eq. (4.1), and is directly related to the
fact that in this case R* >0, whereas for Bianchi type
III, R*<0; and more indirectly from the observation
that the two classes of models can be related by a com-
plex transformation* which involves X -X, Y ~i¥, and
hence the transformations 8 -8 -in/3, @~ —in/3.
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FIGS. 1—4, Qualitative description of the evolution of the Kantowski—Sachs models, in the case where the matter content is a per-~
fect fluid obeying the equation of state p = (y — 1)i for the following (constant) values of y:1 =y<d (Fig, 1), v=1% (Fig. 2), L<vy<2

3 ’ 3

(Fig. 3) and v=2 (Fig. 4). Each diagram refers to the evolution for a fixed value of v, and each curve represents this evolution for
a fixed set of initial conditions. The variable x = 31/6% measures the relative dynamical importance of the matter, and the variable
8’ =—2V3(0/6) measures the relative dynamical importance of the fluid shear. The fact that the curves extend to infinite values of x
signifies that the Q variable ceases to be valid at the time of maximum radius 7=X!/3¥%/3= ¢, The entire course of evolution is
indicated by associated types of arrows, The time reverse of any of these models is also feasible. There is, for each value of v,
one model that is time symmetric; This is denoted by a solid arrow (— ) in the ligures.

The discussion now divides up into the two cases
1=y<2and ¥ =2, since in the special case y=2, Eqgs.
(4. 3) and (4. 4) become

B"=5(@"-1)(4-4x-8")
and
x'=x(4~4x-8");

this means that when y=2, (8’~1)*=Kx (where K= 0
is constant) is a first integral, and that the integral
curves of the system (4. 3) and (4.4) are generically
parabolas in the x—8' plane.

The integral curves of the system (4.3) and (4.4) are
drawn in Figs. 1—4. Each diagram is drawn for a sin-
gle value of ¥, and represents the evolution of the class
of models for that value of ¥, under a variety of initial
conditions. Slightly different qualitative pictures emerge
for values of ¥ in the range 1=y <% (Fig. 1) y=1% (Fig.
2) and 4<y <2 (Fig. 3), whereas there is an entirely
different pattern of evolution if ¥ =2 (Fig. 4). In each
diagram the integral curves extend out to infinitely large
values of x (and, usually, of ). The interpretation of
this is that the € variable has ceased to be valid, since
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X~ +x corresponds to ¥~ 0-, and that the universe
model has halted its expansion, and is about to contract.
Apart from certain special cases, the fluid shear, o,
will be nonzero at such a time, and so 8’ will be infinite.
I, for instance, '~ + = at this time, then, since o is
continuous, this means that the continuation of our model
into the contraction era is depicted in Figs. 1—4 by 8’
being large and negative. For this reason, the arrows
in the diagrams depict the entire course of evolution
(expansion and contraction), despite the fact that  is
not a valid time variable throughout, although it should
be recalled that the time reverses of these models are
also feasible.

In each diagram it can be observed that, for one inte-
gral curve, 8’ remains finite as x~ + . This requires
that the fluid shear approach zero as 2~ 0-, and has
the interpretation that the model is time-symmetric or
“momentarily static.”’

The general features of the singularities are as
follows. In the case 1=y <2, the models generically
have either one “pancake” singularity (X -0, ¥ -Y;>0,
where Y is a constant) and one “cigar” singularity

C.B. Collins 2120



matter singularity
homogeneous hypersurface
——»=---geodesic normal and
fluid flow line

matter singularity
homogeneous hypersurface
—— = geodesic normal and
fluid flow line

FIGS. 5 and 6. Conformal (“Penrose”) diagrams of the totally geodesic timelike 2-surfaces {6, ¢ =const} with metric induced by

(2.1):
ds? = — df* =X (Ddr?.

Null lines are drawn at +45° and infinite distances are rescaled to finite coordinate values. Figure 5 displays the evolution of mo-
dels whose singularities are points, barrels, or cigars. Figure 6 displays the evolution of those models which possess one pan-
cake singularity, and indicates how particle horizons are thereby removed in the preferred 8/97 direction of the pancake.

(X —+», Y~0) or they have two cigar singularities.
The pancake singularities are represented by the point
x=0, B'=-2, and the cigar singularities by the point
x=0, B'=+2 in Figs. 1—3. At these general singulari-
ties the fluid shear ¢ and expansion rate 6 are domi-
nant in the Raychaudhuri Eq. (2.6), and the fluid energy
density 4 is insignificant. The models which possess
two cigar singularities can be characterized as those

in which there is an instant at which the fluid shear
vanishes. There are also two special models. One of
these has one “point” singularity (X —-0,Y -0), at which
# and i dominate in (2. 6) and o is negligible, and the
other singularity is a cigar singularity, where ¢ and ¢
dominate over i, These singularities are represented
by the points (1, 0) and (0, 2) respectively in the x—g8’
planes of Figs. 1-3. The other special model is the
time-symmetric one, which begins and ends in a cigar
singularity [with o and 6 again dominating ¢, and rep-
resented by the point (0, 2) in Figs. 1—=3].

In the case of a perfect fluid obeying the “stiff matter”
equation of state p = i, the variable 8’ can attain any
asymptotic value 84, satisfying - 2<p]<2, with a cor-
responding value of x =1-8;%/4; the type of singularity
depends on whether 8] 2 1. The general situation is that
there is one cigar singularity (8;>1) and one point sin-
gularity (8)<1); at both singularities the quantities 6,

o, and L are of equal importance in Raychaudhuri’s

Eq. (2.6). In some, but not all, of these models, there
is an instant of time at which 0 =0. There is one special
(time-symmetric) solution, given by 8’=1, in which both
singularities are “barrels” (X —X;>0,Y ~0, where X|
is constant), and 4, o, and € are equally significant.
This special solution is not expanding in the X direction
(3/27), and was first discovered by Thorne.’

It is of interest to note that all known exact solutions
of our class (see references cited in Sec. 1) possess
singularities as described above, and that the evolution
of some of the dust, radiation, and stiff matter models,

TABLE 1. This table summarizes the nature of the singularity, and gives the asymptotic behavior of all physically relevant vari-
ables: the fluid density p, the fluid expansion 6, the fluid shear ¢, the average length-scale I, in the rest space of the fluid, the
length-scales 7; = X and [, = Y, in the directions parallel and orthogonal to the 8/8r direction, the integrated shear 8, and the Ricei
scaler R*, of the spatially homogeneous hypersurfaces {f= const}. In each description the singularity is regarded as a past singu-
larity labelled by ¢~ 0 and f denotes “tends to finite nonzero limit.” In the case when a point singularity arises for values of v in
the range 1 =y <2, the value of g is finite. By relabelling 8, @ and » it is then possible to regard 8 as tending to zero, without any

loss of generality.

Value of y
[p={y—Dul (x,8)

Description of
singularity W 4 o

Dominant
terms in

Raychaudhuri

I L=X L=Y P R*=2/Y* Eq. (2,6)

1,0) Point matter 1/£2 1/t
singularity; par-
ticle horizons in
all directions

Pancake matter 1/# 1/t 1/t
singularity; par-

ticle horizon re-

moved in 8/9%

direction only

0,2) Cigar matter 1/ 1/t 1/t
singularity; par-
ticle horizons in
all directions

1=y<2 (0, ~2)

1/t4=30/7

$2/3r g2/3% $2/37 #2737)(37-2) 1/1}4/31 u’920c1/t2

13 ¢ f Int f 6%, 0t 1/1

£ /g3 R —Int /873 62 0% 1/

Point 1/ 1/t 1/t
(—2<p8' <1),

barrel (8 =1),

or cigar

(L<By<2)

matter

singularity; par-

ticle horizons in

all directions

(xOQ ﬁ[]’)
y=2 ~2<fy <2

1
xg=1-aBy

/3 (UBP/3 (CHBD/6 _1ng(gh < 0); 0ol 1T

/3 (B(,):O)

1//t(2+3(’)7/3
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graphed and examined numerically by Kantowski and
Sachs, *° is in agreement with that obtained herein.

We summarize our findings on the detailed nature of
the singularities in Table I, and conclude with con-
formal diagrams for the totally geodesic timelike 2-
surfaces {9, ¢ =const} in Figs. 5 and 6. In the case
where one of the singularities is a pancake, a rather
distinctive situation arises (see Fig. 6), and is related
to the disappearance of particle horizons in the direc-
tion of 3/87.

5. CONCLUSION

We have shown that certain properties of known exact
solutions of the Kantowski—Sachs cosmological models
are general features of these models when there is no
specialization made to a particular equation of state,

In particular, we have shown that for any physically
reasonable perfect fluid, there are matter singularities
to the finite past and finite future. A detailed analysis
was carried out in the case where the perfect fluid obeys
a barotropic equation of state of the form p=(y -1y,
and an examination was made of the behavior of all phy-
sically relevant variables (summarized in Table I).

Although the Kantowski—Sachs models are of a very
special kind, any may not be applicable as an adequate
description of the real universe, the results herein are
regarded as important, since they indicate the caution
with which any examination of the singularity in general
relativity should be carried out, and exemplify the type
of careful argument that will be needed in more general
situations (cf. Ref. 18).
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APPENDIX A: THE FOUR-PARAMETER LIE
GROUPS ADMIT THREE-PARAMETER SUBGROUPS

Let L be the Lie algebra of the generators §; (i
=1,2,3,4) of a four-parameter Lie group. Thus L is
given by the commutator relations

[gb §;] = c‘;jgk'
where the C"Ej are the structure constants of the group,
satisfying

C?j = Cll‘fij]
and

Ci,Cry=0, (A1)
which are known respectively as the first and second
Jacobi identities. The derived algebra L’ of L, i.e.,
the vector subspace spanned by the six vectors C% &,
with the antisymmetric product [ , |, has dimension
d=4. If d=3, then any basis of L’ can be extended to
a basis of L, in such a way that a three-dimensional
Lie subalgebra results. The only remaining case, where
d=4, does not exist. For in that case L’=L, and the
six vectors C%;¢, span L, which has basis £ and rank
(C%;) =4, where (jk) is treated as a single index under
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the code 1=(12), 2=(13), 3=(14), 4= (34), 5=1(42),
6=(23). Also if £**/ is the completely antisymmetric
symbol (g°¢f =gl?ef1 g1234 _1) gbefCs has rank 4.
Contracting (A1), we have C°(,,C%, =0<= C*,C*,
=0<=C", =0 (since rank (C*;;)=4). Thus

Sde[bcca]de

= %Ebcmceedzo (Az)

and so
debef deb
e C be ("ude Ea = [5 ¢ ccadecfbc - zsdecacbdecfcb]ea

= 3Ede[bcca]decfbc ga =0 by (Az) :

Recalling that rank (¢°°°fC%;) =4, there are four linear
combinations of the six vectors C%, &, which vanish,
and hence 4=dimL'=2 a contradiction.

APPENDIX B: THE CASE OF THREE-PARAMETER
SUBGROUPS WITH TWO-DIMENSIONAL ORBITS

It is well known that if an n-dimensional manifold
admits a maximal continuous isometry group of sn(n + 1)
parameters, then the manifold is of constant curva-
ture.? Consequently, if a three-parameter isometry
group G has two-dimensional orbits, those orbits are
of constant curvature, which may be positive, zero, or
negative. These orbits may be considered as the sur-
faces imbedded in flat three-dimensional space:

@ "+t 1% (positive curvature),
(b) ' + 1,x* + 1,x® =m (where §§ + 15 +15+0)
(zero curvature),
and
(c) e LT LYY LI | (negative curvature).

In cases (a) and (b) the metric of the 3-space is ds?
—dx? + dx” + dx® whereas in case (c) it is the indefinite
form ds? =dx*” + dv?* = ax®, The generators §, &, & of
the group G can be chosen to satisfy the Lie algebra

[El’ E?]: £3, [sz, Es]zkil) {é:i: §1J: 52:

where k=+1 [case (a)], #=0 [case (b)], or F=-1
[case (c)]. The corresponding groups are of Bianchi
types VII, (k=0), VII (,=-1) and IX (k=+1) (see,
e.g., Ref. 1). We now show that if this algebra is ex-
tended to a four-dimensional Lie algebra L, then, if
k=0 or -1, L will have a three-dimensional subalgebra
which is not of type (B1), whereas if # =+ 1 the only
three-dimensional subalgebra of L is of type (B1) with
k=+1. This will suffice to show that if a three-dimen-
sional manifold admits a four-parameter isometry
group, then it is only in the case where there is a
three~parameter subgroup with two-dimensional orbits
that the manifold will not admit a simply transitive
group.

(B1)

Following Kantowski, * we introduce a fourth vector,
17, which is an independent basis vector of the Lie alge-
bra L. In addition to (B1), we must have relations of
the form

[n, £;1=An+ BiE (i=1,2,3; summation over
j 3
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to complete the Lie algebra. The quantities A, and B}
are constants. The second Jacobi identities (B2) yield
the following equations:

RAy =A, =A, =0, (B2)
By — A B, + B} =0, (B3)
B} - A\ B} + B} =0, (B4)
B} - B} - A\ B} - B} =0, (B5)
kB} - kB - kB} =0, (B6)
kB} + B =0, (BT
kB} + By =0, (B8)
By + A B} + B} =0, (B9
B} +AB} - B} - B =0, (B10)
and
B +A B+ B0, (B11)

These equations are derived from the relation

[T’) [517 22]] + [gl’ [$21 ﬂ]] + [E‘Zy [77, El]]:o! tOgether W1th
its two counterparts obtained by cyclic permutation of
&, &, and &.

Consider first the case where 2#0. Then from (B2),
Ay =0, and Eqs. (B5), (B6) and (B10) imply B} = B
=B}=0; the resulting equations give Bzé
=~ kB} and B} =- BS. Now instead of 9 choose the vector
'=n- B§E1 +B:13£2 he B%E3~ Then [’7’, §1]=[7”, f?]

[77,, &3] =0.

Next, we consider the case #=0. From (B7) and (B8),
we have B} = B, =0. We can transform B} and B} to zero
by the allowable transformation § — & - B3, + Bi¢&,,
which preserves (B1). Thus

(n, &]1=An+ Big,
[, gz]:ngz +B:23£3,

3:"'kBg:

3

and
[‘f), 63]23352 +ngs-

From (B4) and (B11), A,(B}+ B}) =0, so either 4,#0
and B:=- B, or A, =0. Suppose first that 4, #0. Re-
placing 7 by 7' =n+ (B/A4,) ¥ maintains B} =B =0, and
transforms B} to zero. Then Eqgs. (B5) and (B10) im-
ply B} + B} =0, which, from (B4) and (B11), requires
Bi=B}=0. From Egs. (B5) and (B10) it now follows
that B} = B =0, and hence

(0, &1=4An", [v', &]=[n', &1=0.

Now suppose that #=A; =0, By Eqs. (B5) and (B10)
we obtain By =0 and B} = B}; Eq. (B4) implies that B
+B;=0. The transformations #-%"=(1/B%)(q - Bg)
in the case Bj#0, and 7—%"=7~ B3k, in the case B2=0
have the effect of transforming B3 to zero and Bl - B}
to 1 (if B2#0). Hence [n, §]=0, [0, £,]=¢&, and
[n, &]=€#,, where € =0 or 1.

b

We have thus determined that any four-dimensional
Lie algebra containing Lie algebras of type (B1) has
structure given by
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(i) R=+1: [51; 52]: ga, [52, Ea]ZEh ['Es; 51]252;

n, &1=0, [n §1=0, [n &]=0,
(i) k=-1: (&, &l=&, [& &l=-&, [& &4l=8&,
[n, &1=0, [0, &]l=0, [n ¢l=0,
(6, b1=&, [& &I=0, [k &l=k,

[ﬂ, 51]:14"1, [‘"r 5212622; [”’ 53]:653’

where either e =1 and A=0, or € =0,

(iii) £ =0

It is a straightforward but tedious computation to
determine all possible three-dimensional subalgebras
of these four-dimensional algebras. The results are

(i) k=+1: The only case is that spanned by §, §,, &,

with [&1’ 5212 §3, [521 Es]: El) [;31 El]: Eg, which is Of
Bianchi Type IX.

(ii) £=-1:In addition to the original subalgebra that
is spanned by &, &, &, with structure [&, &]=§;,
[&, &1=- &, [&, &]=¢, there is a family of subalge-
bras. This family of subalgebras is spanned by A =17,

=& +ak + bk, and A;=c§, +dE;, where the constants
a, b, ¢, and d satisfy c¢*(1 - b%) + 2abed + d*(1 ~ a*) =0,
c’+d >0. It is essentially a one-parameter family,
since if ¢ #0 then, without loss of generality, ¢=1 and
a=0 (which implies 4* =1+ ), and if ¢ =0 then without
loss of generality d=1 and =0 (and so a=+1). The
Lie algebra formed by X, A, A is given by [, A,]=0,
[A‘Z, AS] == (ad— bC)Ll * ((12 + b2 - 1)1 /ZXS’ [)3, )'1]:0- By
appropriate linear transformations of A, and A; with
either of the above specializations, this Lie algebra can
be put into the canonical form [A, A,]=0, [X,, ] =2,
[A, A]=0, and is a special case of Type VI, with i=—1,
i.e., a special case of Bianchi Type III (cf. Ref. 1),

(iii) #=0: There is in addition to the subalgebra
spanned by &, &, &, with structure [&, &= &,
[&, &1=0, [&, &]1=¢, a one-parameter family of sub-
algebras spanned by M =n+a¥;, X, =&, and A, = §;, with
structure [X, L ]=€eX, +akg, [M, X]=0, [N, M]=an,
— €23, This is of Bianchi Type I if a=¢€ =0, Bianchi
Type V if a=0, € =1, Type VII; if a#0, € =0, and Type
VII, if a#0, € =1. In the case @#0, € =0 the transforma-
tion Ay —aM reduces a to the value a=1. It follows that
in the k=0 and #=-1 cases, there are subalgebras
which are not of the type (B1), whereas inthe k=+1
case there are no such subalgebras. If a space—time
admits a four-parameter isometry group acting multi-
ply transitively on spacelike hypersurfaces, with a
three-parameter subgroup whose orbits are two-dimen-
sional, it follows that when %=~ 1 there is a three-
dimensional isometry group of Type III acting simply
transitively on the hypersurfaces, and that when #=0
there are two three-dimensional isometry groups, of
Types I and VII;, or of Types V and VII,, acting simply
transitively on the hypersurfaces. These results are
consistent with, but not necessitated by, those of Ellis
and MacCallum.! In particular, there is only one case,
that of #=+1, where there is no three-parameter group
acting transitively on spacelike hypersurfaces.
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APPENDIX C: THE PETROV TYPE OF THE
KANTOWSKI-SACHS MODELS

We consider components of the Weyl tensor in the
orthonormal tetrad e,=23/3/, e =(1/X)3/37, e,
={(1/Y)3/36, e;=(1/Y sin6)3/3¢. The commutation
relations are

[e()’ el]:“ ()‘(/X)el’ [eO, ez] == (?/Y)ep
[eO’ es]:" (i’/Y)eS; [81, ez] :0)

[e), e5]=—(1/Y)cotbe,, [es, e]=0.
It follows, using a decomposition as in Refs. 1, 26,
that the acceleration (&) and the vorticity of the fluid
is zero, and that the orthonormal tetrad consists of
Fermi-propagated shear eigenvectors that are Ricci
eigenvectors of the homogeneous hypersurfaces. De-
composing the Weyl tensor Cgpeq = Rypeg + LaraBo
+ 8o Raya + (R/3)gu8ayp into its “electric” and “mag-
netic” parts, E, and H,, defined by E,, = C0u® and
Hop =570 Co®uyu®, we find (by using the Ricci identity
u'yg50 = U000 = R%qu” for u=ey, e, e,. and ey in turn)
that the components in the orthonormal frame are H,
=0, E,=diag(0, 2E, - E, — E), where E=-3[X/X
+31(+3p)]. This means that the models are of Petrov
type D, except in the case E=0, which is in fact un-
tenable. This is because the restriction E=0, together
with the field equations (2.2)—(2.4), necessitates p
=3{(1 +Y?)/Y?]. Differentiating this, and using (2.3), we
obtain [ =~ (3¥/Y)(k +p). Comparing this with the con-
servation equation (2.4), it follows that X/X =Y/,
since 4+ p > 0. This is incompatible with Eq. (2.2).
Consequently, £+#0, and the space—times must be of
Petrov Type D.

In fact, by local rotational symmetry, the only con-
ceivable Petrov Types are D and 0 (conformally flat).
The above proof shows directly that the conformally
flat case (E=0) is impossible. This result can also be
derived by recalling that if the space—time is conform-
ally flat and contains a perfect fluid for which u+p >0,
then o, =0 {cf. Ref. 17), which contradicts (2. 7).

This result is consistent with, but not necessitated
by, a theorem of Wainwright.?"
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A necessary condition for the validity of Huygens’

principle on a curved space-time*
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It is proved that a necessary condition for the validity of Huygens’ principle on a curved space-time V*
is that V' * be an Einstein space. In connection with this result some remarks about the strong and weak

formulations of Mach’s principle are also pointed out.

1. INTRODUCTION

The pioneering work about scalar Green’s functions on
a curved space~time was done by Hadamard,' Sobolev,?
and Schwartz.® Tensorial Green’s functions on a curved
manifold were then introduced by Lichnerowicz*” and
DeWitt and Brehme® for different purposes. They have
since been studied by several authors (cf. Refs. 9-12,
among others).

One of the main peculiarities of such Green’s func-
tions is that, in general, they have a tail, i.e., in gene-
ral, the support of the Green’s function of a linear second
order partial differential equation on an arbitrary
space-time is not only the surface of the null cone, but
also its interior,®!? so that Huygens’ principle, in gene-
ral, is not satisfied. This feature is present, for ex-
ample, in the generally covariant formulations of the
Einstein field equations,'* so that, according to such
formulations, the gravitational interaction is not forced
to propagate along null geodesics.

A great deal of work has been done in order to find
necessary conditions for the validity of Huygens’ princi-
ple on a curved space—time V* (cf. Ref. 13 and refer-
ences therein). In this paper we will prove that a neces-
sary condition is that V* be an Einstein space.

In Sec. 2 we state the main theorems. In Sec. 3 we
prove the main theorems in the case of a scalar kernel.
In Sec. 4 we generalize the results of Sec. 3 to the case
of tensorial kernels. Finally, Sec. 5 is devoted to some
concluding remarks.

2. STATEMENT OF THE MAIN THEOREMS

Let (V*,g) be a four-dimensional Riemannian manifold
with signature — 2 and D a causal domain of V%, More-
over let

(2.1)

where ¥, x € D and d(%, x| denotes the geodesic distance
between ¥ and x. Consider tailless kernels of the type

o[%, x]= zd*[%, «],

G,‘;”_’(a_c, x)=F (%, x) g¥ 6 (o[%, x]), (2.2)
where M and M denote the multi-indices

M=y, oy oo s )y (2.3)

M=y fyy ey ), (2.4)

F(%,x) is a biscalar in C”(D x D) not identically equal to
zero on the surface 0=0, ¢ ¥ is defined according to the
following equation:
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8717 8zal8s" " &> (2.5)
where
T=(e,B,--.,m), T=(a,B,...,1), (2.6)

and g5, denotes the parallel displacement bivector be-
tween ¥ and x. 5'*' denotes the advanced (+ sign) or re-
tarded (- sign) Dirac distribution. Greek indices run
from O to 3.

Finally let us consider the following linear second or-
der differential equation
[PiT(x) 9,95+ Qi ()Y, + U ()G E T, x) = 87 f 6*(%, x) ,
(2.7
where

A=(a,,a,,...,a,) (2.8)

and P={P;"°}, Q={Q#"}, and U={U4} are tensors in
C=(D). ¥, denotes the covariant derivative with respect
to x and %%, x) is defined according to the following
equation:

(6%(x, x), f(x) = f(x). (2.9)

The purpose of this paper is to prove the following
theorem.

Main Theoreng: Necessary conditions for the solva-
bility of Eq. (2.7) with respect to the tensors P, Q, and
U are

B(x)=K(x)g(x), (2.10)
R(x)=cg(x), (2.11)
where
K(x)=[ g,(x)P*%(x)]/4, (2.12)
R={R,,}, (2.13)
c is a constant and P is defined as follows.
In the case of n even, say
n=2m, (2.14)

divide the set of 2m indices M into two sets of m in-
dices, M1 and M2, each one ordered in an arbitrary
way. Also define the multi-indices A1 and A2 obtained
from A through a similar, but independent, procedure.
P turns out to be defined by the following equation:

Prx)=g,, 18" ¥ PA"(x)+ PAY(x)]/2 (2.15)

where g, 4, and g, ., are defined according to Eq. (2.5).
Of course, P may depend on the choice of the multi-in-
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dices M1, M2, Al, and A2. Equation (2.10), however,
is required to hold for any allowable choice.

In the case of » odd, say

n=2m+1, (2.16)

select an arbitrary index of A (e =0, say) and an arbi-
trary index of M (u=p,, say) and then define the multi-
indices N and B obtained from M and A by dropping the
indices u, and a;, respectively. Finally define the
multi-indices N1, N2, Bl, and B2 through the same
procedure which allowed us to define the multi-indices
M1, M2, Al, and A2 in the case of »n even. In self-ex-
planatory notation, P turns out to be defined by the fol-
lowing equation:

P(x)= g1 pog Y VR PEE(x) + PBEOY(x)] /2. (2.17)

Again P may depend on the choice of &, u,, N1, N2,
B1, and B2 and we require that Eq. {(2.10) hold for any
allowable choice.

From the main theorem the following theorem follows
easily.

Let (V*%,g) denote a four-dimensional Riemannian
manifold with signature — 2 and let D be a causal do-
main of V% Consider the linear second order differen-
tial operator O defined by the equation

(Of) = VY, [y + QP fa+ UL Sy,

where f={fM} is a tensor and Q and U are tensors in
C*(D).

(2.18)

Theovem 1. A necessary condition for the differential
operator O to satisfy Huygens’ principle is that the
Ricci tensor R is proportional to the metric tensor g
by a constant factor.

Theorem 1 follows from the main theorem since add-
ing a tail term to the kernels (2.2) gives the most gene-
ral form of the retarded (- sign) or advanced (+ sign)
Green’s functions of the differential operator 0.2

3. THE CASE OF A SCALAR KERNEL

We will now prove the main theorem in the case of a
scalar kernel to better point out the technique of the
proof.

Let (V*,g) be a four-dimensional Riemannian mani-
fold with signature — 2 and let D denote a causal domain
of V1, Consider the scalar kernels

(3.1)

where F(x, x) denotes a biscalar in C*(D X D) not identi-
cally equal to zero on the surface ¢=0. Finally con-
sider the following linear second order differential
equation:

[P*(x)V,V,+ Q" (%)Y, + U(x)]G*(X, x) =87 0%%, x),

G, x)=F (%, %) 5% (c[x, x]) ,

(3.2)

where the tensors P={P"*}, Q={Q’}, and U are in C*(D).
Moreover P*® may be assumed to be a symmetric ten-
sor without loss of generality.

Theovem 2: Necessary conditions for the solvability
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of Eq. (3.2) with respect to the tensor P, Q, and U are

P(x)=K(x)g(x), (3.3)

R(x) = cg(x), (3.4)
where

K(x)=[g,,(x)P""(x)] /4 (3.5)

and ¢ is a constant.

To prove Theorem 2 let us first note that by a stand-
ard procedure Eq. (3.2) can be rewritten as

{2 P*”’O;,, 05— O.P*'réo.; yio— UO;YQ*y+ U*o 2}5(1)(2)(0[97’ x])

+47P*8%(x, x) = 16 76%(%, x) , (3.6)
where
P*eE= pri(x x) = F(%, x)P(x) , (3.7)
Q* = Q*(¥, x) = Q% (x) - 2P*(x)F, (¥, %), (3.8)
U*=U*%, x)
= U(x)+ PYX)F, o, (%, 2)+ QUH)F, (X, %), (3.9)
P*=P*(¥, x) = g, P**, (3.10)

6 denotes the standard second order derivative of
the 6’ distribution (cf., for example, Refs. 15 and 16).
Moreover for simplicity the symbol “;” is used for the
covariant differentiation.

Multiplying both sides of Eq. (3.6) by o (0<{<«< 1}, one
finds

{2P*%, 0,  — 0P*"%0,,., - 00,,Q*"+ 02U}

x gt8' (o[ %, x])=0. (3.11)
It is also easy to prove the following lemma.
Lemma 1: If H=H(%,x) is a biscalar, then
HO®®(o[x, x])=0 (3.12)
if and only if
H(x,x)=L(x,x)o?, (3.13)
with
L(x,x)2=20. (3.14)

Lemma 1 essentially follows from the well-known
identity

25(0) = 0267 (g)= 0. (3.15)
From Lemma 1 and Eq. (3.11) it follows that

2 P¥°, 0, — 0P* 0, . - 00, Q¥+ U*e? =2L0%",

(3.16)
where

LZ20. (3.14)
The left-hand side of Eq. (3.16) may be rewritten as

G (4P*7%d, .~ P¥"00,,  — Q¥70,,+ U*0). (3.17)

As a consequence the limit as ¥~ x (cf. Ref. 8) of the
function

Lot-t (3.18)
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and of all its partial derivatives are finite.

Differentiating both sides of Eq. (3.16) and taking the
limit as ¥ —x of both sides of the so-obtained equation,
one finds an identity.

Differentiating once more and taking the limit as x - x
of both sides of the so-obtained equation, one finds

P*(x,x)=K'(x)g(x) , (3.19)
where

pr={p**} (3.20)
and

K'(x)=[ g,5(x)P*%(x, x)] /4. (3.21)

Inserting Eq. (3.7) in Eq. (3.19), one then finds

P(x)=K(x)g(x), (3.3)
where

K(x)=[ g,5(x)P"*(x)]/4. (3.5)

Equation (3.3) is the first of the two necessary con-
ditions stated in Theorem 2.

For the second necessary condition (3.4) one inserts
Eqs. (3.3) and (3.7) in Eq. (3.16) and divides both sides
by o to obtain

FK(4-0%%, ) —Q*®0, ,+oU*=2Lo""". (3.22)

Performing an expansion to the second order of the

first term on the left-hand side of Eq. (3.22), one finds®
-3 FKR*%g, 0., . (3.23)

As a consequence, the limits as ¥ —x of the function S
defined by

2S0=2L0o "'+ Q**0,, (3.24)

and of all its partial derivatives are finite.

Inserting Eq. (3.24) in Eq. (3.22), differentiating both
sides of the so-obtained equation, and taking the limit
as ¥ —x, one finds an identity. Differentiating once
more and again taking the limit as ¥ - x of both sides,
one finds

R(x) = g(x)g(x) , (3.25)

where
q(x) =3[ U*(x, x) = 2S(x, x)] /2K’ (x) . (3.26)

From purely geometrical arguments it follows that
q(x) has to be a constant c,

(3.27)

so that the second necessary condition (3.4) is esta-
blished.

g(x)=c,

As a further remark, it should be noted that other
necessary conditions may follow from condition (3.27).
This possibility, however, will not be investigated in
this paper.

Finally we note that the procedure which allowed us to
prove Theorem 2 shows that the hypotheses F(x, x)
€ C*(Dx D) and P,Q, U € C*(D) are stronger than neces-
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sary and have been made only for the sake of simpli-
city.

4. GENERALIZATION TO TENSORIAL KERNELS

To generalize the results obtained in Sec. 3 to ten-
sorial kernels one must consider separately the cases
when » is even, say

n=2m, (2.14)
or odd, say
n=2m+1. (2.16)

In the case n=2m the proof of the main theorem can
be reduced to the proof of Theorem 2 by multiplying
both sides of Eq. (2.7) by

g (4.1)

where g,,, ., is defined as in Sec. 2 and gy, 3, is defined
from the multi-index 3/ through a similar, but indepen-
dent, procedure,

Sz

The main theorem is proved by performing the whole
procedure above for any possible choice of M1, M2,
M1, and M2.

In the case n=2m + 1 let us rewrite Eq. (2.7) as

[PRLT ()Y, s+ Qus (x)V, + UgZ]

X F(%, x) g ¥ g 26 (o[ %, x]) = 8rg ¥ 6%(%, 1), (4.2)

where the multi-indices N and B have been defined in
Sec. 2, while the multi-index N is obtained from M by
dropping the index p=p,.

The next step is to multiply both sides of Eq. (4.2) by
gmm8™ ", (4.3)

where the multi-indices N1 and N2 have been defined in
Sec. 2, while the multi-indices N1 and N2 are obtained
from N through a similar, but independent, procedure.

The last step is to perform formally the covariant
differentiations in the equation thus obtained and, fi-
nally, to multiply both sides of the so-obtained equation
by g&.

This procedure allows us to reduce the proof of the
main theorem to the proof of Theorem 2.

By performing the whole procedure above for any al-
lowable choice of , p, N1, N2, N1, and N2 the main
theorem can be proved.

5. CONCLUDING REMARKS

The main purpose of this paper has been to prove that
a necessary condition for the validity of Huygens’ prin-
ciple on a curved space~time V* is that V* be an Ein-
stein space. The proof has been given for differential
operators O of the type (2.18) on the basis of the main
theorem and of the result that by adding a tail term to
the kernels (2.2) one obtains the most general form of
the retarded (- sign) or advanced (+ sign) Green’s func-
tions of the differential operator O.'?> We also noted that
the procedure which allowed us to prove the main theo-
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rem leaves open the possibility of obtaining further nec-
essary conditions for the validity of Huygens’ principle.

As already mentioned in Sec. 1, the kernels peculiar
to the generally covariant formulations of the Einstein
field equations have a support not only on the surface of
the null cone but also in its interior,'* so that, accord-
ing to such formulations, the gravitational interaction is
not forced to propagate along null geodesics.

Some authors'™# have made attempts to construct
theories of gravitation based on the hypothesis that the
gravitational interaction travels along null geodesics.
This is the simplest assumption for the purpose of con-
structing a purely integral'” or an integrodifferential'® !
theory of gravitation in agreement with the strong Mach
principle. A discussion about strong and weak Mach’s
principle is contained, for example, in Sec. 1 of Ref.
18. The problem which arises in this connection is
whether a tailless kernel of the type (2.2) can be con-
sidered as the Green’s function of alinear second order
differential equation. In the case of a positive answer
there would be no difference in principle between the
weak formulations of Mach’s principle and the strong
ones based on tailless kernels of the type (2.2). Indeed
one could reduce any integral or integrodifferential
theory based on such kernels to a purely differential
theory with suitable boundary conditions. The main
theorem proves that this possibility is not allowed, at
least if one limits oneself to linear second order dif-
ferential equations.

Note added in proof: In the proof of Theorem 2 two
assumptions, unfortunately nof true in general, have
been used, namely the hypotheses that the limits as
X~ x of the functions P**%d_ d , and R**d, d_, and of all
their partial derivatives are finite (hereafter referred
to as assumptions A and B, respectively). For the
necessary condition (3.3), however, assumption A is not
needed since Eq. (3.16) may be easily proved also with
t=0. On the contrary, in the lack of assumption B, the
general proof of Eq. (3.4) requires conditions on the
conformal factor K{x). Consequently, Theorem 1
becomes: A necessary condition for the differential
operator O to satisfy Huygens’ principle is that the
Riemannian manifold (V*, g) be conformal to an Einstein
space.
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Perturbation solution of the Percus-Yevick equation for

the square-mound potential
A. Fulinski and C. Jedrzejek
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The perturbation solution of the Percus—Yevick equation, based on the known solution for hard-sphere
interactions, is found for the square-mound potential. The correlation functions are expanded in powers of
the parameter a, related to the height of the mound, i.e., describing the deviation of the interactions from
the hard-sphere ones. An algorithm for the calculation of subsequent coefficients is given. Numerical
calculations show, however, that the series converges slowly and thus a few terms approximate the whole
series with sufficient accuracy for small (but still finite) values of a, ie., for almost hard-sphere
interactions, only. For mounds high enough the system behaves very similarly to the hard-sphere system,
but it quickly loses its “hard” characteristics as the mound decreases. This result, in the light of the success
of the recent perturbation theory of liquids, seems to suggest that, whereas fairly significant changes of the
potential in the outside of the hard core may be treated as small perturbations, even a small change inside

the hard core very strongly perturbs the properties of the system.

. INTRODUCTION

The importance of integral equations in the theory of
liquids results, at least partially, from the existence of
a few analytic solutions to these equations. Moreover,
one of these equations, the Percus-Yevick (PY) approxi-
mation,' has proved to be fairly accurate for hard-
sphere systems. Hence the solutions of the PY equa-
tions obtained by Wertheim?® and Thiele® for the one-
component system of hard spheres, and by Lebowitz*
for the mixture of hard spheres with additive diameters,
are commonly used for the determination of the proper-
ties of the reference system in the perturbation theories
of liquids.®® These latter owe their success mainly to
the fact of very quick convergence of the perturbation
series when the repulsive part of the interparticle po-
tential does not differ significantly from the hard-sphere
potential, even if the attractive tail of the potential play-
ing the role of the perturbation, cannot be treated as
very small. In this paper we want to point out that the
perturbation series behaves quite differently in the case
of the short-ranged potential of the repulsive barrier of
finite height., We have chosen this potential because it
is possible to obtain for it the solution of the PY equa-
tion in the form of perturbation expansion of the relative-
ly simple form.

Standard perturbation expansions® require for the de-
termination of higher-order terms a knowledge of the -
particle (n = 2) distribution functions of the reference
system. The idea of the use of integral equations for the
calculation of the perturbation corrections was proposed
by Lado,” who constructed an expansion in which it is not
the bridge diagrams which are being neglected, but rath-
er changes in them caused by the perturbing potential.
Madden and Fitts® found the integral equations for the
calculation of the first and second-order perturbation
corrections to the radial distribution function g(»). Re-
cently, Kohler, Perram, and White® constructed a new
method for the numerical solution of the PY equation,
based on Baxter’s formalism,'® and used it for the de-
termination of g(r) for the repulsive part of the Lennard
—Jones potential.
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Baxter’s formulation of the Ornstein—-Zernike equation,
used in Ref. 9, is also convenient for our purpose. It
can be outlined as follows: Let c¢(r) be the direct corre-
lation function defined by the Ornstein-Zernike equa-
tion,

RG)=c@) +n [ dth(lr =t]) (), 1
where n is the number density, and i(r) =g(») ~1. The
PY approximation,

a(clr)=lalr) -1 g@r), al)=expl-u()/kT], (2)

implies that, when the two-particle potential «(») vanish-
es, c{(r) vanishes, too. Consider now the potentials u(»)
of finite range d, i.e., u(»)=0 for r>d. Baxter intro-
duces a new function ¢(»), by writing Eq. (1) in the form

rolr) ==q' () +2m " dig (Dqlt=7), rcl0,d], &)
rhir)==q' () +2m [T dtr = Oh(lr = tha(t), r=0, (&)
where ¢’(r) is the derivative of g{r). The function ¢(»)
also vanishes identically for »>d, and is continuous.
Combining Egs. (1)-(4) we get one nonlinear integrodif-
ferential equation for Baxter’s function q(r),

~rla@)-1]- ¢ @) +2malr) frddeI'(l)Q(l -7)
==2ml a(r) - 1] [ dt (= 1)q(t)

+27n f: di sign(r = HgBa(lr -t])

x{=g’' (|7 =1]) +27n fld . dz q'(2)q(z- v - t])}. (5)
I. SOLUTION OF THE PY EQUATION FOR
SQUARE-MOUND POTENTIAL
The square-mound potential'! can be defined by
_fa forr<d,
a(r)—{l for >d. ©®

The value ¢ =1 (vanishing mound) describes the ideal
gas, whereas the hard-sphere potential, for which o =0,
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corresponds to the limit of an infinitely high mound. We
look for the solution of Eq. (5) in the form of the power
series in «,

q(r;a):i} alq,(r). (7)

As o =0 means the hard-sphere interaction, the series
(7) forms the perturbation solution of the PY equation,
the unperturbed system being that of hard spheres of the
same diameter, 2

The function g(r; o) is differentiable with respect to .
We look for such a solution for the functions g,(r) which
would also be differentiable. Assuming that we can
change the order of differentiation and summation in Eq.
(7) we obtain the functions ¢,(») as polynomials in ac-
cordance with the assumed property of g{(r; o).

Substituting the series (7) into Eq. (5) and equating
powers of @, we obtain the system of equations for the
functions g;(r),

. i
Qi'(7)=‘61i7+2””f dt 7. q/{)qs-,~;(t =7)
r i=o

+2m [1dt o = Dl gi_,(1) = g.()

i=1

—Znnf dt mgn(r—l)Z} q;(t)

4
X {=giayo; (|7 = t]) +21mjlr_“ dz

f=1=ji

X E Hl(Z)Q{ 1-j— Wz = 'r—” } (8)

The first of these equations immediately gives the hard-
sphere function qo(r),

1.5nd

qo(r) _2(1 )z (r ) (l_r('r d) (9)
where
n=nnd®/6 (10)

is the so-called packing density. Equation (8) together
with Eq. (9) implies (by recurrence) that the function
g;(r) is the polynomial of (67 +2)th degree in 7,

6i+2 , 6i+1
=3 Agrt, ¢llr)= 3 a (11)
=0 1=0
Equation {8) may be written in the form
i-1
q! (r)+2nnfdt(r D=5 p,,r, i=1,2,..., (12)

=0

where the coefficients p;; are determined by integrating,
according to Eq. (8), the combinations of functions ¢,(r)
with j<i. Hence Eq. (8) may be solved for every i by
recurrence, q,(v) is given by Eq. (9), coefficients p;,;

are given by coefficients A;; (j<i) determined in earlier
steps, and the form of Eq. (12) implies lA; ., =ay =Py
for 1=2,..., 6i+1, The remaining coefficients, A;,,

A =a,, Ay=a,/2, are determined from Eq. (12) (for
1=0,1) and from the condition ¢(d) =0, which must be ful-
filled for every «. Hence, after some manipulations,

ioz—(Ai1+d2Aiz/4+ Siz pi,l—ldl/l)’ (13)
1=3
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6i+1

dHl

(2 - 4mnd®/3)A;; - md?A =P, +2mm Diqe—, (14)
i=3 : I+1
6i+2 d1+2
mnd A,/ 2 +(1+1md3/3)A“ =Pi—=T7 ), Pi1-y 7
I=3
(15)

Let us note that for 1 =1 the principal determinant of the
pair of equations (14), (15) is equal to zero. Hence the
solution of the PY equation for square-mound potential
behaves similarly to that for hard spheres, where the
solution also diverges for n=1.

We may now calculate the remaining correlation func-

tions. From Eaq. (3) we have

clr) = éaici(r), re 10,4l (16)
with )

re ) ==, +2m3 [fatgau-n.an

i=o T

The functions ¢;{r) are thus polynomials of the (6 +3)th
degree, with coefficients determined—in terms of coef-
ficients A,,—directly from the relations (17) and (11),

The knowledge of c¢(») leads to the determination of

g(r). The Fourier transformation of Eqgs. (1) and (16)
gives
C(k) il ;
e = ¢ . 1
HW =T W= Da'Cile). (18)

and H(k), C(k), and C,(k) are the Fourier transforms of
the functions 2(r), ¢(»), and c;(r), respectively. Note
that the functions C;(k) are well defined because c{r)
are (i) bounded and (ii} nonzero for r<{0,d)} only. Ex-
panding H(k) as given by Eq. (18) in powers of «,

H(k) = 2, o'H (k) (19)
i=0

we get the functions H;{k) as combinations of the pro-

ducts of functions C,(k) (with j <¢) and finally

g =1+ % o', (20)

where i;(r) are the inverse Fourier transforms of H (k).

HI. NUMERICAL RESULTS

To check the behavior of the perturbation solution ob-
tained in the preceding section the numerical computa-
tions of the expansions (7), (16), and (20) of the distribu-
tion functions c(r) and g(r) have been performed up to
the third order in the perturbation parameter o, The
Mandel, Bearman, and Bearman'® method (generalized
for polynomials of arbitrary order) has been used for
the inversion of the Fourier transforms H; (), Eq. (19).

The numerical results show that the series of coeffi-
cients A;, Eq. (11), is alternating for the initial terms
of the series (7), the ratio [A,,, ,/A;,| being the great-
er, the higher the density of the system. The inequality
[Ays 1 41< [Ay] is fulfilled for very low densities, 7
<0.005, only. The same behavior is found for the series
¢, rkih;(r).
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The PY approximation also enables us to check the ac-
curacy of the solutions obtained by the present method.
For this purpose, we introduce the function

y(r) =g(rexpl Bu(r)|, 1)
continuous for all »>0. Especially,
y(d,)=yld-), (22)
where
v{d,) = lim v{dz €).
€0

From Eq. (2), y(r) is also given by

c(r)
Y e T @
The differences between the value of y(r) calculated
from Eq. (21) and Eq. (23), as well as between %(d,) and
v(d_), may serve as the estimation of the errors result-
ing from the approximation of the whole series (7), (18),
and (20) by the finite numbers of terms, It is found
that these differences do not exceed 0.005 for «=0,0075,
and 0.02 for o =0.01, for nd®=0.6 (the sstimated error
of numerical computations is of the order of 0.0001).
In Fig. 1 the square mound functions c(») and g(r) for
nd®=0.6, @=0.0075 are compared with the hard-sphere
ones for the same density. The value of @ =0.0075, i.e.,
Bu{r)=4.8, may be recognized as the highest maximum
value, «,, for which the solution is still creditable, for
the density nd®=0.6, when the perturbation series is
cut at ¢®. For higher densities the value of «,, de-
creases: For example, for nd®=0.9, «,=0.0015, i.e.,
Bu(r) =6.5. For this value of o, g(d,)=4.13, which is
to be compared with g(d, ) =4.42 for hard spheres, o =0.
For high densities the series (7), (16), and (20) con-
verge very slowly, so that retaining a few more terms
of higher order in o does not noticeably change the val-
ues of a,,.

Finally in Table I we illustrate the typical behavior of
the o expansion by showing the several first coefficients
b,, expressing the function c,(r), [Eq. (16)]

6i+3 ;
cr) = 2y bur, (24)
i=0

for density nd®=0.764 (n=0.4). The character of the
functions q;(r), c¢,(r), and h,;(r) is similar within the
whole physical range of density both for coefficients of
the polynomials and values of the functions for particu-
lar 7.

TABLE 1. Coefficients b, (listed only up to terms 7% from
Eq. (28) for density nd®=0.764 (1=0.4).

4 boy by byy by by

»®  —0.25E2 0.11E4 —0.73E5 0.56E7 —0.47E9
r! 0.27E2 -0.12E4 0.77E5  —0.59E7 0.49E9
»? 0.0 —0.24E3 0.21E5 -0.19E7 0.17E9
y®  _0.50E1 0.31E3  _—0.22E5 0.18E7 —0.16E9
rt 0.0 0.15E3  _—0.15E5 0.13E7 -0.12E9
7? 0.0 —0.75E2 0.72E4  -0.64F%6 0.59E8
78 0.0 —0.57E1 0.10E4 _0.11E6 0.12E8
»T 0.0 0.61E1 —0.70E3 0.68E5  —0.65E7
»8 0.0 0.0 —0.90E2 0.13E5 ~0.15E7
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FIG. 1. Comparison of the
hard-sphere (o =0, full line)
and square mound (@ =0.0075,
dashed line) correlation func-
tions ¢(») and g(#) for nd®
=0.6,
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80

120
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IV. FINAL REMARKS

In this paper the solution of the PY equation for the
square-mound potential has been given in the form of
the perturbation series, the unperturbed system being
that of hard spheres. The computation of the coeffi-
cients A,; for a given density, is sufficient for the deter-
mination of the solution for any value of «, the parame-
ter « describing the deviation of the system from the
hard-sphere one. This method is thus, in principle,
both simpler and more general than the usual numerical
iterative solutions of the PY equation,!® which require
carrying out the computation for a definite value of a.

In addition, the present method allows the detailed in-
vestigation of the behavior of the perturbation series,
which is impossible in the numerical solutions of the PY
equation by iteration methods. Such an investigation, re-
ported in Sec, III, has shown that the series (20) con-
verges very slowly, except for small values of o. Hence
the practical use of our method is limited, for a given
density, to the values of ¢ smaller than some limiting
value «,. for which the perturbation series is still rapid-
ly enough convergent. To this limiting value corre-
sponds the respective limiting value u, /2T of the poten-
tial u(r)/kT, for which the behavior of the square-mound
system still reminds one of the hard sphere behavior.
The very slow convergence of the perturbation series for
a> o, seems to suggest that the system loses its “hard”
characteristics for u<u,,.

The square-mound interactions are not very realistic
ones. However, the method of solution of the PY equa-
tion for these interactions, presented in this paper, en-
abled us to show clearly that, whereas it is well known
that quite serious changes in the longer-ranged attrac-
tive tail,® as well as in the outside region of the repul-
sive core,” may be treated as small perturbations, even
relatively small changes of the interaction potential [or
rather of the Mayer function f(r) = a(r) - 1, associated
with it—cf. Ref. 12] far inside the repulsive core strong-
ly perturb the properties of the system.'®
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We consider the problem of solution of some functional equations occurring in the theory of extended
hadrons. By means of stochastic methods solutions of these equations are obtained in the form of a
contractive (Markov) semigroup in Hilbert space. Analytic continuation to a unitary group implementing
time evolution is performed. The problem of unitary implementability of Lorentz and gauge symmetries,

essential for physical interpretation, remains unsolved.

. INTRODUCTION

The theory of extended hadrons, extensively studied
recently,’? is based on an extended position operator
X(%) depending on internal parameters £. Such an ap-
proach raises some difficult problems, which follow
from the requirements of Lorentz and reparametriza-
tion (gauge) invariance of the theory.

This paper is devoted to mathematically rigorous in-
vestigation of functional equations occurring in the
theory of extended hadrons.® In general such equations
are highly complicated,? and it is hopeless to solve
them. So, we consider only simplified equations, which
in the above-mentioned models, hold in a special nonco-
variant gauge.! In such a case we are able to solve
these equations by means of stochastic methods.*”® We
apply the theory of Markov processes with values in in-
finite-dimensional spaces.>*® This allows us to solve
the second order functional equation

~ g b=, éix)w,(x) 1.1
where X belongs to the Schwartz space S’ of tempered
distributions. If the operator H, is positively definite in
Hilbert space /2 with 1 as the Gaussian measure on §’,
then the solutions of Eq. (I.1) have analytic continuation
in time to solutions of the Schrodinger equation. Then,
we show how the functional equation with interaction H
=H,+V can be solved by means of the Feynman-Kac
method.*?

Comparing with the Kaku and Kikkawa paper,’ we can
see that the transition function of the Markov process
determined by Eq.(I.1) coincides with the Green’s func-
tion in Ref. 1 describing a propagation of free string.

We do not consider here the problem of Lorentz and
gauge invariance of the theory. These symmetries
should be unitarily implementable, if this theory is to
describe extended particles. There are serious diffi-
culties on this way. We discuss briefly this problem in
the last section.

1l. WIENER PROCESS WiTH VALUES IN S’

It is known® that the transition function p(7,, x, ¢, T'),
I"CR", of the Wiener stochastic process is a solution of
the equation
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d N9 Con
E%(x):m; @%(x)’ XeR

with initial condition
{1, xeT,
0, x¢TI'.

q)to(x)=xr(x)= (IL.1)

We will show that the transition function of Wiener pro-
cess with values in $’ is a solution of an analogous
functional equation. The Wiener process W, with
values in §’ is a stochastic process with Gaussian dis-
tribution of differences W, - W, c§’ (/> s) with mean
zero and covariance

E[(W(£) = W(ENW, (E) = W ()]

=min(f - s, - s")d(£- £,
t>s, U>s" . (11.2)

So, the candidate for the transition function
Py(t,Y,t,T) is the Gaussian measure with mean Y and
covariance ¢’ — ¢

Pyt Y, ', T)= [re s, bpo (dY’-Y) . (11.3)

Let us introduce the Banach space 8 of functions £
§’~C continuous under the norm ||F ||=sup,. (. |F(Y)| in
the weak topology of §’. Then we can prove

Theovem II.1: Pu(t,Y,,T) is a transition function of
the Markovian contractive semigroup TV in A defined by

TYF(Y)= [ F(Y)u (dY'-Y), {>0, Feh , (I1.4)
i.e.,
() T{TY=17¢.
(ii) TV1=1, (I1.5)
(iii) tlimo WTYF - Fli=0.

Pyoof: TY is a contraction semigroup in 4 because
| J5 F(Y, (@Y’ -)]
< [ sup|F(Y") |, (dY'-Y) = sup| F(¥")] .
Property (i) is equivalent to
Jrse o o@¥'=0)= [¢ f0@Y-2)pdz-y) . (IL6)

This equation can be checked by means of the Fourier
transform

S5 explity’, m)]u,, (Y’ -Y)
=expl —(t+s) [R3(¢)dE]exp i(Y, k)] .
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and
Jor Jsrexoli(y, )] u, (¥’ = D (dz - Y)
= [soexpl—1 [ 2(&)dtlexpli(z, 1)) 1 (dZ - T)
=exp[ - [h¥(§)dt]expl s [r2(£)at]expli(y, b)) .
So, Eq. (II.6) follows. The second equality in the for-
mulas (I1.5) is trivial, because the Gaussian measure
is normalized [;,u(dY)=1. Let us consider now (iii):
| TYE(Y) = £ (V)= | [ (F(Y) = ()i, (dY' -T)]|
< Jsyor |[F(Y) = F(Y) |, (dV"-7)
+/, _sym|F(Y’)-F(Y)Iut(dY'—Y) ,
(I1.7)
where the ball S,(5) ® is defined by

SA8)={y"e S (v =¥, )| <6 for heS with lJhll,<1};

here || ||, are seminorms defining the topology of §.
From the continuity of F we get that for each ¢« there
exists 6 such that Y’ € Sy(5) implies |F(Y")= #(Y)]< «.
The second term in Eq. {(I.7) is smaller than

28U [50o 5,00 @Y'=V) =20 F1l [ 1o oparey (Y =Y)

Now, if f~0 it goes to zero, because the measure of a
set lying outside the ball S,(R) goes to zero if the radius
R goes to infinity.® This completes the proof.

Equations (II.5) are equivalent to the following proper-
ties of the transition function (I1.3):

1. Py(1,Y,,T) is a measure on a og-algebra of sets
rcs’.

2. [ Py(T, 2,1, T)P (1, Y, 7,dZ)= P, (1,¥, ', T) for
arbitrary ¢ = 7<¢, This is the Chapman-Xolmogorov
equation.

3. P LY, 1, 5)=1
4' pw(éyY; t’ F):XP(Y)

(11.8)

The transition function Py, fulfills a functional equation,
which is a generalization of Eq. (II.1). First, a precise
definition of the infinite-dimensional Laplace operator is
needed.’”® We define the functional (Frechet) derivative
F’(X) in the point X< §’ as a linear functional belonging
to §7 and fulfilling the equation (if this limit exists in the
norm topology of 5)

lim (1/s)[ £(X+ sh) - £(X)] = (F'(X), k) .

§0

(11.9)

Second order derivative is defined as an operator from
S to 57 obtained by differentiation of the right-hand side
of Eq. (I1.9)

lm (1/8)L (F' (X + sg), h) =(F(X), B)}= (¢ (X)g, h);

§ >0

(O.10)

here the limit is taken in the §’ weak topology. The only
way to obiain a scalar from an operator £F7/{X): §—~5 is
to take its trace in the Hilbert space L? of square inte-
grable functions [ if the range of #’/(X) is contained in
L?]. We can prove now the following:
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Theovem I1.2: For a dense in 8 set of functions
k

F(1) :;21 a;expli(Y, k)], heS:
(i) The function ¢,(v)= T/ F(Y) is differentiable over
t>0.

(ii) It is twice Frechet differentiable and the second
Frechet derivative ¢,’(Y) is a trace class operator in
LE,

(iii) @,(Y) fulfills the functional equation
-d 02
E[— (P,(Y) = (Pt(Y)

where D%, (Y) % - Tre!’(Y) (I1.11)
with initial condition ¢ (¥)=F(Y).

Proof: 1t is sufficient to restrict ourselves to F(Y)
=expl (Y, k)]. Then

@ (V)= T{F(Y) = [F(Y+Y") b, (dY)

=expl i(Y, k)] expl ~t(k, )] . (I.12)
So,
& TYF(Y)= - (b, WTYF(Y)
(F!(Y),f)=i(f, h) expl i(¥, k)] expl ~t(h, B)] , (I.13)

(" (Ng,f) ==(1, k) (g, 1) expli(Y, 1)) expl - #(h, )] .
(II.14)

The bilinear form (I1.14) is continuous in g and f in the
L? norm |f|%= ffz(é)dé, because

k(F"(Y')g,f)‘é \k}ZL‘f‘L{g{L

and defines a bounded operator on LZ,
its trace:

TrF"(Y)= 12 (F"(Ye, e;)

Let us compute

=2 ~(h, e)(e k) - expli(Y, )] expl ~#(k, 1))

=— (h, h) exp| i( Y, k)] exp| ~t(n, B)] .

Comparing (II.15) and (I1.13), we obtain that the equation
(d/dt)e,(Y)=Tre;’(¥) is tulfilled.

(11.15)

Remark: TY is a contraction semigroup in 8, so it
can be extended from a dense set on the whole space 8.
However, TYF will not fulfill Eq. (11.11) if £ does not
belong to the domain of the operator J%, i.e., if the
second order Frechet derivative does not exist or if it is
not a trace class operator. Necessary and sufficient
conditions for existence of the trace were given by
Gross.’

111. MARKOVIAN CONTRACTIVE SEMIGROUPS IN
HILBERT SPACE

In physical applications we should find solutions of
functional equations in Hilbert space. The Banach space
in Sec. II {treated as a linear vector space) may be con-
sidered as a dense subspace of the Hilbert space L2 of
square integrable functions with regard to a Gaussian
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measure p on §5’. A Markovian contractive semigroup
defined in B need not be a contraction on L2 (in the L2
norm || II,,), e.g., the semigroup defined by Eq. (II.4) is
not a contraction in L2. A sufficient condition is given
by the following:

Theovem HI.1 (Sin on®): Markovian semigroup ful-
filling | in addition to Eqs. (II.5)] the condition

Ti1=1 (I.1)
is a contraction in L3, i.e.,
T Fl, < HFN, . (OI.2)

The semigroup (I1.4) does not fulfill this condition.
This can be shown as follows:

d Wyt N\ d W~
STDT, £ = 51, TVF)
=(LOPTYF) =07, TYF), (L)

where the operator 02 was defined by Eq. (II.11). The
Hermitian conjugated operator 02" can be computed on
the dense in L2 set of functions depending on finite num-
ber n of variables x; = (X, k;) (here the h;c § form a
complete orthonormal set in L2?), Let us still fix the
Gaussian measure u by its covariance

E[X(f)X(g)] = [X(N)X(u@X)=(f, B ), (OL4)

where B is a positive definite operator in L2, Now, 0?'
is given by the formula

(02 F\, F)
=(F,, D%F,)
=~ [ w(@x)F,(X) Tr#y (X)
== [R@)F,X)2 (b, Fy' (X))
n 82
(-2 %

=1

=(47)""/3(detB)/? [ F (x,, ...

n

XF(x, ..., x,,))exp[ —% . b,-,x,x,]dx1 oo dx,

fpf=1

JEPIRE NSNS
= - + b, x +3 b)
KZ‘E By By T=1 7 ax, : i=1 H

XF (%, ..., x,,)} Fy(x, ..., x)47) " /2(detB) /2

n

Z b”x,xl] dx,* * * dx,;

i,=l

1
X exp [_Z (HI-S)
here b;,= (h;, Bk;). From Eq. (OL.5) it follows that D?'1
# 0, so from (II1.3) (7}))' 1#1, However, if we take the
Hermitian part & of 02 (this is the Umemura Lapla-
cianl®)

AF(X)= - TrF"’ (X)+ 3(BX, F'(X)) , (111.6)

then A1=AT1=0. In such a case the condition (III.1) will
be fulfilled for a semigroup T, F(X)=¢,(X), solving the
equation

- 5—2 @ (X)= Ag,(X) . (m1.7)

The solution of Eq. (III.7) can be constructed by means
of a stochastic process, which is a solution of a sto-
chastic equation®® for random variable X,

dX,= -3 BX,dt+dw, ; (11.8)
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here W, is the Wiener process. Equation (II1.8) can be
solved in elementary way. The result is

Xt=e-B(t-t0)/2X+ fttoe-B(t-S)/deS ] (1I.9)

X, given by Eq. (II1.9) is a Gaussian process (it is an in-
finite dimensional counterpart of the Ornstein-Uhlen-
beck velocity process'!), because differences of Wiener
process have Gaussian distribution. The mean and co-
variance can be computed from the formula (I11.9)

m=E|X,J=e 8¢ t/2X (II1.10)
02 =E[ (X,(£) - m)X,(£") = m)]

=E[ ftto e-B(t-s)/des ft; e-Blt-s') /2 g Ws‘]

=B"Y(1-e B -to)5(£ - ¢) . (I11.11)

The transition function, being the transition amplitude
to find X; in I if it was in X at time {;, is given for
Gaussian process by the Gaussian measure puf~fo* with

mean m [ (II1.10)] and covariance o2 [ (ID.11)]
p(to,X, t; r)=fr‘ HJ"O'X(dX') . (III.12)

It follows already from the proof of Theorem II.1 for
Wiener process that P has the properties (II.8) of a
transition function. We can further show the following:

Theorem II1.2;
0, (X) =T F(X)= [FX )l toX(@X"), t-1,>0,

defines a Markovian semigroup in 8. The function
@,(X) fulfills Eq. (II.7) with initial condition ¢, (X)
= F(X) for F(X) being linear combination of exp| i(X, &,)].

(I11.13)

Proof: A transition function always defines a Marko-
vian semigroup.* It remains to show that Eq. (II1.7) is
fulfilled. The proof goes similarly as in Theorem II.2.
We take F(X)=expli(X, h)]; then

@ (X)=T,F(X)=exp[i(X, e~ Bt=to?/2p]
X expl - (1, (1 - &3 *0)1)]
and

% T,F(X)={— (i/2)(BX, e-B(:-to)/zh) - (x, e~ Bt "'o’h)}

X expl i(X, e~ B¢t-to)/2p)]
xexpl - (h, B-(1 — e~ B¢=tohp] |
Computation of Tre;’(X) gives
Tro} (X) =~ (k, e B %0'h) expl i(X, e~ ‘=10’ /2)]
x expl — (b, B~X(1 - e~ B~ to)n] .
Finally
(BX, ¢4(X)) =i(BX, e” B~ to) /2p) exp| i(X, e~ Bl¢-40)/2p))
X exp[— (h, B'l(l - e-B(t-to))h)] .

So, the equation
d
7 9+X) =Tre (X) - 2(BX, ¢(X))

is fulfilled.

Theovem I11,3: The Markovian semigroup 7, [ Eq.
(mm.13)] is a contraction in L2,
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Proof: follows from Theorem II.1, because
d d
5 (T11,F)= E(l’ T,F)=(1, AT, F)= (A1, T ,F)=0.

Therefore, T, /1=const=1.

Theovem 1ll.4: The semigroup T, has the form T,
=e" 2 with A as a self-adjoint positive definite opera-
tor. This semigroup can be analytically continued to a
t1:1.nitary group {/,=e***, fulfilling the Schrodinger equa-

ion
.9
-ty U,=4al, . (111.14)

Pyoof: The semigroup (II1.13) is self-adjoint, be-
cause its infinitesimal generator A [ (II1.6)] is sym-
metric, Now, the Hille-Yosjda theorem'? implies that
T,=e 4, where A is a self-adjoint positive definite gen-
erator of 7,. So, A is the self-adjoint extension of A
{ (1I1.6)] to all F such that lim, _,(1/t)(T, - 1)F exists
(we shall further identify A and &). From positive de-
finiteness of A follows the possibility of analytic con-
tinuation.

IV. QUANTUM MECHANICS OF EXTENDED
PARTICLES

Due to Theorem III.4 we can continue analytically
Eqs. (II.12) and (II1.13). We can see that © (f - £,) X
P (-it,, X,~it, T') plays the role of the Green’s function,
but now it cannot be written as a density times
Lebesgue measure as in the usual quantum mechanics
of particles with finite degrees of freedom. A special
choice of B in Eq. (II1.4) will relate our Green’s func-
tion (II1.12) with that of the string model.! Let us as-
sume that the internal parameter 0 < {<m; then L®
should be replaced by L?, ,;. Let us choose B =3(~d2/
dE2Y /241 and h,(E)=7"1/%exp| 2in&] as an orthonormal
basis in L}, ;. We can write then P(- i, X, ~if,T') in a
formal way as an infinite product

P(=ily, X, —it, T)

= H1 expl z im(t-t,)] T expl 2 ma2]
ms= mal

0

: -1/2
x [ IT ax? expl - § mx:2] (‘;—? isin{m(t- to)]>
m=1

X ex m

OXP| = L[ m -1y
X (cos[ m(l - )] (52 +x.2) = 2x,, x;)J . (Iv.1)
The density function in the formula (IV.1) coincides
with the Green’s function for strings in Ref. 1, How-
ever, it can be easily seen that we need not assume
that we have a string. It is sufficient that B have the
same spectrum as an oscillator consisting of positive
integers. In particular, in the three-dimensional case
we get a similar Green’s function with nw [we have put
w=1in Eq. (IV.1)] replaced by n,w, + nyw, + n,w,.

We can still perturb the Hamiltonian A of a free ex-
tended particle by an external potential V(X, ), which
causes deformation of the particle. The wavefunction
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then fulfills the equation

i 5 9,00 = (84 VX, g, () . (v.2)
Solutions of this equation can be obtained by means of
the Feynman path integral (see Ref. 7 for the standard
procedure). In particular, the fundamental solution of
Egq. (IV.2) fulfilling the initial condition ¢, (X)=xr(X)
has the form

PV(— it,, X, — i, )
= fexpli [ VX(T), TaTXp(X (D) g ¢ t01 X(dX (+))
(Iv.3)

where the measure p;!~t0)+¥ ig analytic continuation of
the measure pf~'or¥ appearing in the formula (I11.12).
The “paths” X(7) in the integral (IV.3) are paths in the
space §’, because Xe€S’. Again 6(f-1¢,)

P ,(—ity, X,~it, T') plays the role of the retarded Green’s
function [ PE(¢ - t,, X, T)] for the theory with interaction
and fulfills the equation

(—i% _A_V(X, t)> PRI =1, X, T) = id(f - t)xp(X) .

(Iv.4)

We are interested in computation of the transition am-
plitude from one configuration ¢}*(X) of the extended
particle (¢! is the state in /= — < when interaction is

turned off) to another ¢5'%(X), when {—+=, This ampli-
tude is defined by (cf., e.g., Ref. 13)
S= lim (¢°, @)
t o0
= lim [ p(dX)et(t, X)¢ xlt, X) (Iv.5)

t >

where ¢(4, x) is the retarded solution of Eq. (IV.2)
@rlt, X)= ¢t X) +i [dUVX, )R, X")
XPE( -1, X,dX’) . (Iv.6)

It can be shown similarly as in the conventional quan-
tum mechanics that the transition amplitude (IV.5) can
be written by means of the Green’s function in a simple
form (this formula can be easily checked straightfor-
wardly in perturbative calculation)

S= (¢out, qun) + f“’(Xm) dtldtzaou‘(xly t].)
XEy o Pl =1, Xy XK, 01Ky 1), (VD)

where K, ,=40/0t+ A, K, ,=—19/3t+ A, and the func-
tional derivative of a measure is defined in the same
way as the derivative of a function:

(i p(a@x), k)= lim L[ (@cs sh) - u(@x)]

5X oo
. 1[ p(dX+sh))
- tim [ B -1 e

Here u((d{(X+ sh))/1(dX) denotes the Radon-Nikodym
derivative.

The formula (IV.7) provides us with the Green’s func-

tion formulation of the scattering problem. By means
of this formula multiple scattering (zth order term') on
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an external potential can be computed. Such calcula-
tions have been performed in the interaction picture!*1s
for four-dimensional position X, and external field
V(X)=expl ik, X?(0)] leading to the n-point Veneziano
amplitude. However, this is beyond the scope of this
paper.

V. FINAL REMARKS

After solution of the problem of time evolution of an
extended object one should answer the question of Lo-
rentz invariance of the theory. We could follow Refs.
1, 16 for the construction of generators of the Lorentz
group. However, this construction works only in 26
space-time dimensions. This is the essential stumbling
block of any, so-far proposed, model of field theory of
strings.

It may be that this difficulty is related to another
problem, which remained unsolved. Namely, any theo-
ry of extended particles should be invariant under a
change of internal parameters. One expects that this
(gauge) symmetry will be unitarily implemented in Hil-
bert space of solutions of the Schridinger equation. It
seems possible that Lorentz invariance lost by special
choice of gauge!>! can be restored by the action of uni-
tary operators of gauge transformations. This problem
is now under investigation.’” Our stochastic approach
can be helpful in the problem of gauge symmetry, be-
cause the infinite-dimensional SL(2, R) invariance!S is
an intrinsic property of infinite dimensional Wiener and
Ornstein-Uhlenbeck processes (see Hida’'s lectures!®
for the finite-dimensional case; cf. also Ref. 19).
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It is proposed that counting experiments in quantum physics should be analyzed in terms of point
processes (QPP) defined in the framework of quantum probability theory. A coincidence approach is
developed for a class QPP called the regular QPP. A counting formula is derived which determines
completely the counting statistics of a regular QPP by means of a pair of “generators.”

1. INTRODUCTION

The classical theory of counting or point processes
has been successfully applied to a variety of phenome-
na! which involve a random sequence of events in time
or a randomly located population. In particular, it
forms the basis for many of the investigations'~” of
counting experiments, where the random arrival times
of a beam of elementary particles are observed by a
system of detectors. The central objective of such in-
vestigations is to derive an expression (referred to as
the counting formula) for the probability p{((z, t+ T], m)
that » counts occur in the interval (¢, + T]. One is
thus led to the analysis of a situation where the detec-
tor (or a system of detectors) performs continuous ob-
servations on the system in the interval (¢,¢ + T].

It is well known® that in quantum theory the statistics
of successive observations exhibits nonclassical fea-
tures like the so called “interference of probabilities.”
Recent investigations®!® have led to a framework of
quantum probability theory well suited to the analysis
of statistics of successive observations in quantum
theory. In this paper we undertake a study of point
processes in quantum probability theory as a possible
framework for analyzing counting experiments involving
elementary particles,

We define a quantum point process (QPP) in such a
way that it bears a close anology with classical point
processes (CPP). We show that the so-called quantum
stochastic processes (QSP) investigated by Davies,!!™?
are nothing but a certain restricted version of QPP in
a Schriddinger picture formulation. We study a class of
QPP called the regular QPP for which the counting sta-
tistics can be determined by a coincidence approach as
for the regular CPP.! In particular, we show that a
regular QPP can be characterized by a pair of “gener-
ators” and obtain a general counting formula in terms
of these generators. We also make a few remarks on
the physical interpretation of the formalism.

2. CLASSICAL POINT PROCESS

In this section we briefly outline the coincidence ap-
proach to classical point processes.'* We shall only
consider CPP defined on the real line R, which shall
be taken to be the time axis; B (R) denotes the o-algebra
of all Borel sets in R. If (R, F, u) is a probability space
then a CPP may be defined!® in terms of a function

& BRYXQ=-2Z",

where Z* is the set {0,1,2, ---} of all nonnegative inte-
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gers; the function £(A, w) is required to satisfy the fol-
lowing properties:

(i) For each A < B(R), &(A, ) is a Z'-valued random
variable on (2, &, i);

(ii) For each w e 2 {except maybe a set of measure
zero), &£(*,w) is a Z*-valued measure on B(R).

In order to be able to extend this definition to quan-
tum probability theory we have to characterize the ran-
dom variables £(4, ) in terms of their inverse maps.
We hence define a CPP as a collection of random vari-
ables {N, | A € B(R)}, which satisty the following prop-
erties (CP1) and (CP2):

(CP1) for each A € A(R), N, is a map
Ny B(Z2H) -7,

where B(Z*) is the set of all subsets of Z*, In order to
be the inverse map of the random variable £(A, ), AV,
has to satisfy'® the following:

(@) Ny(@)=¢;
(b) Ny(Z7)=9;

(c) If {X,} is a denumerable collection of mutually
disjoint subsets of Z*, then

NA(Xi)n NA(X,')=¢’
for all Z,j and
NA(U X,): U Nx,).

(2.1)
(2.2)

(2.3)

(CP2) (a) For each m< Z* and a denumerable collec-
tion {A;} of mutually disjoint sets 4; € B(R),

Noabh= U TR, ()] - (2.4)
(o) If A, B(R)and A, ¥ ¢, then
NA,,({O}) Q. (2.5)

We thus see that a CPP on R is nothing but a family of
Z*-valued random variables which is indexed by the
Borel sets A(R) in such a way that a realization of the
process is also a measure on (R, 8(R)).

Just as in the case of a classical stochastic process,
a CPP can also be characterized by its finite dimen-
sional distributions, such as

Pl g, i A k)= 0 N, (kDY 2.6

which gives the joint probability that %; counts occur in
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the time period A;. These joint probability distribu-
tions satisfy'® the following relations:

(C1) For every permutation (¢,,4,...,%,) of

(1,2,...,7),
pAAL RGAy, koA, k,)

=P7(Ai1; ki1;Ai2’ kiz;"';Air; kir); 2.7

(C2) ;2 PralAnL kAL koA, BiAi kit *)
;=0

=p AL Ry AL R Ay R ); (2.8)

(©3) Lp(A, #)=1; (2.9)

(C4) whenever A ,A,,...,A, are mutually disjoint,
then

,
(a) .bl(ul Ai? k) =k Z;k ‘pr(Ali kl;AZ? k2§ tee ;Ar! kr)y
i= Qe et Ry
(2.10)
and
,
(b) pr+1<U Ak AL RGA Ryl A, kr)
i=1
=0y be Ay i Ay 54y R), (2.11)
where
Sr s {0 when2), k;*F,
= 1 1 when2J, k;=k.
(C5) whenever A V¢,
p(A,, 0011, (2.12)

It is shown by Moyal*” that a set of joint probability
distributions {p,} that satisfy (C1)-(C5), characterize
a unique CPP,

A majority of the theoretical investigations of count-
ing phenomena in physics®™ are concerned with obtain-
ing an expression (counting formula) for the probability

p(t,1 + T],n) that # counts occur in the interval (¢, ¢ + T].

Such a counting formula is usually obtained”*7 in terms
of the so-called “exclusion” and “coincidence” prob-
ability densities, which in turn can be easily specified
by the physical model under consideration. It has re-
cently been shown by Macchi,' that for a class of CPP,
which may be called the “regular CPP,” both the ex-
clusion probability densities (EPD), and coincidence
probability densities (CPD), exist and characterize the
process completely, In order to define these CPD and
EPD, we first define the coincidence probability
H(A,,A,, ... ,A,) and the exclusion probability
B(A,A,,...,A,), for a mutually disjoint collection

of sets {4, 4,,...,4,} by the relations

Hr(AlyAz; e )Ar) =P7(A1, I;Az; 1; fe ;Aw 1) 3 (2-13)
and
ﬁr(ApAz’ . :Ar)
=pm<A1, LA, 1., 4,, 1;R\iU A,.,o) . (2.14)
=1
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In (2.14) we have assumed that the counting experi-
ment is performed over the whole of the time axis R,
The CPD h,(t,, 1,,...,1,) and the EPD p (¢, 1,, ..., 1,)
can now be defined by the formulas

I/ (7 T |

- lim HAW, ty+ T o+ Tl o, 1,4 T, D) , {2.15)
;70 Ty 7

is

and
ﬁr(tp tz: cer fr)

=lim PG, T Lt o+ T ) (L, L+ 7. .
740 T T, T,

(2.16)

For a regular CPP, both %, and p, exist and satisfy the
following relation,'*

=1 e -
Il,(tl,tz,...,tr)=;ﬁ[m —[w d9,de, .-+ do,

X Ppaslliy e sty Uy ey ). (2.17)

For the so-called “completely regular CPP,” Macchi'*
has also shown that the relation (2.17) can be inverted
to yield the formula

(-1 e (T
"tT)ZZ]‘[ f f d8, db, - do,
7=0 - -
.,6,).

Xl (o, 1,0y,
We would like to emphasize that for a CPP both %, and
b, are symmetric nonnegative functions. This sym-
metry property [as well as the consistency relations
(C1)~(C5)] is essential for the derivation of (2.17) and
{(2.18).

From the definitions (2.13) and (2.15), it is clear that
it 1, ..., t,) is the joint probability density that one
countoccurs around each of the instants ¢, (/=1,2,...,7),
with nothing being specified about the rest of the dura-
tion of the experiment. Similarly, p,({,,¢,,...,1,) is
the joint probability density that one count occurs
around each of the instants ¢; (/=1,2,...,7), and no
count occurs in the rest of the duration of the experi-
ment. Hence a counting formula can now be written in
terms of the EPD as follows:

5r(t1! t2) .

(2.18)

1 teT t+T _
p((z,t+T],n):a-ft ft Pollys e 1)l =+ di.

(2.19)

In obtaining (2.19) the absence of any multiple occurance
of counts as implied by the regularity of CPP is crucial.
Also, for a completely regular CPP, the relation (2.18)
can be used to rewrite (2.19) in terms of CPD alone,
viz.

U, t+ T],n)=z°°: Q:l‘_)iftT ftmdii"'dln

A ¢

Xfm'“f dex"'de,-
8,,...,6,).

One of the most commonly encountered CPP in physics

Xhy, t,, 15, . (2.20)

‘}ln,
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is the so-called doubly stochastic (or conditioned) Pois-
son process; the CPD of the process are specified as
the correlation functions of a random intensity function
(), i.e.,

oty by oo £)=XTEDIG) - I(,)) . (2.21)
From (2.20) and (2.21) we obtain the relation
pUL, L+ T], n)={(W"/nt)e™™), (2.22)

where
W= f”TI(t')dt'.
t

The counting formula (2.22) is nothing but the well-
known Mandel formula® which describes the statistics
of photon counting experiments as per classical theory.

3. DEFINITION OF A QUANTUM POINT PROCESS

In this section the formal definition of a QPP is ob-
tained on the basis of an analogy with a CPP. For this
we need to survey briefly the framework of quantum
probability theory. The basic idea'® is that to each
event (or what is sometimes called an experimentally
verifiable proposition), there is associated an experi-
mental procedure, which in general alters the state of
the system and is completely characterized by a “mea-
surement transformation” or “operation.” It can then
be argued from very general empirical considerations
that the space of events in quantum theory should have
the structure of the sel of positive elements in the unit
ball of an ovdered Banach algebra. This constitutes a
major departure from the framework of classical prob-
ability theory where the space of events has the struc-
ture of a Boolean o-algebra.

In the present investigation we restrict ourselves to
the standard Hilbert space formulation of quantum theo-
ry, for which case, the structure of the space of events
has been analyzed in detail in Ref. 10. If V is the
Banach space (under the trace norm), of the set of all
self-adjoint trace-class operators in a Hilbert space #,
and V" is the closed cone of positive operators in V,
then the space of events O is the set of positive, norm
nonincreasing, linear operators on V (also called the
set of operations), i.e., & ¢ 0 is a mapping

V-V
such that
(01)¢ is linear;
(02)If v < V' then € (v) € V" also;
(03) Tr[& ()] < Tro,
forall v V",

(3.1)

One of the special features of the quantum-event-space
0 is that it has a subset ¥ (consisting in general of
more than one element), of maximal elements which

have the property'®
te T=Tr[t(w)]=Tro, (3.2)

for all v & V*. On the other hand, there is a unique nuil
element 6 given by 9(v)=0 for all v.
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In 0 the conjunction of two events ¢,, &, is given by

(ENENW)=E,(E, (),

and is noncommutative in general. It clearly corre-
sponds to the experimental procedure where the sys-
tem is subjected to the sequence of experimental pro-
cedures {¢, &,} in that order.

(3.3)

A sequence of events {£ .} is said to be a disjoint se-
quence of events if

EéiEOy

where the lhs is assumed to converge in strong topolo-
gy. For a disjoint sequence {¢,} of events, the disjunc-
tion is defined by the relation

VE=2E,. (3.4)

By a quantum probability space we mean an ordered
pair (0, u) where u is a “state” or a “measure” on 0,
i.e., u is a mapping

M 0’[0; 1],

which satisfies the following:

(Qs1) n(6)=0; (3.5)
(Qs2) u(®)=1, (3.6)
for all £ Z;
(QS3) If {€,} is a disjoint sequence of events,
p(\i/é,.)@ u(&). (3.7)

A random variable X {or an instrument or observable)
with value space R is a map

X: B(R)~0

which satisfies the following:
(QO1) X(¢)=96; (3.8)
(QO2) X(R) == ; (3.9)

(QO3) If {E,} is a sequence of mutually disjoint ele-
ments of B(R), then {X(E,)} is a disjoint sequence of
events and

X<U E,.>=\/X(E,.). (3.10)
i 1

Now, in order to define a QPP, we have to suitably
generalize (CP1) and (CP2) to the quantum probability
framework, (CP1) can be immediately generalized to
the quantum case by considering {N 4+ to be quantum
random variables with value space Z*, which satisfy
(Q01)-(Q03). As regards (CP2), we note that (CP2a)
expresses the fact that, given a disjoint covering {A‘}
of A c 58(R), the event that m counts occur in A can be
expressed as a disjunction of all the events of the fol-
lowing type: m, counts occur in A,, and m, counts
occur in A, and + -+, where Zm;=m. While generaliz-
ing this to quantum theory, we have to keep in mind the
order in which the conjunction of events is considered,
for this reflects the order in which the events occur. If
A, A, < B(R), we shall write

A1>A2’
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whenever

fLeA, and f,eA,=1t >1,. (3.11)

The preceding remarks suggest that for a QPP, it is
natural to postulate a condition analogous to (CP2a)
whenever {A;}is a collection of sets such that
A,>A,>A,>-++. Finally we shall generalize (CP2b)
in an obvious way and include a continuity requirement
also in the definition of a QPP.

A QPP may thus be defined as a collection of quan-
tum random variables {V,| A € 8(R)}, which satisty the
following conditions (QP1) and (QP2):

(QP1) Each A, is a mapping
Naz BZH)-0
which satisfies
(@) Nal9)=6;
(b) Na(Z) ez

(c) If {E;} is a sequence of mutually disjoint subsets
of Z*, then {N,(X,)} is a disjoint sequence of operations,
and

(3.12)
(3.13)

NA(EJ Ei)=?NA(Ei), (3.14)

where the rhs is assumed to converge in the strong op-
erator topology.

(QP2) (a) If {4,} is a sequence of elements of 5(R)
such that A, >A,>A, >+, then

Nin({m})zzg‘{:mIZI[NA,-({mi})]a (3.15)

where on the rhs, the product is taken in such a way
that A, ({m;}) precedes (is to the left of) N, (fm,,,}.
The rhs is also assumed to converge in the strong op-
erator topology.

{b) If (£, s] is an interval in R, then both the maps
t~N s (Z7)
and
s N(t.s](Z’)
are continuous in the strong operator topology.

(c)If A,+A or A tA, then

s'limNAn(E):NA(E)’ (3.16a)
for all E < A(Z"). Also
N, o =1, (3.16b)

where I is the identity operation.

It is clear that a QPP as defined by (QP1) and (QP2)
is a natural generalization to quantum theory of a CPP.
It may be noted that since B8(R) is generated by inter-
vals, it is sufficient to consider random variables A/,
where A is an interval (like for example (¢, s[); all
other A, can now be obtained by using (QP2). At this
juncture, we would like to point out that the so-called
“quantum stochastic processes” investigated by
Davies,''™"3 are nothing but a certain restricted version
of a QPP as defined above, but considered instead in
the Schrédinger picture. We shall elaborate on this
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connection in the Appendix.
We now make the following identifications:
N, t']({o}) =S, 3
N, en(Z)=T, .

From (QP2) we can conclude that both {S, .} and {T, ,.}
are strongly continuous inhomogeneous semigroups
(usually referred to as “propagators”) of positive con-
traction operators in L(V, V); in particular, they satis-
fy the relations

(3.17)
(3.18)

Sy Sy, =S, 13 (3.19a)

Ty, Ty =Ty o (3.19b)
for ("= =

s-lim§S, ,.= s;lifn T, =1 (3.20)

tt—¢

Relations analogous to (3.19) and (3.20), have been re-
ferred to as generalizations of the Chapman-Xolmogo-
rov relation by Davies.'! It should be emphasized that
these relations are a natural generalization to quantum
theory, of the consistency condition (CP2a) for the ran-
dom variables of a CPP, and as such have nothing to do
with Markovicity.'?

4, QUANTUM COUNTING FORMULA

In this section we undertake a general analysis of
QPP which leads us to a quantum counting formula valid
for a large class of such processes. We first recall
that if A € 8(R) then N ,({i}) corresponds to the opera-
tion that »m counts occur in the period A. We should
remark at this juncture that in all our analysis up to
now (and also in what follows) we have been employing
the “Heisenberg picture” of evolution, as is the stan-
dard practice for a theory of stochastic processes.
Here, of course, there is an added complication that
our observables {N,} are indexed by Borel subsets
{A} of the time axis. Thus, under a time evolution
(which includes any possible change in the nature of
measurements performed, as well as the evolution of
the system), the observable N, will evolve into N, ,
where A+ (={x|(x -1)cA}.

U A >A,_>--->A, then we can write down the joint
probability p (A, m,; A4,, m,; .. .5 A,, m,) that m, counts
occur in A, and m, counts occur in A, and -+ i,
counts occur in A, with no measuvemenl being pev-
formed in the intevvening periods as follows:

1
A, My A My A, M, )= M[H /\/A,_({m,.}):l , (4.1)

where the order of factors in rhs is as indicated. The
joint probability p, can be written for any {A,-} but it
will not have the physical interpretation given above
unless A, >A,_  >--- A

In what follows we shall consider only those states [T
which are specified by a “density operator” p (i.e.,
p=V and Trp=1), in the following sense:

1,(E)=Tr{E(p)]
for all £ 0. For a state specified by the density op-
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erator p, we can write Eq. (4.1) in the following form:

PAA, Ay AL, W)

4.2)

- TrD 1A, (e p] .

The joint probabilities (4.2) exhibit all the typical
features of “interference of probabilities”'° that is
characteristic of quantum joint probability distribu-
tions. They are not symmetric in general; i.e., (C1)
or (2.7) is not satisfied. Also, because the operations
N a,({m;}) do not in general satisfy the “repeatability”
property, (C4b) or (2.11) is not valid any more. Finally,
the property (C2) or (2.8) is satisfied only when i=»+1,

otherwise we have inequalities like
E: wls(A L R Ay ) #p (A ky), (4.3)

in general. The relations which continue to be valid in
quantum theory also, are the following:

Q1) i PralAL k..

=0

H A‘r’ }‘)r ;AH-U kru)

re

=p AL kG ALRD; (4.4)
@2) 22 (4, 1)=1; (@.5)
(Q3) whenever A, >A _ >+ >A ,
pl<iL:Jl A, nz>:EmZi>:m[),(A” N3 Ay my); (4.6)
(Q4) If A, ¥, then
pu(A, 0041, @.7)

The fact that the joint probability distributions (4.2) in
quantum theory are not symmetric and exhibit non-
classical features as in (4.3), lead us to suspect that
CPD and EPD (which are after all derived from p,) may
exhibit similar nonclassical features. This would imply
that the classical relations (2.17) and (2.18) [which were
essential for the derivation of counting formulas like
(2.22)] will not be valid in quantum theory. Before dis-
cussing these questions we should characterize a class
of QPP for which CPD and EPD are well defined. Based
on the pioneering work of Davies! on @ Z P, it is possi-
ble to conclude that the CPD and EPD exist if certain
conditions are imposed on the process. However, as
our discussion in the Appendix shows, Davies’ assump-
tions are extremely restrictive and do not certainly ex-
haust all the situations where the CPD and EPD exist.
We shall instead consider the general case for which
the coincidence approach is applicable.

We define a QPP to be vegular if it satisfies the fol-
lowing conditions (R1) and (R2):

+ 1
(Rl) ST_}}:-([]nlN(t,tw](ZT \{07 lf) — H; (4.8)
(R2) s:})i()m —Ah'“—;](—{—l—}-l =d,, (4.9)

exists, and J,= L*(V, V), for each [.

The coincidence probability H,(A,, 4,,...,A,) can be
defined when A, >A,_ >-+->A , by the formula

2142 J. Math. Phys,, Vol. 18, No. 11, November 1977

1
H(AL,A,,...,A)=Tr [(H Na,( 1})) p] (4.10)

1=r
H, is the joint probability that one count occurs in each
of the A;, with the additional specification thal no
measuvement is pevformed in between lhe periods A,
For a regular QPP the CPD exist and are given by the
relation

ho(ly gy ooy 1) =Tr[Ty = Jtthlp], 4.11)

whenever ¢,>{,,>+++ >{,. Again these CPD are the
joint probabilities that one count occurs around each of
{; with no measuvement being pevformed in the rest of
the duvalion. They are also not symmetric in general.
This is quite unlike the CPD in classical theory, which
are actually obtained by summing over all the possibili-
ties in the intervening periods. In quantum theory, be-
cause of the interference of probabilities we have re-
lations like (4.3), which show that summing over all the
possibilities for measurements performed in the inter-
vening periods does not lead us to simple quantities like
h, as given by (4.11). In fact the joint probability den-
sity %, that one count occurs around each /; with the ad-
ditional condition that continuous observations are per-
formed in the intervening periods, and the number of
counts may be anything (i.e., the measurements are
nonselective), is given by
t)="TrlJ, N

17 (70 PO (z9dJ,

o1, tr) rer J‘\ p]

= Tr[Jtthr_ e de. e pl. (4.12)

1y
In quantum theory %, #k,, in general. The above dis-
cussion also shows that, quantities like p(({,{+ T}, m),
7, and the EPD p,(l,, L, - .., [,) which refer to situations
where continuous observations are performedover a
finite interval, cannot be expressed in terms of

{nt,, Ly, ..., 1,)} alone; in other words, the CPD given
by (4.11) do nol characterize a QPP completely.

We shall now calculate the EPD and show that they do
determine the counting statistics. For a regular QPP,
it follows from (CP1), (CP2), and (R2) that the joint
probability [3,([1, lyy - .., 1,) that one count occurs around
each of the #; and no count occurs in the rest of the in-
terval (/,/+ T] is given by the formula

/;‘V(/l’ /2’ ety [T)
:TI‘[N(t,,H T]({O})Jtr N(tr_l,zr]({o})
L O P Jth(t, tll({o}) o]

:Tr[str,H T‘J»:,Str_l,trJg,_1 e St,tlp] ’ (4.13)

for i+ T>{,>{,,>+++>( >t The condition (R1) that
we imposed on a regular QPP, rules out multiple
occurrences of events. In fact, since

N s, 1eer(Z° 10, 11) :”Z:%Nu, (],

the condition (R1) implies that
N m]({m })
T

s-lim —=2t = g,
T—0

(4.14)

for m = 2.

For a regular QPP we thus have the following relation:
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t+T
p((t,t+T],r)=ft dt,---ftt?’dtz ttzdtl

XDty by vosty).

Equation (4.15) is the generalization of (2.19) to the
case of a regular QPP, where the EPD 5, as given by
(4.13) are not symmetric and are meaningful physically
only when ¢,>{,_,><++>¢ >t. From (4.15) and (4.13),
we can write down a counting formula in terms of J, and
Sy, p0e

(4.15)

The conditions (R1) and (R2) also imply a general re-
lation between J, and the generator J . of the semigroup
{S, »t. In order to derive this, we start from the re-
lation

3

T, t+T:N(t,t+-r](Z+) =mZ=)oNu'“”({m})' (4.16)
Now, using (3.17), we get
Tt,t+1'—I> _(iltq-r"I) N(t,tw]({l})
( T p= T p+ T p
+ N(t. t+11(Z+\{0; 1}){) . (4.17)

T

Taking the limit 7 —0 and using (R1) and (R2), we first
obtain that

D(Ft) =0(J-t) s

where p( ) denotes the domain of the operator and I} is
the generator of the semigroup {T,, t,}. From (4.17) we
also get

(4.18)

Lo=Jdp+J,p, (4.19)
in H(J,). Now since

Tr(Ty, ¢or Pl = Tr[N 4, . i(Z7)p] = TT0, (4.20)
because of (QP1b), we obtain

Tr(I;p)=0, 4.21)

for all pe D(J,). We thus obtain the following relation:

Tr[J,p]= - Tr[J,p] (4.22)

for all pe H(J,).

The semigroup {S, ..} can be formally written in
terms of its generator J, as

Syt Texpl;/;tzjtdtJ ,

1
where the rhs actually stands for the strong limit of a
sequence of terms®?° and T is the time-ordering op-
erator which orders the operators in chronological or-
der from right to left. For a regular QPP it is not true
in general that the generators I, and J-t are densely de-
fined for all {. However, in order to derive the count-
ing formula we will now consider only those regular
QPP for which these generators are densely defined. A
set of regularity conditions on the propagators {T,, .}
and {S, .} can be obtained'***® which ensure that T, and
J, are densely defined for all 7.

Then we can substitute (4.23) in (4.13) and (4.15) and
obtain the relations

(4.23)
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pr(tl’tZ!""tr)

=Tr[T;Jt1J,2°--Jtrexpf“TJ',.dt’€pjl, (4.24)
t

and

t+T nn T o
p((t,t+ T],n):Tr[:T;M_expft TJt'dt/;p:l .
n ¢

(4.25)

Equation (4.25) is the quantum counting formula for a
regular QPP and it is remarkable that it looks quite a
bit like the classical Mandel formula (2.22).

We have therefore shown that for a class of regular
QPP there exist the “generators” J, < L*(V, V) and J,
which generates a strongly continuous (inhomogeneous)
semigroup of positive contraction operators in L(V, V);
the “generators” satisfy the relation (4.22). The count-
ing formula is given by (4.25) in terms of the “genera-
tors.” Conversely, given the “generators” J,e L'(V, V)
and J . which generates a strongly continuous semigroup
of operators in 0, then we can construct a regular QPP
via the identification

(J‘tHTJt,dll)m

t+T - ;
T exp/t‘ Jedt |,

and verify that the counting statistics of this process is
given by (4.25). The preceding analysis can be general -
ized to situations where the counts occur at different
“locations” of a compact Hausdorff space X; then we
have to consider J, as a “bounded stochastic kernel” in
the manner discussed by Davies. '

N oy ier {mh= T[

A wide variety of regular QPP can be constructed by
suitably choosing {J,} and {J,} which satisfy the above
conditions. For example the class of regular QPP dis-
cussed by Davies'! (see also the discussion in the Ap-
pendix) correspond to the choice

Jyp=-2(R,p+pR,), (4.26)

where R, is the unique operator in 8*(#) defined by the
relation

Tr(Rtp):Tr(Jtp), (4-27)

for all pcV

In the general case {J',}L are unbounded operators. We
refer the reader to the extensive literature!?’? on the
study of evolution equations in a Banach space, for a
study of sufficient conditions that a set of operators
{J,} generates a contraction semigroup. We now con-
sider the question as to whether a QPP can be shown to
be regular if certain conditions are imposed on the
semigroup {S, .| and {T, ,.}. We first assume that the
condition (R1) is satisfied by the QPP. It can then be
shown, (following closely the line of argument outlined
in Sec. 4 of Ref. 11), that the condition (R2) is also sat-
isfied (i.e., the QPP is regular), if J(I})= H(J,) for
each (.

5. DISCUSSION

In conclusion we would like to make a few remarks on
the physical interpretation of the above formalism. We
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have considered a situation where the detector is per-
forming continuous observations on the system. From
the general principles of quantum theory we know that
each act of observation transforms the state of the sys-
tem and hence the counting statistics is best discussed
in terms of the measurement transformations corre-
sponding to events where a certain number of counts
have been recorded in an interval of time. We are thus
led to the study of point processes in the framework of
quantum probability theory. By imposing the require-
ment of regularity, we rule out the occurrence of multi-
ple counts and also require that the operation J,, which
specifies the counting rate at ¢, is well defined; TrlJ, p]
is the probability density that a count is observed
around ¢{. For a regular QPP the counting statistics is
determined by J, and a semigroup of operations {5, ..}.
S., . is the operation corresponding to the event that no
counts are recorded when continuous observations are
made in the interval (¢, #’]. Our discussion shows that
a regular QPP is best specified in terms of the “gener-
ators” {J,} and {J,}. Now, if the evolution of the sys-
tem during the period when it is not subjected to ob-
servation, is given by a one-parameter group of unitary
operators {U(#)}, then we can write

J o=UOJ U WpUDHU (@),
and
Jop=UWJU 0pu U W),

where J and J are the “generators” in a Schridinger
picture description. Of course, such a relation is valid
only when the nature of the measurement performed by
the detector does not change with time; otherwise we
shall have to include the effect of such a change also,
in the specification of the time-dependence of J,. If
(5.1) and (5.2) are satisfied then we have the following:

(5.1)

(5.2)

(i) The nature of the measurement performed by the
detector is completely characterized by J and J.

(ii) The statistics of counting, given by (4.25) together
with (5.1) and (5.2), depends not only on the initial
state p of the system but also on its dynamics as char-
acterized by U (7).

Finally there remains the question as to whether J,
and J, can be “derived” by assuming a particular form
of interaction between the detector and the system.

This is of course the well-known problem of measure-
ment in quantum theory with the added complication

that J, and J, are related to measurement transforma-
tions that arise when continuous observations are made.
However, one can consistently adopt the “operational”
viewpoint that the measurement performed by the detec-
tor is to be characterized directly by means of the
measurement transformations N ;. ({m}) (or the “gen-
erators” {J,} and {J,}). After all, what is always ob-
served is the counting statistics and this is completely
determined once such an association is made.
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APPENDIX: “QUANTUM STOCHASTIC PROCESSES"”
OF DAVIES

In this Appendix, we briefly describe the connection
between the “quantum stochastic processes’ investi-
gated by Davies'*™*® and regular QPP. Davies considers
essentially a family of instruments (random variables)

& Bz -0,

for each /> 0 which satisfy [apart from the usual rela-
tions (Q01)~(Q03)], the follawing properties:

W &odop)=1; (AD
(ii) For each (>0

{— E4(ZMp is continuous
Gy Er({mh = m;}m Etdm hesdm,h . (A2)

Let {U(l)} be a one-parameter group of unitary oper-
ators characterizing the evolution of the system while
it is left unobserved. We now define the random vari-
ables {A, ...y} by the relation

N (t, t«“r]({”z }‘)D
=UM{ET AU UM U @) (A3)

From (i)-(iii) we can easily show that the random vari-
ables Ny, ...} satisfy (QP1) and (QP2). Also a com-
parison of {A3) with (5.1) and {5.2) show that {7} are
the random variables corresponding to {/N,, ,,,| ina
Schrodinger picture description of the evolution. We
again emphasize that a Heisenberg picture setting is
more suitable for a study of stochastic processes in
both classical and quantum probability theories as we
will be able to accommodate any general time-evolution.

Let 8,(R) be the subset of A(R) consisting of ¢, all the
intervals {({, /+ 7]} and also every countable union of a
disjoint sequence of such intervals. From (i)-(iii) it is
possible to show that the set of random variables
{N (e, te1t given by (A3), can be extended |by using (QP2)]
into a set {N,| A ¢ 8,(R)} of random variables which
satisfy (QP1) and (QP2). We define a “restricted quan-
tum point process” (RQPP) as a collection of random
variables {NV, | 4 ¢ B,(R)} which satisfy both (QP1) and
(QP2). From our discussion it follows that a QSP as
defined by (i)~(iii), corresponds to a RQPP. It is of
course an open question as to whether a RQPP can be
extended into a QPP (as defined in Sec. 3) and also
whether such an extension would be unigue.

In order to characterize the process {7} in terms of
“generators” Davies imposes the following conditions:

(D1) (Assumption of bounded interaction rate)
Tr{E7(Z2*~ {0, 1Pp] <K 1Tr(p), (Ad)

where K is a finite constant.

M.D. Srinivas 2144



(D2) The semigroup of operators {S,}, given by

S,=¢4joh), (A5)

are such that they transform pure states into pure
states. From (D1) and (D2) Davies shows, in particular,
that

s-lim g_(ﬁio_’_lh= 9, (A6)
720 T
and
stim &AW _ (A7)
T—0 T

where Jc L*(V, V).

From (A6) and (A7) it follows that the corresponding
RQPP determined by {V, ,,,,} is regular, i.e., it satis-
fies the conditions (R1) and (R2). However, we would
like to emphasize that the condition (D2) is extremely
restrictive and is not motivated by any physical consid-
erations. In fact, for the case of the photon counting
problem, it can be shown? that the counting formula de-
rived from (4.26) [which one obtains on the basis of
(D2)], does not bear any resemblence to the well-known
Glauber —-Mandel formula®* or its generalizations.® It
would be of interest to consider more general semi-
groups {S,}, which do not transform pure states into
pure states only, and construct a general class of reg-
ular RQPP.
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The gravitational influence of a beam of light of variable

flux
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An exact solution is obtained for the Einstein field equations of a columnated, time varying beam of light.

The beam is circular in cross section, infinite in path length, and is considered in the geometrical limit. The
beam is described in a retarded time coordinate system. The flux density is dependent on the radial
coordinate and on the retarded time. The solution is sufficiently general so as to describe a single pulse of
light traveling through a vacuum. It also allows the description of acceleration fields which propagate in
the direction of the beam at the speed of light. Geodesics are considered in order to test the interpretation

of the solutions and the stability of the time varying beam.

INTRODUCTION

The present paper is a sequel to one published several
years ago.' In that paper (here quoted as I) an exact so-
lution is presented for a beam of light in general rela-
tivity. The beam was of constant circular cross section.
It had an energy density which was constant in time but
which could vary spatially within a cross section of the
beam.

The current work extends the above ideas to a beam
which varies with time. An exact solution is again ob-
tained. The search for an exact solution was prompted
by difficulties in trying to visualize the nature of a light
beam and its field. It seemed apparent that a beam of
variable flux density and cross section should be easily
described in the retarded time metric of I. In addition,
perturbations of the solution in I resulted in equations
that implied trivial solutions if only variable energy
density was incorporated. Finally, an attempt to find a
Jean’s instability in the first-order solutions resulted
in failure. This oddity appeared logical in that light,
although material in nature, is nonmassive and cannot
be said to behave like a beam of dust or steel. Speci-
fically, the beam of light does not ring when struck. The
sum total implied that the field would share the beam’s
simplicity of description.

This paper presents the field equations and solution
pertinent to this problem. The general solution is found
to have a matter dependent part and a part which de-
scribes an acceleration field imposed along the axis of
the beam. The basic form of thegeodesics is not dis-
cussed in this paper since they are similar to those of
Paper I. Geodesics are considered only to illucidate the
nature of specific questions unique to this discussion.

1. THE BEAM METRIC

The analysis of this paper is similar to that of Paper
I. A beam of light of circular cross section of radius R
is propagating along the longitudinal axis, z, of a cylin-
drical coordinate system. The beam is directed toward
positive z values. It is considered in the geometrical
limit; as such, there is no diffraction at the edge of the
beam and all of the beam’s rays are strictly parallel to
the z axis. The path length of the beam is infinite with
both source and absorber infinitely far away. Hence the
gravitational field of either region may be neglected in
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our calculations.

The energy density, p, of the beam is still chosen to
be independent of the azimuthal coordinate, 6, and de-
pendent on the radial coordinate, ». In addition, we
wish to make the source of the light beam time depen-
dent. This will result in an observer seeing a time de-
pendent energy density. Since the beam is propagating
along the z axis one would expect a z dependence in the
observed energy density. In Paper I we found that the
rays of the beam are unaffected by the gravitational field
of the beam. They continue to travel parallel to the z
axis at the unique speed of light. In a retarded time
metric this implies that a cross section of the beam in
the azimuthal plane can be parameterized solely by the
retarded time {. We will assume that this result will be
maintained in the variable flux problem. Therefore the
energy density, p, in the current problem will be a func-
tion of » and ¢, but not of 2z, Essentially this says that
each observer will see the same beam cross section at
the same retarded time independent of his position along
the z axis. This assumption will be later subjected to a
check when we examine null geodesics to see if the beam
maintains its unique speed and collinearity.

Within the above framework we include a further vari-
ation. We will allow the beam radius, R, to vary with
time. This will allow a sausage shaped beam, and in the
extreme case where R is equal to zero during different
time intervals, a string of beads of light separated by
vacuum results.

The gravitational influence of the beam shares with the
beam density the property of being dependent only on »
and /. In the same fashion as was previously discussed,
no observer situated on the z axis is unique. He sees
the same beam density and the same gravitational effect
that any other observer sees at the same retarded time.
Hence the gravitational metric is independent of z. The
retarded time metric used is a form of Vaidya’s New-
tonian metric® discussed in I. In this case, the space-
time interval

ds®=g,,dx‘dx*, (1)

is given by the metric components

-2

g()o:f’ gu:‘e ‘.A’

o2 ™ ~ 52,
(2)
83:=0, =€,
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where f, @, A, and S are functions of » and #. All other
components are zero. We could transform 7 and / in the
form

F=t(rt), v =v(r1)

so as to simplify the metric components. The first
transformation would be unwise in that we would jeopar-
dize the ability of the time coordinate to parameterize

a cross section of the beam. As for the second, it would
seem advisable to maintain a form of the metric which
would result in a solution somewhat similar to that in I.
By not specifying the radial coordinate too precisely at
this time, we leave open its choice until the field equa-
tions are to be solved. We will assume that S goes to
zero as v goes to zero or the nature of the azimuthal
coordinate would change.

The contravariant metric tensor is the same as that
given in I, Eq. (8), with S replacing # in the &2, COMpPO-~
nent.

The Christoffel symbols are determined by the rela-
tion
Ti= 38 “(glj,k+glk,j = &jn, 0
For the metric of Eqgs. (2) we find

08¢ o _12a

© G Tuty gy

F30=%g—;fe'2", Fél—:—?,

I—-§2__Sa_ie-zx’ rgz=é$’ 3)
e ()
() g
r§3=%z_;‘i, rgz=s-z-t§e'“

The Ricci tensor is obtained from the Christoffel sym-
bols by the relation
R,= r)lez, i~ r:k, rt Fylnir;nx‘ r’lnmr:{k .

The nonzero components in our case are

328 9 9A BS]
= 22 et e
By =Se [arﬁ +(67 ar> 57 1’

9% 8a\%2 o8« dXx 1 3S 9
R :_—’—e""“[ b fom ) o 2N
03 2 ErR: ar 8y 87 +S 3r 3¥rl’

R =a2a+1325+1(aa>2
U792 5 ar2 " 2 \or

A S« 1 8S oa
Ty ar S ar ar’
_1 0% 1 85 1 8S aa

1 9 a2 1 8S ax
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8% 198S08f BXBf
arz+_§arar— Br

oy 9r
dax 8 ao\?
dy v v

. azx+ 1 8% . (ax>2
9t S B2

=_31 ,-2a
Roo"‘—ze [:

3
aq oA 1 88 da
~ 7 3 "5 B (4)

2. FIELD EQUATIONS

The energy—momentum tensor, T,,, given in Paper I,
Eq. (25), is for directed light radiation with a local en-
ergy density p. As in Paper I, the current beam has ail
of its flux directed in the positive z direction. Hence we
obtain the same energy-momentum tensor. The only
nonzero component of this tensor, Eq. (27) (of I) is

Too=pf, (5)
where p and f are now functions of » and ¢{. The trace

T#,=0 as expected for null radiation.

Since the trace of the energy—momentum tensor is
zero, the Einstein field equations with the cosmological
constant set to zero are given by

87G
Rik:—< pe >Tik‘

We scale the energy density as in I by the relation

417G
= p. (6)

m=

Using this relation and Eqs. (4) and (5) in the field
equations, we obtain

825 da A as}
=22 oYY =
Se [W”(w ar> 571" (7
% da\? o6a 8x 1 8§ da
oe=2x| Z_ e o -2 =
¢ [w”(w) 3 ar 'S o7 ar} 0, (8)
532_a+1628+1<8a2 82 8 1S 9 . 9)
5727552 3\5r) “wrar sarar
1 32a+1 a3s 1 3S sa
2 9706/ S dradf _ 25 of or
19 3x 1 35 ax
= (10)

T 2% 8 ~S &y 8l

e[ 2, 13821 (g_g+ié>ﬂ+<32)2f}

v v 9y / v 97
8%x 1 8%§ 8a2\? 8o ox 1 89S s
_2[ + 1 AN _Ba dx 155 da)
%2 7S W“‘(az) f 8 S I Bl} dmf.
(11)

Note that 9f/8¢ does not occur in these equations.

The nontrivial part of Eq. (7) may be rewritten

ere % (;‘; e°“"> =0.

This may be integrated,

a8
e

= pTA=
%S een=r (1),

(12)
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where F is an arbitrary function of {. Equation (8) may
also be rewritten. Its nontrivial part gives

1 so ® - 8e¥\
Se 81’(Se a_y)-o.

We may integrate this and find
Se*8e*/or=J(t), (13)

where J is an arbitrary function of {. We now consider
the combination of field equations

e?*/S?Eq. (T)+ e#**Eq. (8) - Eq. (9).
This results in the equation

1 %¢ /3« . 4 3S -0

2 9r \or ¥ or)

Two solutions are possible,

da 4 as

% "5 (14)
or

da _

9r =0. (19)

Equation (14) integrates to
a=log[C(4)/s],

where C is an arbitrary function of {. The metric com-
ponent determined by « then reads

8oz = C()/st.

As noted in the paragraph following Egs. (2), S goes to
zero as v goes to zero. As such, this solution for a re-
sults in a fourth order pole in the metric. As discussed
in I, such singularities are unacceptable. They result
in unphysical solutions which have essential singulari-
ties. This leaves us with Eq. (15) which implies

a=alf). (16)
This in Eq. (12) implies

as

5 e *=K(t), (17

where K is an arbitrary function of /. Equation (16) may
be used to simplify the field equation (10),

1 ( 3%8  8S anx\ _
S \srat  or af
We may integrate this with respect to time,

-g% e*=L{»), (18)

where L is an arbitrary function of ». Comparing Eqs.
{17) and (18) we find

KO=L(r).
That is,
S _
37 ¢ =6 (19)

where ¢ is a constant.

We now consider the choice of coordinates more care-
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fully in the hope of illuminating the remaining field equa-
tion. Consider a circle around the z axis formed by
varying 6 at constant . The three-dimensional metric
tensor gives the proper length, dl. In the plane of the
circle dl is given by

dl? = e®*dr?+ S2de? .
The circumference of the circle is 27S. The radius of
this circle is
[ eddr.
Since space-time in a local region is flat, the ratio of
these two should be equal to 27 for small . Hence,
275=27 [ eMdy, v small.
We may differentiate this and find

g
o8 e*=1, ysmall.
3y

This implies that the constant in Eq. (19) is equal to one,
Equation (19) becomes

85 .
a_’}/’ =1, (20)

Using Eq.(16), the remaining field equation, Eq.(11) reads

w(ZL, 18 0 o)
¢ 9r2 " § or dr 9y dr
92x  /ax\? 1 &S
_2[-5-1—24-(8—/') +§5?]_4’;7f. (21)

The above equation does not simplify using Eq. (20). We
now impose coordinate conditions. For simplicity in the
resulting equations we choose

S(r,)=r. (22)

This satisfies the condition on S for small ». Substitut-
ing this in Eqgs. (20) and (21) gives

A=0 (23)
and

9%f 1 af » _

e)—1’—2+; Py —4m(r, 1) f=0. (24)

Note that « no longer appears in this equation. The
only condition on ¢ is Eq. (16); hence, a is an arbitrary
function of time. Since it determines the metric com-
ponent g,, we may redefine / such that « equals zero
without affecting the retarded time or modifying the
quantity f. Our resulting metric comes from this and
Eas. (22), (23), and (24); namely,

ds?= fdi?+2didz — dv?® —v2d#?, (25)
where

aZf 1 E)f -

5t —4m(r,)f=0.

These are the same equations found in I with the sole
addition that ,» is a function of / as well as ».
3. GEODESIC EQUATIONS

Using Eqgs. (3) and the final metric form, Eg. (25), the
nonzero Christoffel symbols may be written,
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19f 1
I"‘1)0=———, I‘;z-_y, F§2=_’
2 oy 7 (26)
19f 18f
T%=3 37 Ta=3 5
The geodesic equations are given by the expression
d k
—d%— + THov*i=0, (27
where v* is the 4-velocity of a test ray or particle.
Combining Egs. (26) and (27) we obtain
d°
- =0, 28
7S (28)
dt 13f .,
it - = 9
ds+2arvv rv2?=0, (29)
dv* 2 |,
42 = 30
7o + i 0, (30)
av* of o, 1 f
Tt YU g Er? =0. (31)
The first of this set has the solution
”=A, (32)

where A is a constant. Equation (30) is in a standard
form and has the integral

v=h/r?, (33)

where & is a constant and may be interpreted for nonnull

geodesics as angular momentum per unit mass. To han-

dle the remaining two equations we multiply Eq. (29) by

v and Eq. (31) by v°. Then subtracting the first from

the second we obtain
v° v ot v’

1 af( 0)2 1
ds ds

127 oy

+ 70?0 =0,

By using Eqgs. (32) and (33) we get

d1)3 1 d(vl)Z AZ [af \ af ] h2
2572 as Talettea v trrto.
The quantity in the bracket may be rewritten as a total
derivative with respect to s since f is a function of »
and ¢

af _3f 1,3 o

ds ar Utar VU

A (34)

(35)

In Eq. (34) this makes each term a derivative with re-
spect to s,
dv® 1 d(w')? A* df h® drt

S i e o B rull

In this form we may immediately integrate and obtain

2A40° - (v'VP+A*f —n*/r?=B (36)
where B is a constant. Using Eq. (25) one may check
that the above relation is the contraction of the 4-velo-
city with itself, or the line element in 4-velocity form.
As such, the constant B is determined,

0, 11 j
e { ; null trajectory , (37)
b

nonnull trajectory.
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One further integral of the geodesic equations remains.
We may rearrange Eq. (31) so as to emphasize a total
derivative with respect to s,

d—v3+v°<gzv 4 >
r

13f ove_
ds at %)=

2 8t
Using Eqgs. (32) and (35)

v’ df 1 ,0f_
st A a0

This does not have a simple integral with respect to s.
The first two terms may be integrated, but the last term
may only be written formally,
2]
v3=D—Af+§A2f#cds, (38)
where D is a constant of integration. This may be sub-
stituted in Eq. (36) to obtain an expression for v,

Bf 1/2
=+ <—B+2AD—A2f—h2/rz+A3f 57 ds> . (39)
In summary, the geodesic equations are given by
WP=A, (40)
v¥=h/r?, (41)
9
=D—_Af +§A2f a—tf ds (42)

1 2 2 2 3 af 1/2
o=t (—B+2AD-A2f - 12/r?+ A J‘gds . (43)

where A, B, D, and h are constants and B equals zero
or one for null or nonnull trajectories, respectively.
One may check that this reduces to the geodesic equa-
tions of I in which f is independent of time. As in Paper
I, we will assume that a light ray or particle may pass
through the beam without interaction. Hence all geo-
desics will be continued indefinitely.

4. ACCELERATION FIELDS

The simplest solution of the field equations results if
the scaled energy density, w, is identically zero. Equa-
tion (24) becomes

32f+1 af _
vz ¥ oy

If f is to have no singularities of a logarithmic nature,
then f is an arbitrary function of time, though positive
definite, and independent of the radial coordinate.

To investigate such a field we may use the geodesic
equations. With f independent of », Eq. {35) reduces to
af _1 df

9t A ds
This in Eqgs. (42) and (43) results in

=D-1Af (44)

and

v'=+(- B+2AD+ W /r2)/2, (45)

In this situation »' is independent of f; therefore, it is
independent of the retarded time. Only »° changes with
the retarded time.
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To investigate this more fully consider a particle
which is at rest at ¢ equal to zero. In Eq. (44) this gives

v](0)=D - 3Af(0)=0.

This determines the constant D,
D=3Af(0),

which in turn determines v°,
=3 A(F0) - F()).

As f increases with time, »® becomes negative and the
particle accelerates toward the negative z axis. If f
then decreases to the previous value, f(0), v° comes
back to zero. At all times »® matches f in its time de-
pendence. If we consider a set of particles all initially
at rest, the relationship of a given particle to its neigh-
bors is not changed with a change in f. The same con-
clusion results for particles not initially at rest. Light
is a special case. Light rays moving parallel to the z
axis are the only ones of interest since Eq. (45) (with
B=0,k=0) states that the radial speeds are unaffected.
Forward rays are given by A=0; rearward rays are
given by D=0, The rearward rays are affected in the
same manner as any particle trajectory. However the
forward rays are unaffected by changes in f. The re-
tarded nature of the coordinates is preserved. These
results are consistent with f representing a true ac-
celeration field. The field is homogeneous in the azi-
muthal plane, propagates at the speed of light along the
z axis, and is directed toward increasing values of z.

The condition placed on f in I was that at »=0, f=1
[Paper I, Eq. (42)]. This would not hold in the above
discussion. But an acceleration field is not considered
to be physical because it cannot be detected by a set of
neighboring particles or null rays. As such, we may
transform the coordinates so as to absorb this nonphys-
ical result. In so doing the field f becomes equal to
one. The solution is then Minkowski space-time which
is consistent with the absence of matter.

5. TIME DEPENDENT MATTER SOLUTION

A solution f of the field equation, Eq. (24), is generally
a function of » and {. The only place in which time en-
ters this homogeneous operator on f is in the scaled
energy density, »7. For each time /, f satisfies the
equation for s at that time. This means that f follows
mn in its time dependence. Though the solution must be
continuous in », it may be discontinuous in ¢, This oc-
curs because f denotes a wavefront of the beam; hence,
m may be discontinuous in this variable. The discon-
tinuity in f follows immediately from Eq. (24). In terms
of physical considerations one should not expect the
gravitational effect of a given cross section to outdis-
tance the cross section itself. With the source of the
beam being infinitely far away, the entire gravitational
field wavefront has had time to become a plane wave.
Both the beam and the gravitational field propagate at
the speed of light, hence they stay together. There is,
however, some surprise that the gravitational influence
does not have a tail. The field f is dependent only on
the current time and not on those times previous to or
after this. The field then acts as a plane wave. This is
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somewhat similar to the plane wave appearance of the
Schwarzschild field of a particle which is moving past
an observer at nearly the speed of light.

Because of the above considerations, variations in the
beam which are impossible to solve in other cylindrical
problems can now be handled simply and analytically.
For example, the radius, R, of the beam may be a func-
tion of time, R(f). This includes beams in which R os-
cillates with time between two fixed values of ». This
would describe a sausage shaped beam. It also includes
cases where R(¢) is equal to zero for finite time inter-
vals. These would include individual pulses of light
separated by vacuum. The considerations of the pre-
vious section on acceleration fields would apply here.

As an example of a solution of Eq. (24) we consider a
beam of light whose radial extent is nonzero but depen-
dent on time. Its energy density within this radius is
dependent only on time. The solution may be taken from
the time independent case given in I,

F=I2m{t)} 2%y, r<R(!)
=I1,2m(£) 2R (1))

+2m( 2RO (2m (1) 2R(¢)) log <§—(1:f7> , r>R(),

(46)

where I, and I, are modified Bessel functions of order
zero and one, respectively.

In short, the field differs from that caused by massive
bodies. The field of a massive object envelopes the ob-
ject like a peach surrounds its pit. The field in our
case envelopes and travels with a cross section of the
beam much like the caramel in a caramel cream.

To investigate this field further we look at the geodesic
equations. In Eq. (42) we are left with an integral which
is not readily accessible to integration. One way to in-
vestigate this equation is to compare ¢® at the current
time ¢ to »3 at a previous time #,. If f changes with
time we may say that the value of f currently observed,
by a test particle or ray, is accumulated from changes
along a geodesic from a previous value f(7,,¢,)

r, t
FOrat)= flrg, L) + f Z—sf ds.

70 to
To simplify this further we assume that the trajectory
is such that the radial coordinate, 7, remains constant.
Hence

flr,t)= f(r,t0)+ft3—£ ds .

2]

In addition we may use the simplification of Eq. (35) as
discussed in Sec. 4, namely,

af 4 ¥

. 47
ds at (47)
Using this in Eq. (42) we obtain
tdf L tdf
3 _ 2 —_r = -
v (r,t)—D—[Af(tO)+AJ;O = ds]+zA£O L s,
which reduces to
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Pr, ) =03, b)) = 24 ft: g{ ds.
This may be integrated

P, =037, t) = ZA(f(r, 1) = f(r,1,)). (48)
The same analysis applied to Eq. (43) yields

vi(r, 8 =vM(r, t,). (49)
Since ¢! is initially zero, we obtain

vi(r,£)=0. (50)

The first case to consider is that of a test ray of light
traveling parallel to and in the same direction as the
light beam. In this case both B and % are zero. When
these are substituted in Eq. (43) we find that 4 is equal
to zero. By Eq. (29) the radial acceleration isnow zero,
and by Eq. (48) the component ¢* is unchanged. Hence
the ray of light is unaffected by the time dependence.
Applying this to the beam itself we see that it is in equil-
ibrium under self-gravitation. This result maintains the
conclusion of Paper I. In addition, it means that unlike
massive beams, no pinch or Jean’s instability results
from a sausage shaped beam.

The next simplest case to consider is a set of parti-
cles which are initially at rest. They are distributed
with different distances, », from the axis but at the
same axial coordinate, z. We have found that the time
dependent metric does not affect the radial component
of the 4-velocity. Hence the particles may be held at
their initial radial distances by rockets to offset the
radial acceleration of the beam. This ploy will not mod-
ify the questions of interest. In this situation the initial
values of ¢® are all zero. The change in »* is given by
Eq. (48). If m has a net increase during this time inter-
val interior to », the field solution f at » grows in mag-
nitude. The particles are attracted axially into the re-
gion of increased m with those farther out having the
greater resulting speeds. If, with further changes, m
returns to its previous distribution the particles will
come to rest. However, since f is a function of » they
do not come to rest at the same axial coordinate. Using
Eqs. (47) and (48) the particles undergo a displacement

t
S AVCOEVCYNER (51)
0
which is a monotonically increasing function of » for
increasing .

This effect can be further studied by observing an
initially circular orbit around the beam in the azimuthal
plane. Of the initial 4-velocity components only »° and
v® are nonzero. However, as with the particles at rest,
only the z component changes with time. With an in-
crease in m the circular orbit changes to a helix which
spirals toward the negative z axis. If, at a later time,
f returns to its previous initial value the helix closes
and returns to a circular orbit. The same may be
stated if circular null orbits occur.

In all of the above cases particles and light rays are
attracted toward the section of increased w as it comes
upon the geodesic. As this section of increased m
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passes, the geodesics are again attracted toward the
departing section. This is consistent with the Newtonian
attraction of two bodies. It also is consistent with the
result of Tolman, Ehrenfest, and Podolsky® in that the
net acceleration is zero. However we have the simplifi-
cation that the three-dimensional potentials are not
necessary. The effect is a contact acceleration within

a given two-dimensional azimuthal cross section.

One result seems to contradict the conclusions of Pa-
per I. In that paper null helical trajectories can always
occur with a backward moving spiral. Forward spiral-
ing trajectories are restricted to sufficiently high ener-
gy densities. In the current paper we may start with a
circular null orbit if we have a sufficiently high energy
density. If the beam intensity decreases, a helix de-
velops from the circular orbit. This is a forward spi-
raling case. If this were extended to its logical conclu-
sion, we could have a beam of low density with a notice-
ably forward spiraling null geodesic. By moving in the
direction of the beam’s flux at the z component of the
geodesic velocity, we transform to a new frame. In
this new frame the helix is closed up to a circle. This
new frame would share the same form of the metric as
the preceding. But the energy density of the beam is
Doppler shifted to a lower value. The net result is that
any beam which changed its energy density with time
could have light orbiting in closed circular trajectories.
This would be true even if the beam were of very small
energy density, say that of a flashlight. Obviously this
does not occur in nature.

The paradox is resolved if we consider motion with
respect to a material observer and not with respect to
the coordinate system. We use an observer who is at
rest at the same value of » as the circular orbit. The
only geodesic equation of interest is that for the z com-
ponent of the 4-velocity. We use this in the form of Eq.
(51) which compares changes from one beam cross sec-
tion to another. This result is independent of the value
of A and hence independent of whether we talk of the ob-
server or the null trajectory. The observer shares the
axial motion of the helix. Hence they stay together and
the observer will continue to see a null circular orbit.
This is not to say that the change in beam intensity is
not detectable. An observer who was initially at rest at
a different radial coordinate will see a helical trajec-
tory develop from the above changes. In fact, an ob-
server on the z axis will see a rearward spiraling tra-
jectory in keeping with the results in Paper I.

6. THE GENERAL SOLUTION

The solution of the preceding section is not the most
general. The general solution of Eq. (24) is

fr, G, (52)

where f is as given in the preceding section and G is an
arbitrary function of time. This function G may be dis-
continuous but it must be positive definite. It results in
an acceleration field which propagates with the beam
along the beam axis. As such, this is similar to the
section on acceleration fields.

To show the acceleration effect we consider the case
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where mw is independent of time; hence, f=f(»). As
before, we consider particles which are initially at rest
and are kept at their radial positions by rockets. The
argument leading to Egs. (48) and (50) remain the same
with f(»)G(¢) substituted for f(r,f). We now obtain the
relations

M7, 1)=0,
and
(7, )= =3 AF(F)G(t) -~ G(t,)] - (53)

If only the acceleration field, G(¢), were present we
would inquire about the z component of the 4-velocity
as seen from an underlying Minkowski space. Here we
apply the same method in a curvilinear space and hence
inquire into proper velocities.

The proper distance along the z axis is given by
dl=(go)?/?dz,
or in our case
dl=[ ()G %dz .

The quantity A for a particle at rest is given by Paper
1, Eq. (22) to be

A=[ F(RGUH 2.
These last relations in Eq. (53) give

a 1 _ G =G
ds ~ F[COGUNT? NG - GUo)l= - (GG
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This is independent of the radial coordinate. All parti-
cles obtain the same proper velocity under the influence
of G. Hence G(¢) is an acceleration field which may be
superimposed on the actual metric. As before, we may
neglect its contribution since its effect is the same on
all particles.

In conclusion, we have obtained a general solution for
a time dependent, columnated beam of light. As men-
tioned in I, the beam density needed to obtain physically
measurable effects appears to be prohibitive. How-
ever, as in the last paper, the interpretations of the
solution are particularly satisfying. Specifically, the
solution itself has an amazing simplicity for a problem
of this generality.

A system of linearized equations and some solutions
are expected to be published soon.
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In stationary space—times V,X R with compact space-section manifold without boundary V,, the
Klein-Gordon equation is solved by the one-parameter group of unitary operators generated by the energy
operator i ~'T ~! in the Sobolev spaces H'(V,)x H' ~(V,). The canonical symplectic and complex
structures of the associated dynamical system are calculated. The existence and the uniqueness of the
Lichnerowicz kernel are established. The Hilbert spaces of positive and negative frequency-part solutions

defined by means of this kernel are constructed.

INTRODUCTION

Let V,,, be a globally hyperbolic, (#+1)-dimensional
Lorentzian manifold of class C* with metric tensor g of
the same class.

By definition, the free scalar neutral physical field of
mass m >0, in this space-time is described by the
Klein-Gordon equation

(a,,,-m*u=0, ®

n+ 1

where 4, , is the Laplace—Belirami operator of V,,,
and # is a real distribution.

For Eq. (1), and in a neighborhood © of each point of
V,.1, the existence of two unique fundamental solutions
is well known.'™ The propagator G of the equation is
then the distribution kernel defined as the difference of
the two fundamental solutions.

The Cauchy problem for Eq. (1) and for the spacelike
hypersurface Z is solved in by the following expres-
sion®5;

u(x) = [{u(3)8,G (x; ¥) -G (x; y)o,u ()} dZX3) , (2)

where 8,=8/8y* {3} are local coordinates of the point
y of V,,, and {dz* (v)} the components of the surface vec-
tor of Z.

Moreover, with Eq. (1), is canonically associated a
skew-symmetric 2- form acting on its solutions; the
local definition of this 2-form is

b(u,v) = fE{u(v) 8, v(y)-8,u (y) v(y)d=*y). (3)

Expressions (2) and (3) are independent of the choice
of the spacelike hypersurface 2.

The primary elements required for the development of
the standard quantization program for the field des-
cribed by Eq. (1) are: (a) a suitable definition of the
positive and negative frequency-part solutions, #® and
u® of the real solution # of Eq. (1); (b) a Hilbert struc-
ture on the space of these solutions constructed con-
sistently with (a). In other words,*” Eq. (1) must pro-
vide a suitable real Hilbert structure on the space of its
real solutions, and a suitable complex structure opera-
tor, orthogonal in this space.
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This work deals only with points (a) and (b) and not
with the quantized field.

Lichnerowicz, in his program™*® of quantization of

free fields in curved space-times V,,,, has set forth a
method to introduce the elements (a) and (b), which may
be summarized briefly as follows: In the Minkowski
space-time M, elements (a) and (b) are usually ob-
tained by the Fourier transform.*!° In a general curved
space—-time V ,,, this transform is not avilable. How-
ever a method lacking the Fourier transform may be
sought to obtain these elements. To this end, consider
the following two properties of the distribution kernel
G! (or Al, D ,*++)in M, [which is real, symmetric,
and a solution of Eq. (1)} :

(i} the fundamental convolution relation
Glesx')= [ {G 03300, GH", )
—Glx’, )8, G ;v d=My), (4)
is satisfied.

(ii) the operator J between real solutions of Eq. (1),
locally given by

@)= [ {u (v)8,G1(x%;y)

=GHx’5v)o,u ()} dEMy), (5)

is a complex-structure operator on a real space of real
solutions of Eq. (1), which satisfies

b(JU;Jv)=b(uyv) ,
and the expression

{us vt =p(u;Jv), (6)
isa scalar product in that real space.

The usual positive and negative frequency-part solu-
tions of the real solution u of Eq. (1) in Minkowski
space-time are given here by the expressions

wu®=g(I+iNu, u9=3(I —iJ)u,

and the usual complex Hilbert structures of the spaces
of frequency solutions are given hereby the scalar pro-
duct deduced by linearity from expression (6).

The Lichnerowicz method consists of seeking a distri-
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bution kernel G' [which is, symmetric, real, and a

solution of Eq. (1)] in the space—time V,,, with proper-
ties (i) and (ii) (obviously, these properties are formul-
able in V,,,), and of obtaining elements (a) and (b} in the

same way as in the Minkowski case, mentioned above.

The main goal of the present work is to prove the ex-
istence and the uniqueness of the distribution kernel G*
in the case of stationary curved space-times, V, =V,
xR, with close (i.e., compact and without boundary)
space section V, and to construct the Hilbert spaces of
positive and negative frequency solutions following the

foregoing Lichnerowicz method.

The mathematical treatment of the problem is greatly
simplified, and the physical interpretation of the results
is made possible, provided some metric conformal to
the quotient metric (see Sec. 1) on space-section mani-
fold V,,, is introduced from the start. The interest of
such a metric in general relativity has already been re-
marked upon in literature'’!* concerning problems lying
far afield from the present one.

The solution provided for the problem has its source
in physics: Stationary space-times admit time transla-
tions (in an adapted atlas) as a symmetry group, where-
by the energy of the solutions of the Klein—-Gordon equa-
tion may be considered. The Klein-Gordon equation is
written in the Schrddinger form (i"'a,— H)f =0 with
=(u; 8,u) as unknown, and solved in the Sobolev space
HY(V,) xH°(V,) (which is endowed with the scalar pro-
duct of the energy), by the group of unitary operators
generated by the Hamiltonian H. With the help of the
power operators 77X (constructed by a method similar
to that used by Seeley to construct complex-power oper-
ators of elliptic pseudodifferential operators'*!%) scalar
products for which H is self-adjoint, are introduced on
the spaces H' X H'"!, and the Klein—Gordon equation is
solved by the group of unitary operators generated by
the Hamiltonian H, in these spaces as well, wherein it
defines an infinite-dimensional Hamiltonian system.
Following Segal®” a canonical complex structure can be
determined on these spaces, from which the construction
of the G! kernel follows. Under certain specified con-
ditions, it will be unique.

An analogous theorem of existence and uniqueness of the
G! kernel in stationary space-times has been estab-
lished independently and simoultaneously by Chevalier!¢
In his work, the Klein-Gordon equation is taken as an
ordinary first-order differential system 3,f=Af with
unknown f= (#; 9, %) where (3,) is the normal derivative
to the space section V,. The semigroup theory of oper-
ators is used to solve the system on the Banach spaces
H' X H™!. Operator A generates a semigroup of class
C, (Hille- Yosida theorem). The construction of the G!
kernel follows from the existence and the properties of
the square root of the operator —-A% However there are
differences in the choice of certain technical elements
between the Chevalier work and ours; namely, the
metric induced on the manifold V, is used by Chevalier
in place of the above-mentioned conformal metric; in
the Cauchy problem the normal derivative (3,) replaces
the time derivative (8,) used in this paper and any parti-
cular scalar product on H’ x H'"! is preferred to the en-
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ergy scalar product employed here.

We believe that the choice of technical elements
made in this paper makes it possible to obtain the
results of the Chevalier work in a simple way. Ad-
ditional results are also given (the infinite-dimen-
sional dynamical system determined by the Klein-
Gordon equation is studied, the power operators T ¥
are constructed, the compactness of the operator T is
exploited to give series expansions for the G and G!
kernels).

In Minkowski space-time, Rideau!” has given an un-
iqueness theorem for the G' kernel, using the Fourier
transform. The conditions for the uniqueness of the
G' kernel in the theorem of Chevalier and in the theo-
rem presented here are the same, and are generaliza-
tions of the conditions given in the Rideau theorem.

From the construction of the fundamental solution of
the Klein-Gordon equation in Minkowski space-time,
given in Ref. 18, it is possible to obtain simultaneously
a construction of the G and G' kernels in the space-
time. E. Combet'® has proved that this method can be
generalized to construct these kernels in static space-
times such that the Killing trajectories are geodesics.

Combet?® has also proved the local existence of the G!
kernel in static space-times. The Klein- Gordon equa-
tion is now written as 9%+ Bu=0, where B is a self-
adjoint positive operator in L3*(Z), Z being some open
set of the space manifold. This equation may then be
solved as a first-order differential system in the Hil-
bert space H'(Z) x L*(2), by a group of unitary opera-
tors in this space. The propagator of the equation is
given by the kernel of the operator B /2sin(tB'/?), and
the Lichnerowicz kernel is given by that of the opera-
tor B Y2 cos(tB/?).

In a work to be published in collaboration with Combet
the existence and uniqueness of the G' kernel in any
space—~time will be considered. The Fourier integral
operators technique will be employed. We will use the
results contained in the work of Hormander and Duis-
termaat® on the parametrix of the hyperbolic equations
and some remarks of Segal on the same problem in
Minkowski space—time.

A large number of references concerning the problem
of field quantization in curved space-time isgiven in the
Fulling thesis.?? At present, a considerable effort is
being devoted to this problem (Parker®*?* Hawking, ***¢
Ruffini et al.,*™?° B. deWitt,*", Deser and Zumino,*
Zeldovich,** % etc), mainly in relation with matter
creation in expanding universes, physical phenomena in
the neighborhood of black holes and supersymetries of
the gravitational field.

1. THE KLEIN-GORDON EQUATION IN STATIONARY
SPACE-TIMES

(a) Let V,, n #2 be a compact manifold of class C*
without boundary, and V, XR be a stationary space-time.
On the charts of any chosen adapted atlas, with coordin-
ate functions x%, a=0,1,...,n (x*,i=1,...,n local co-
ordinates in V, and x°={, canonical coordinate on R) the
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metric tensor components g.,(x") are independent of
time, and the components of the Killing vector field
satisfy

ga =goa s 1 g lz=gas Ea ‘£B=goo>0-

We suppose the V, X {t} submanifolds to be spacelike
(i.e., g°°>0), and we endow them with the Riemannian
manifold structure defined by the following metric, con-
formal to the quotient metric

Yig= 1E 2 ™2 (gy = £ 20:80)) -

In the case n=3, several authors'*!? have pointed out

the physical interest of this metric. In this work it ap-
pears as a valuable tool for detecting the essential fea-
tures of the problem.

(b) The local expression of Eq. (1) is

1
-7 3,(g*®0,u-Vg )~ mu=0, %)
where
3
g=det(g,,) and 8= or T

In order to rewrite Eq. (1) in a convenient way, we
introduce the following notations:

-2 _Ow

1 .
0f=g ™ 0¥ =07, divVe-— 5,0"Vy)

Vy
M= = [(-ap)emio] ()
N= -1-715 [2L(V)-divV], (9)

where A is the Laplace-Beltrami operator on V, de-
fined by the {y;;} metric tensor; L (V) is the Lie deriva-
tive with respect to the vector field Von V,, y=det(y,,)
and vy =0*g .

A straightfoward calculation from Eq. (7) leads to the
following expression for the Klein-Gordon equation:
93u(t) + No,u(t) + Mu(t)=0.

It will be convenient to rewrite it in differential-sys-
tem form

—d<ul(t)>=T_1<u1(t)>’ T_1:< 0 I ) (10)
4t \ o, (t) i, () -M -N

2. THE 77! OPERATOR

The functional framework to deal with Eq. (10) is that
of Sobolev spaces H'(v,) of the V, manifold.3%3°

M is an (elliptic) second-order differential operator in V.

therefore it is a continuous operator from H'(V,) to H*"%(V, ).

N is a first-order differential operator and is therefore
a continuous operator from H'(V,) to H*Y(V,).

Let us recall that the C®(V,) space is the projective
limit of the H*(V,) spaces and ©(V,) is their inductive
limit.

Relative to the scalar product

(ie;0),= anu cv-ny), u,veC™(V,), (11)
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where 7(y)=Vy dx'As«.Adx"; the completion of the
C*(V,) space is identical with H°(V,), Consequently, the
latter space becomes a Hilbert space with the scalar
product (11).

A straightforward calculation from expressions (8),
(9), and (11) allows us to prove

Proposition 1: (1) KerM ={0}.
If u,v< H?, then

(il) (Mu;v)y= (u; Mv),.

(iii) Mu;u)y=0, (Mu;u)=0eu=0,

(iv) N1 =XI)Mlg= [x ] for x<0.
If u,ve H', then

(V) Nujv)y+ (@3 Nv),=0. O

From (i) and (ii) of the preceding proposition and the
general theory of elliptic operators on a manifold, the
operator M is an isomorphism between H'*? and H'
whose inverse operator M™! is a pseudodifferential oper-
ator of order ~-2.

The complex poweres M?, I ¢ C of the operator M ex-
ist,'*3%37 gince it is an invertible operator of positive
order and its resolvent operator satisfies the inequality
(iv) of Proposition 1. The M’ operator is a toplinear
isomorphism between H” and H™?8* ) Therefore, the
expression

(s 0),= (MY 2, MV ?0), w0 e HY(V,) (12)

is a scalar product in the H' space, and defines the top-
ology of this space. Thus the expression

()05 (v, Uz»xu, 1= (U0 ) 1+ (15 0,)4 (13)

where u,,v, € H*' and u,, v,= H', is a scalar product in
the space H"*!' x H?, and defines its topology.

Theovem 2: (i) The operator T™! is a toplinear iso-
morphism between H**!' x H' and H' x H*! with inverse
operator

-M'N -Mm?
T= )
I 0

(ii) In H* X H°, and relative to the scalar product (13),
T™! is a skew-adjoint operator with domain H? x H*.

(iii) T is a compact operator in H? X H'',
(iv) REp(T™), R-{0} € p(T).
() If xe R- {0}, then
M= XDl A ™, T =X o= )]

Proof: (i) Letu=(u,;u,) € H*' xH', From the follow-
ing obvious inequalities:

NT Y12 ey < g 13+ 2 ey 13+ 1 Ny 12
+2 (1 Mu ., - lINug Iy

INu 5, =K lu, I, KR

I Mu 1%, + I Nuy 113 = 210 M 1, - WNe U,

we find a real constant K’ such that
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Tl o <K Nulll,,

This inequality proves the continuity of T°!. The con-
tinuity of T" follows by a similar argument on 7 or by a
well-known corollary of the open mapping theorem.3®

Clearly T-T '=T"'.T=].

(ii) Let v=(v,;v,) € H®* X H'; from expression (12) and
(v) of Proposition 1 we obtain

(T, U)1,0+ (u; T-lv)l,O': [(uz;v1)) = (Muy;v5)0 - (Nuy; v,),]

+ [(u4505)) = (a3 M) - (53 Nv,)o].

(iii) From the Rellich theorem 3*3% the inclusion map-
ping H*' x H'x H'*' is compact; 7T is continuous from H*
XH"! to H"*' x H?, therefore, T is compact in H’ xH*?!,

(iv) The spectrum of 7! (and thus that of T) is the
same in all the H' X H""! spaces. The zero point belongs
to the continuous spectrum of T. The assertion then
follows from (ii).

(v) By (ii) we obtain
T = xDull?

—_ -1 2 2 2 2 2
2 =TI ot A2 ]I, o= X2 (2

The assertion then follows from (iv) and a similar argu-
ment on 7 instead of 77!, O
3. 7! OPERATORS

In this section we introduce the complex-power?!s 3% 39
operators of the 7! operator [of the (-7 "') operator].
By means of these powers, we provide the H” x g™!

space with a scalar product compatible with its topology.

This space then becomes a Hilbert space, and T™! is a
skew-adjoint operator in it.

(a) For Re(l)< 0, the (T"!)! operator is defined'*! by
the Dunford formula

(71 = -217 f AT = A I)tdx, (14)
r

where I'=] %, — €] UC(e)U[-€; —=[, and C(¢) is a
circle with center at the origin and radius €, such that
it does not contain points of the spectrum of 7.

From (v) of Theorem 2, integral (14) converges in
norm in H' XxH**', A simple calculation gives

(T = (— AN +2) —A(M)y 15)
AM AN

where
AQY=[M+ AN +2%]t,
Expression (14) then becomes

N I

y=—ro( 2,

>+R(l+1)1,
where
R(l) = -~ f M M+AN+A] .
27

Now, we can adapt to the R(l) operator the process de-
veloped by Seeley'* ' for proving the pseudodifferenti-
ability of certain elliptic pseudodifferential operators.
Most importantly we obtain®®
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Theorem 3: For Re(l)<0, R(I+1) and R(I) are two
pseudodifferential elliptic operators of order I, I -1,
respectively. 0

Covollary 4: The (T"')! operator given by expression
(14) is continuous from H” X H™! to H™Re 4 x fyr-Re (1)-1

The complex-power operators (T ')} of any order, are
now defined in the usual fashion, ! 3%37

Definition 5: For l< C, we set
(T =T Hk(T)*
with £ an integer and -1 <Re(l) - k< 0. a
15,38

By standard techniques we can prove

Theorem 6: The (T™*)' operator is a toplinear iso-
morphism from H" X H™! to H™FeW x g7-Reth-1 54
(T-Y)s (T =(T"H*! | I,sc=C. a

We shall write 7! instead of (T°1)%.
below will justify this new notation.

Proposition 8

From Theorem 6 if follows that the expression
{”§L+z, x-1=(T-hlu§T-hl7j)1,o’ (16)

u,ve H' XH "', is a scalar product defining the topology
of H'x H*!, and from (ii) of Theorem 2, we obtain

Theovem 7: In H' X H"! equipped with the scalar pro-
duct (16), the 7! gperator is skew-adjoint with domain
H™ x H'. Ingeneral,

{Tr“; 7’} 1, 1-1" {“§ (- T);”}t, -1
withu,ve D(T"), rcC. O

(b) Balakrishnan has defined®” complex powers of cer-
tain operators on Banach spaces by means of an ex-
pression different from (14). We shall next prove both
definitions coincide and a proposition that we shall need
later.

Proposition 8: If ~-1<Re(l)<0,

sinw

(T = sinr(-1) fmu"'l(T+ uw)y1Tdp. a7

T
Remark: This expression is the Balakrishnan defin-
ition of the 77 operator.

Proof: The change A— w=2X"! in expression (14) leads
to
i

(T-l)l= - A
27 ()

ptNT - pI) ' rdy, (18)

where T'(y) = 10;-1/€] UC(1/€) U[~1/€,0[. The integral
on C(€) in expression (14) tends to zero when € ~ 0, be-
cause (7' = AD™?l,, ,., <K, for [n]| <€ and ~1<Re(l)
<0. Then in expression (18) the integral on the circle
C(1/¢) tends to zero when € —0. Thus

2 reyt= [ (| ety T - pD Ty

7

[k ey T - wTap

[4]

- 2is'm7r(—l)f WNT 4+ w DM Td . O
o]
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Consequently
Proposition 9:
(—T2)1/2=T1/2-(—T)1/2. (19)

Proof (Also see Chevalier'): From expression (17)

we obtain

1 j‘
1/2 1/2
TY24+(-T) -

0

L
em [ AT pD N D
0

o

WHET 4y Tdp

= ;1 fm AP A)H =T 2)ax
0

=V2 (- TB)4,

The last equality is by definition. Operator (-7?) is
bounded self-adjoint positive in the space H' xH™! and it
therefore has a unique positive 5 power, here defined by
the Balakrishnan formula. Relation (19) follows from
the squares of this realtion.

4. SYMPLECTIC AND COMPLEX STRUCTURES
ON SPACES OF REAL SOLUTIONS

(a) Let{U(t)} (or{U,}) be the one~-parameter group of
unitary operators in H'xH' ~ ! generated by T"'.

The expression
u(t)=UW - u(t), ult)eH'xXH™L,

solves the Cauchy problem for the equation and Cauchy
data in H'XH'"'. We can then regard H' X g™ as a Hil-
bert space of solutions of Eq. (10).

Since 77’ is a real operator, U, is also a real opera-
tor.

For r>1, the restriction to H"XH"™' of the unitary
group {U,} coincides with the unitary group of opera-
tors in H"XH"™! generated by T~!. Moreover,

Proposition 10: (i) In the space X =C™(V ) XC™(V,),
the bounded operator 77! generates a uniform one-
parameter equicontinuous group which coincides with
the restriction to X of the unitary group{U,}. We des-
ignate it, too, by {U,, and we have @*/dt*U,=T"*U, in
the sense of the uniform topology on the space of bound-
ed linear operators on X, L,(X;X).

(ii) In the space X' =0'(V,)x 0'(V,), the bounded oper-
ator 77! generates a uniform one-parameter equicon-
tinuous group whose restriction to H' X H*"! coincides
with the unitary group{U,}. We designate it, too, by
{U,}, and we have d*/dt*U, =T *U, in the sense of the
uniform topology on the space of bounded linear opera-
tors on X', L (X';X").

Proof: (i) The set of operators {(I —n™'T™1)™ n=z1,
£2,¢2¢, m=0,1,-+-} is equicontinuous in X because
g =n~'77) " ™ull, ,_, < [lu]l and the topology of X is de-
fined by the set of norms {| [l ;-}. Now by a theorem
from Yosida,® p. 246, T7* is the infinitesimal genera-

tor of an equicontinuous group for class C,, given by
U;=s-lim[exp(-nt)explntd —n™'T~") 7)) . (20)
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Here s-lim means strong limit; the convergence, for
¢t in bounded sets of R is uniform. 77' is bounded in X
and L,(X;X) is complete; thus the convergence in ex-
pression (20) is uniform on bounded sets of X [i.e., it
converges in the L,(X;X) space| and uniform for { in
bounded sets of R. Expression (20) can thus be differ-
entiated, with respect to ¢, an arbitrary number of
times, precisely by differentiating each term of the
sequence.

(ii) The space X’ is the inductive limit of the space
H'XH'"! which are barreled and bornological. Thus X’
is also a barreled and bornological space. The set of
operators {({ —n™ 7)™, n=21,22,+++, m=0,1,c++}is
bounded in L(X’;X’) for the simple convergence topo-
logy; by the Banach—Steinhauss theorem (X’ barreled),
this set is equicontinuous in X’. Thus, T7'is the in-
finitesimal generator of an equicontinuous group of
class C, of operators in X’'. The restriction of this
group to H' XH'"! is obviously the unitary group { U, }.
77! is bounded in X', and L (X’; X’) is complete because
X' is bornological and complete. The final part of the
statement follows from this and from an argument simi-
lar to that used in (i). =)

(b) From the Lagrangian density,
L) =V u+Vou-m2u?, m>0,
we obtain (1), as Lagrange equations, and
T3 ) =2V% - VPu -g**Lu),

as the components, in natural frames, of the energy—
momentum tensor. Here V¥=g®®Vv, and V; are covari-
ant derivatives in V.

Let u, v be two real solutions of Eq. (10) in C”(V,XR)
and let Z be a spacelike hypersurface of V ,XR. The
following two quantities:

K(u) =jE T o5 @)E2dz®, (21)

blusv) = fz (ud v -8, 1 V)IZ™, (22)
are independent of the choice of the spacelike hyper-
surface T. Expression (21) is the definition of the
energy*® associated with a solution of Eq. (1) in a sta-
tionary space-time. Expression (22) is a bilinear
skew-symmetric form defining the weakly-symplectic
structure*! of the dynamical system described by Eq.
(10).

With Z = V,,X{t}, a straightforward calculation leads to
the following

Proposition 11: Let u=(u,;u,), v=(v,;v,) be two ele-
ments in H'xH°. Then:

(i) K@) = u;u), o, K(Uu)=K@),
(i) b, v)=(Tu, U)l,o= (w15 05)0 = (uz; vy)o = (Nul; Z)1)0 ’
(iii) (U, U,v) = b(u;v). ]

(c) Following Segal® (see also Chernoff and Mars-
den?'), let us consider the unitary part J of the polar
decomposition*?**® of T in the real Hilbert space H'
XH'™L,
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J=T(=T?)"V2 =TV, (-1)"V2

Proposition 9 justifies the second equality.

The proofs of the following two theorems are straight-
forward.

Theovem 12: On each real space H' X H'™! of real
solutions of Eq. (10), the operator J defines a complex
structure, i.e., (i) J is a toplinear automorphism of
H xH'™Y, (i) J2 = =1, (iii) U,J =JU,. W

Theovem 13: On the real space H' XH'™!,

(i) The skew-symmetric form w,(u; v) ={Ju; v}, ,_, is

strongly symplectic.*!

(ii) The skew-symmetric form b,(u; v)={Tu; v}, -, is
weakly symplectic.?!

(iii) The restriction of w, to the H' *YExXH' V2 sub-
space is b

[ 23V -

A uniqueness theorem for the operator J now follows.

Theovem 14: On the real Hilbert space H' xH' ™t of
real solutions of Eq. (10) there is a unique complex
structure operator J' satisfying: (i) J'T =TJ’; (ii)
w;(u;J'u)>0 if u#0. Hence dJ' =J

Proof (also see Chevalier® and Combet'®): From (i)
(I =JJNJ ~-J")=0.

But (I ~JJ’) is bound-symmetric, and from (ii) it has a
strictly positive lower bound; then for ¢<2|I ~JJ'||;} -,
the series

i [ = =JdN]'= (I =)

converges in norm in H*xH! 7! to the inverse of ( —=JJ")
which is a bounded positive symmetric operator. (See
Ref. 43, pp. 263.) Henced =J'. O

5.G AND G' KERNELS

(a) Let us write U;=UJ=JU,,

UL (8) UL (8)
ULQ@) UL®

and a similar matrix expression for U,. Uj,(t) and U, ()
are continuous operators from C™V,) tq C *(V,) because
they are continuous from H'(V,) to H'*/ "{(V,) for any I.

Uis)=

From the kernels theorem, these operators determine
the regular®*'*® distribution kernels Gj,(t),G;;(t), de-
fined by linearity and contunity from the expression

Gi0;0© ¥y xv,= UL b,
where ¢, e C™(V,), and similarly for G,;(t} and U,;(£).
Proposition 15: The mapping G};(),
R-CV)&D(V,),
-G,
is of class C*. The same is true of the G,;(*) mapping.

Proof: From Proposition 10, the mapping U};(-):R
~L,(CT(V,);C™(V,)) is of class C”. The proposition now
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follows by using the isomorphism L (C “v
CWy© DV

Let ¢ be a mapping in C(R?,

2 CAV )
V,). |

ce(vi).
Covollary 16: The mapping on R? with values in C de-
fined by

()= GLE =8, ', b
is of class C” and the Leibniz formula

G =D, ¢

>anvn

Mo v,

= Z C b GL(t - 0);0

141" =¢

ilf(/)(t/, [)>Vn W

follows. Similar properties hold for the G,(-) mapping.

Let ¢ be a mapping of C(R; C™(V ).

Covollarvy 17: The mapping on R® with values in C*(V,)
defined by

W, 0 =G LW =04, D)y xv,

is of class C”, and the Leibniz formula for derivatives
with respect to / or {’ holds. O

(b) Let ¢ be a mapping in C*((V,XR?)). Then, the
mapping ¢ on R? with values in C™(V}) canonically de-
termined by ¢ is in C(R?, CT(V2)). Conversely, let ¢ be
a mapping in the latter space. Then the mapping <13 on
(V,XR)?, with values in C canonically defined by ¢ is in
C((V,xR)?). From this, andCorollaries16and17, we
obtain

Proposition 18: For ¢ € D((V,x R)?) the expression

(61?,(” f ( l/h (-’

defines a regular distribution kernel on V XR. Locally
we have

gih(t el tE) =
The same statement holds for the G;;({) and 9’;’1 kernels.
[

The uniqueness of the solution of the Cauchy problem

for Eq. (10) [see expression (2)] means that the &, ker-
nel is the propagator of that equation.

1 1 . )
-1);—5% ¥ o q>(t',z)> dt-dl',
8 g

VYIXVYI

(23)

8% 6150t "5 Le) .

(c) We shall see that the kernel G'! =19 satisfies the
properties required in the Introduction. Also see Chev-
alier'® and Combet.'?

Proposition 19: The kernel G! is symmetric and the
kernel G is skew-symmetric. Both are real.

Proof: The operators U,, {€R, are real; the kernel
G*' and G are thus also real. The relation U}*= -UL,
and T7'U,=U,T"" yield, in particular

Wi(~0e; ), = - (@; Uy (D)o
Ui, ()= =Ut, ()M,

@,y e Ci(V,).
Wi My), =L, Uy (-t

thus (GL,(1)Y =GL,(~t). ( stands for transposed kernel).
Using this relation in definition (23) of the G! kernel,

Therefore,

M), 5
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we can find the symmetry of this kernel. Similarly we
can find the skew-symmetry of the G kernel. |

From the relations

. _ 4 1(4) = “1yri(4) = 771 -1
< -dt>U(t)—0, UM = UNOT

we obtain, in particular

a

MEDGLU =)+ (Nésu)dt,

d2
Gt —l)+m GL(t'=1=0,

. ~ d d?
USOMGL,{' =)+ T ®N) pry G —t)+EFG}2(t' —t)=0,

(25)
where the time derivatives are taken in the sense of

Proposition 15. Then,

Proposition 20: The kernels G and G' are solutions of
the Klein—Gordon equation in a distributional sense,
i.e.,

((An+1 _m2)®I)G1—_-O’ ((I®(An+1 __m2))G1=0
and a similar expression with G in place of G'. il

(d) Let

(-T2 = A B
CcD

be a matrix expression of the operator (~72)"2 on
every H* xH' ™! space. Then

-C -D
J= .
<MA +NC MB +ND>
Let A,B,..., M, be the regular kernels on V, de-
termined by the A,B,...,M, - operators. Given
regularity, the convolution (*) of a finite number of
kernels, in the sense of Volterra—Schwartz,*® pp. 114—-
120, included among A, B, . .. ,M,G},-(l), G (1), is well
defined and associative.

Relations U(t)=U{W =JU({) and Ut" = ') U'(t' = ¢)
= =U({" -t) give, in particular,

PN d ~

GLU —0)=G (' =1)xM*B - ﬁGlz(t' -H*D,
n ~ 1 n ’ d 1 I3

Gt =D=GLE" - —Gi,{t'-1)

dt’
LG L = ")« N xGL(t'~ 1)

d
=7 Gt =)« GLE - 1).
The former expression yields the G' kernel. The latter
relation is the fundamental Lichnerowicz relation (4).

The first proof of this result in static space~times
has been given by Combet.?*'°® We have thereby proved

Proposition 2]1: The calculated distribution kernel G!
on a stationary space—time, satisfies the conditions re-
quired in the Introduction. Conditions for uniqueness
are given in Theorem 14. The complex structure op-
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erator J {expression (5)] is given by the following ma-
trix of kernels:

d

ION)GL( -t) - T Gha(t' = 1) ~G 1t = 1)
a @N)d—d—t, GL{ ~t) - C—l‘% GL(t' -t) —(—17—, GL(t' =t)
1
6. POSITIVE AND NEGATIVE FREQUENCY SPACES
On the complex space H'xH’ ™! of solutions, let us
consider the operators®
®=4(+iJ), ©=3(I-1iJ).
Then
Proposition 22: (i) @ and ©are complementary pro-
jectors on H'xH' ™! and
® U,=U,"®, ©:U,=U, 0.
(ii) If h e H*XH' "' is real,
2{@n; ®h},, -, =2{6h;0h}, , ., ={h I}y p -y a

By definition the closed subspaces
E¢=@(H'<H'™"), EY=0(H'xH'™")

are the Hilbert spaces of positive and negative fre-
quency parts respectively.

7. THE SPECTRUM OF THE ENERGY OPERATOR

In this section we find the Fourier expansion for fre-
quency solutions and kernels G, G', analogous to that
given in the Minkowski space by means of the Fourier
transform.

Basically we have exploited the compactness property
of the inverse H™' of the energy operator H=i"'T"",
See Theorems 2 and 7.

(a) Let us write Eq. (10) in the Schriddinger form

z L )= bute), m=i7 (26)
H is the Hamiltonian operator®! of the dynamical system
defined by Eq. (10) and H' XH'™! is its “phase space.”
By Theorem 7, H is self-adjoint in H' xH* ™! with re-
spect to the scalar product (16), and by Theorem 2, H™!
is compact. Therefore, the spectrum of H is real,
countable, and does not have any finite accumulation
point; the proper subspaces are of finite dimension,

and there is an orthogonal basis of H' X H*™' formed by
eigenfunctions of H.

Proposition 23: Let l,, p € Z be any eigenvalue of H.
The eigenspace E,, is a subspace of finite dimension of
C(V,)XC™(V,). -1,1is also an eigenvalue of H. Complex
conjugate elements of an orthonormal basis of E,, form
(in H' XH'"') an orthonormal basis of E,,,.

Proof: (i) Let{u,} be an orthonormal basis of H*
XH'"! such that,
Hu,=lu,, l,eR, pecZ

with u, = ((u,);; (,),). Thus
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(M +il,N = )(u,),=0, (u,),=1l,(u,),

Since (u,), and («,), are in the kernel of an elliptic dif-
ferential operator, both are in C™(V,). d

(ii) Clearly we have: Hu,= -1, and (dy;4,); -, = Opq-

(b) Let y,=2, (A u,+X5uz), 2,25 €C, p,peNbe, any
element of H*XH'™!. The solution of Eq. (26) correspo-
ding to the Cauchy data y, at time £=0 is given by

y()=7; (e“pt)\pup +e—“pt)‘3“p)y (up=1,) .
P> 0

Thus the evolution operator U, takes the form

U,=Y) (e 0ty ®u, + etsiu, @ uy) (27)

p>0

where the series converges in the strong topology on
bounded linear operators in H' XxH'™!,

(c) Let us write

VWO =2 ettt u,, ) =2, e ey, (28)
p>0 p>0
D=0 - y®(1) . (29)
Thus we obtain y'(¢) = T*({)y,, where
o' = —i§(e"’P‘u;®up - ettty ®U;), (30)
0

and the convergence is just as in expression (27).
Pyroposition 24: Ju,= —isgnl,-u, .
Proof:
1
(T, =il,u, = (-T?u,= T e
»
From the spectral theorem and the uniqueness of the

positive square root of a positive self-adjoint operator,
we obtain

(=T 2y, = L u, .
12,1

L

The proposition now follows.
The next proposition is now obvious.

Proposition 25: We have UXt) = U'({) and expressions
(28) and (29) give the frequency solutions defined in
Proposition 22. d

(d) A simple calculation on expressions (27) and (30)
shows that

Gt~ =13 L™ a,), ® ' (u,),

p>0

- ' ' .
—~ethiu,) ® e (@,),),

GL(t' =)= LAe ot @,), @ e'tot (u,),

>0
. ir et
+e”l"(up)l®e ilpt (up)1) ,

where the series converges in J/(V,XV,) for fixed ¢ and
.

The function
f=e" @,),
is in C(V,xR). By Proposition 18, the series

G:lZ lp(fp@fp_fp®fp)y

p>0
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G'=3 L{f, ®f,+f,&1,),
b>0

are convergent in 0'((V,xR)?) and define the propagator
and the Lichnerowicz kernel of the Klein—Gordon equa-
tion.

8. CONCLUSIONS

The space-times considered in this paper are station-
ary V,XR with compact space-section manifold without
boundary.

In any adapted atlas, the Klein-Gordon equation be-
comes a time-independent evolution equation in spaces
H*xH'"', The complex powers of the T~! operator have
been defined. By means of these powers, a scalar pro-
duct compatible with the topology has been introduced in
the H' xH'"! space. The energy operator H=i"'T™! is
self-adjoint in this space relative to the said scalar
product. The Klein—Gordon equation has then been
solved by the one-parameter group {U,} of unitary oper-
ators generated by T~' in the Hilbert space H'xH*™', In
the spaces C™(V,)XC™(V,) and 0'(V,)x D'(V,) this group
is uniform equicontinuous. On each space H'xH!™' a
canonical complex structure has been defined. These
structures have been simultaneously defined by a unique
distribution kernel G', which satisfies the Lichnerowicz
requirements. The Hilbert spaces of frequency solu-
tions have thus been constructed by means of this ker-
nel.

The spectrum of the energy operator H=¢"'T"' is real
and symmetric with respect to the origin of R. The only
nonvoid part of the spectrum is the point spectrum, and
it is countable, with no finite accumulation point. This
property has been exploited to give the definition of fre-
quency solutions in a form similar to that given in the
Minkowski space by means of the Fourier transform.
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We show that the condition determining the range of the applicability of the Ornstein—Zernike theory
obtained previously by Hemmer for the van der Waals model is too strong. The weaker condition obtained
by us is in agreement with the existing results for different physical systems, and it requires the
temperature to satisfy the following inequality: (7-- T, )/T,» (yd)®, where yd denotes the ratio of the short-
range part of the potential to the range of the long-range part and T, is the critical temperature

predicted in the van der Waals model.

I. INTRODUCTION

In this paper we consider the van der Waals model
of a fluid in which the interparticle potential &(r) is
separated into a short-range repulsive part and a long-
range attractive part,*

B (1) =" (r) +*7(r) (1,1)

where $"(r) is the short-range part of the potential (of
range d) while &*'"" () = ~ y*¢(yr) is the long-range part
of the potential of range »™'. It is a well-known fact that
the y — 0 limit of the van der Waals fluid pressure p is

given by the following equation of state':?:

plp, T)=p"(p, T) +5p°B(0)

where p"¢ is the pressure of the hard core fluid, pis
the number density, and & (k) denotes the Fourier trans-
form of the long-range part of the potential. The nota-
tion used in this paper is exactly the same as that in-
troduced in Ref. 1.

The problem of determining the region near the criti-
cal point in which the two-particle correlation function
can be approximated by the Ornstein—Zernike (0.Z.)
function has been discussed for different physical sys-
tems. ™" The common conclusion obtained as a result
of this analysis is that the O.Z. theory holds whenever
the following condition is fulfilled:

(1.2)

(1.3)

3
€>> 17,

where /™ denotes the range of the interparticle potential
(measured in proper units) and €’=(T-T,)/T,.

The above problem has been also investigated by
Hemmer!' in the frame of the van der Waals model. The
condition for the range of the applicability of the O.Z.
theory was found to be

(1.4)

which disagrees with the previous results (1.3) in the
sense that it represents a much stronger requirement
(we always consider the y — 0 limit). It appears however
that this exceptional status of the van der Waals model
is apparent and results entirely from disregarding the
behavior of the hard core system near the critical point
of the fluid. We thus show that also in the van der Waals
model the condition (1.3), i.e.,

e> (yd)®

€>yd

(1.5)

determines the range of the applicability of the O.Z.
theory. This is done in Sec. II where the first two terms
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in the &= (yd)® expansion of the two-particle correlation
function g(7) in the far range (i.e., for r=0(y™))

are considered and then the condition (1.5) is recovered.
In Sec. III we analyze the contributions to the two-parti-
cle correlation function which are of an arbitrary order
in ¢ and we outline the proof of the validity of condition
(1.5) for the general case.

H. THE £ EXPANSION NEAR THE CRITICAL POINT
AND THE O.Z. THEORY

We are interested in the behavior of the two-particle
correlation function g(r) in the far range [ = O(y™)] in
the vicinity of the critical point. We shall always
approach the critical point along the critical isohore
in the one-phase region and the parameter ¢ defined as':

=1 +n$(0) = (21‘2) /(%)T~T—Tc

will measure the distance from the critical point.

In this section we consider the first two terms in the
£ expansion of g{r), i.e., ¢'*’ and ¢'*’. As is shown in
Ref. 1 these two terms are given in the y -0, ¢—~0
limit by the following expressions (we always use the
Fourier space representation):

(2.1)

~1 6kgT 1

F(k) = |¢(%)l Pl (2.2)
S (1) a an\*]2arctan(k/2V6e) .
o) [gk T( )TJ =) (2.3)

+18k TD(a "> [WJT) ?%E]’
o (k)

where
( ) k T"/dk1+nq>(k)

If near the critical point we disregard the behavior of
the hard core system represented in (2. 3) by the func-
tions 7, (3n/3p),, and (9%7/9p%),, then for the wave vec-
tors of the order of € (k =q¢) we obtain in the y — 0,

€ —~ 0 limit the following result:

~(1)

g 2 (2.4)

F®) ~y e (2.5)

Thus the conclusion derived in Ref. 1 is that the second
order terms are small in comparison with the first
order term (O.Z. theory) if (1.4) is satisfied.

It appears however that the above line of reasoning is

Copyright © 1977 American [nstitute of Physics 2162



misleading because the function

(), -1, %
35—)7_< op /rL\2p /r P(apz )T]
vanishes at the critical point. This follows from the
equations determining the critical point

BE
ap), 7 \9p /s

for the van der Waals equation of state (1.2).

(2.6)

The function (81/2p), enters into (2.3) through the
fluctuation—dissipation theorem when considering the
lowest order term in the y expansion of the Fourier
transform of ule,

[ drexp(ik,- ry) [ dRexp(ik,> Ry)ul(0,r,R;p)
= [dr [ aRul*0,r,R;p)[1 +¥(Kk, r +ik,-R)]
-7*% [ dr [ dR[k2%*® +k2R® +6(Kk," r)(K, - R)]

x ko0, 1, R; p) +0(®). 2.7

Since this lowest order term vanishes at the critical
point and the linear terms also vanish for the symmetry
reasons® then the first nonvanishing term is propor-
tional to y?? (after the change of variables k=qe). Thus
near the critical point one has to use the expression
proportional to ¥’ instead of (3n/3p),. This means
that, since the functions 1 and (?%*n/9p%), have finite
limits at the critical point while D ~3% in the y— 0,

€— 0 limit, the first term on the right-hand side of (2.3)
is small in comparison with the second term.

Now the condition for §*’ to be small in comparison
with 7’ reduces to the condition for the second term on
the right-hand side of (2. 3) to be small in comparison
with (2.2) and this exactly takes the form (1.5).

I1l. THE GENERAL CASE

According to Ref, 1 the two-particle correlation func-
tion g{r) is represented by the sum of all distinct irre-
ducible generic 2-graphs. After the renormalization to
all orders in the density is performed' each graph can
be built from:

(a) two dotted root points

< } n lines

representing the functions fi°, n> 2,

(b) & (k> 0) dotted field points

< } n lines
representing the functions [I}°, n> 3;
(c) p (p=1) chain bonds —c —representing the functions
& (k)

&) = - TS R

It is easy to check that the Fourier transforms [[:c have
finite limits at the critical point when y -0, ¢— 0, and
k =qe except I%° which is proportional to y* in the
above limit. Moreover C ~€ and each wave vector inte-
gration appearing in the graph gives, after the change of

variables, a factor y3®, It is also shown in Ref, 1 that
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the nth order terms in the ¢ expansion of g(») are rep-
resented by the graphs in which there are » chain bonds
more than the number of the dotted field points.

In this section we compare the ¥ and ¢ dependence of
the expression represented by the graph of an arbitrary
order in £ with the O.Z. function. We shall show that if
condition (1.5) is satisfied then the O.Z. function rep-
resents the dominant contribution to g(») in the limit
¥ —~0, €~ 0. To this aim we apply the induction. It is
shown in Sec. II that the second order terms are small
in comparison with the 0.2, term if (1.5) is satisfied;
now we assume that the »th order terms are small in
comparison with the O.Z, term if (1,5) is satisfied and
we prove that it is also true for the terms of order
n +1, There are two methods of constructing the graph
representing the term of order (» +1) out of a given
term of order n:

(I) We start from the graph representing the nth order
term and we add to it one new chain bond in such a way
that both ends of it are attached to the same dotted
point;

(I1) we start from the graph representing the nth order
term and we add to it 2 (2> 0) new dotted field points
and %k +1 new chain bonds each of them joining two dif-
ferent dotted points.

An example of the method I is shown in Fig, 1 for the
case 7 =2, In this method one gets the additional factor
Y3 from the new wave vector integration and, in the
most divergent case, the factor ¢ from the two new
chain bonds appearing; thus finally we obtain y*/¢. This
means that since the nth order term was small in com-
parison with the O, Z, term, then the term of order
(n +1) obtained in the above way is also small in com-
parison with the O.Z. term when (1.5) holds.

In method II one can have a priori infinitely many
ways of constructing the new graph, However in our
analysis we shall consider only those graphs which rep-
resent the most divergent in ¢ expressions, i.e,, the
ones in which the root points are connected with the rest
of the graph by the single chain bonds. This is schemati-
cally shown in Fig. 2. If it is not the case and a given
graph contains a dotted root point not representing the
function ;I;“, then this graph is replaced by another one
in which the root point is replaced by the field point
connected with the root point by a single chain bond, An
example is shown in Fig, 3. In this way we obtain the
graph representing an expression which is more diver-
gent in € but of the same order in £, The observation
that greatly simplifies the problem is the following:
Since in each order we take into account only the graphs
representing the most divergent terms then it is enough
to consider only the cases for which k<2 (% is the
number of new dotted field points). All the other situa-
tions (k= 3) require the addition of at least 2 +2 new
chain bonds in order not to violate the rules of construct-

c
40(: —c—Sia —> 10,:2 e— c—&L c—di2
FIG. 1.
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L€ c—&——C
A I (N
4:.0~—c¢C C—Q'2 c » C*—&";——c %

FIG. 4.
FIG. 2.
and
ing the new graphs and thus lead to the graphs repre- L . —-T -2
senting the terms of at least order n +2, The proof of A —~T =480 -
the above statement is based on the fact that the addithion Q-9 +1 e 3Ty
—he =50,

of each new dotted field point means the addition of [,°,
n=3. Now it is easy to see that the addition of only one
new dotted field point implies the addition of at least two
chain bonds, and the addition of two new dotted field 3\ -1/3
points implies the addition of at least three chain bonds; Y3 (ye?) 2 :(2/——) elo/s
an example is shown in Fig. 4, and, consequently, the ¢

(¢) each of the joined dotted field points represented
the function f3°,

and
addition of three new dotted field points implies the
addition of at least five chain bonds. This proves our R
statement for =3 and simultaneously for & >3. Q =9, +2 -~T,.,>2%Q .
In order to prove the sufficiency of condition (1, 5) we (2) We add one chain bond joining a dotted field point
have to count the powers of y and € which are obtained with a dotted root point and then we replace the dotted

in each of the possible ways of generating the » +1 order root point by the dotted field point connected with the
graph from the nth order graph according to the general new dotted root point by a single chain bond (to get the
method II. However, to simplify the calculation we most divergent in € expression),

shall use the parameters y*/e and ¢ instead of ¥ and €.

In this case, to prove our hypothesis, it is enough to (a) the joined dotted field point represented the func-

. Cps tion fif°,
show that each of the above ways gives additional non-
negative powers of €, Y2 (Y2 e?) %P =0 e,
Let us consider the graph of order » and let T, be the and
¢ power of an expression represented by this graph in C —-T
the y — 0, e— 0 limit enhanced by 2, i.e., we consider (AR W r >5Q -
the € power relative to the O.Z. function (~€¢2), In Sec. Q.=9,., e 3T

II we showed that I', > 0. According to our method we
assume that T', > 0 and we want to show that I’ ,, > 0. To
this aim we prove a stronger condition, namely that

(b) the joined dotted field point did not represent the
function pte,
3

,y 5/3
Y33 e 2y ee? :(—6—> /3,

Fn = %Qn’ (3 . 1)
and
where 2, is the number of the dotted field points repre- C D +2
senting the functions {3°in a given graph of order #, It KA S r »3Q
is easy to check (Ref. 1) that [',>2Q,. Now we assume Q,=,,-1 el T 3T
5 5
that T, > {2, and we prove that T, > 382,.,. (3) We add one dotted field point and two chain bonds in
This program will be realized by considering sepa- the following way: We “cut” one of the chain bonds exist-
rately each way of constructing the new graph according ing in the graph by putting a dotted field point inside it
to method II. and a new chain bond starts from this new dotted field
oint joining it with:
(1) We add one chain bond joining two dotted field points P ) &
and (a) a dotted field point representing fiie,
(a) none of the joined dotted field points represented Y y%e®) (Y e?) 1 =2 fe
the function [I'; thus we get the factor y*c®e® = (*/e)é® and
which means that I',,, =T +2, €, =8, and we see that r -r
r,.239,+2=3Q L2289, mlT e
" ! " Q=9 -T2 %0,.5
(b) only one of the joined dotted field points repre- n = 4l _
sented the function [%°, (b) a dotted field point not representing [i%°,
-4, 2.2 ¥ 5/3 8/3
L/3 Sede 4y %€ :(——) €
YOS (y%e2) :<€£) 6'2/3, Y Y P ’
and
Fn 1= Fw + %
P P < o, . C Q oS —’r‘qilzgﬂnd;
ST = = e L
FIG. 3. (c) a dotted root point and then we replace this dotted

o’ .
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FIG. 5.

root point by the dotted field point connected with the
new dotted root point by a single chain bond (to get the
most divergent in € expression)

,),3 7/3
Yt (yie?) e = 6—) elo/s

1
rn+l:Fn _+'43l

—T, .>2Q

n+l

Q,=9,, -2

{(4) We add one chain bond joining two dotted root points
and then we replace each of the dotted root points by the
dotted field point connected with the new dotted root
point by a single chain bond (to get the most divergent
in € expression),

pecspep (L) eors
(% ,

and

L
Fn+1:Fn+ él

r

Q Q 2 - n+1? %Qnd'
n =%

(5) We add the structure shown in Fig. 5 to the dotted
root point,

s wa (¥ 7/3 0
V3¢ €7%(12€?) :<5_> € /3’
and
1-‘n+1:r‘n + ITZQ

— 3
Q":Qﬂ*l —2 Fn*l; Q

3% n+le

(6) We add two dotted field points and three chain bonds
in the following way: We “cut” one or two chain bonds
existing in the graph by putting two dotted field points
inside them and then we add one chain bond joining those
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two new dotted field points

Y e 8(y2e?)? =(i)7/3 glo/s

€

and

Fn a4 Fn + L?:Q
Qn = Qnd -2 - F"d i %Q"do

Our analysis which is based on the counting of the
powers of vy and € shows that for all the graphs of the
order n +1 obtained above, condition (3.1) is satisfied.
Thus, near the critical point, the first term in the ex-
pansion of the two-particle correlation function is domi-
nant in comparison with all the other terms if (1.5) is
satisfied. This means that in the van der Waals model
of a fluid close to the critical point we can use the
Ornstein—Zernike function as long as the range of the
potential ¥ is so large that condition (1.5) is satisfied.
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Generators of infinite direct products of unitary groups
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Under suitable conditions, an infinite direct product ®, U, (1) of continuous unitary one-parameter groups
U, (1) is again a continuous unitary one-parameter group. This question is discussed here in terms of the
generators A4, of U,(t). It is shown that the generator 4 of ® ,U,(t) has a total set of product vectors in
its domain of definition. As examples, the particle number, energy-momentum, and angular momentum

operators in non-Fock direct product representations of free fields are investigated. The spectra of these

operators are determined.

1. INTRODUCTION

Infinite direct products of unitary groups emerge in
a quite natural way in quantum field theory. Consider,
for example, a free field represented in the Fock space
7, and let {1,,};1 be a partition of momentum space into
disjoint subsets /,. K 7, denotes the “restricted” Fock
space of particles with momenta in /,, the total Fock
space 7 may be written as an incomplete direct product!
of the spaces 7,. One can easily see that the free time
evolution U(f) in 7 becomes an infinite direct product

Uty =20, (1.1)

of the free time evolutions U,(f) in #,. The same de-
composition applies to space translations and to gauge
transformations of the first kind. It also holds true for
spatial rotations if the subsets /, are rotationally
invariant.

Besides this, by taking suitable infinite direct
products of the restricted Fock spaces 7, one also
obtains new (non-Fock) representations which permit
the solution of simple “infrared-divergent” models
of quantum electrodynamics. -4 However, as soon as
one leaves Fock space, the existence and unitarity of
an operator like (1,1) can no longer be taken for
granted. This problem has been investigated recently
by one of us®; conditions have been formulated in
terms of the unitary operators U, ({) which guarantee
that the infinite direct product (1.1) again defines a
continuous unitary one-parameter group.

A different approach has been adopted by Streit, ®
who has given equivalent conditions in terms of the
infinitesimal generators 4, of the unitary groups U,(?),
rather than of the groups themselves, Such conditions
are particularly useful and transparent if, as usual,
these infinitesimal generators have a direct physical
interpretation, In Ref. 6 the discussion was restricted
to the particular case where the operators U,(¢) are
exponentials of Schrodinger position or momentum
operators, in which case (1.1) leads to Weyl operators
in direct product representations of the canonical com-
mutation relations. Actually, however, the results of
Ref. 6 are completely general,” applying to arbitrary
one-parameter groups after suitable reformulation.
Such reformulation is presented here in Sec, 2 (Lemma
1), which also serves to collect—and to prove if nec-
essary—further general statements about infinite direct
products of unitary groups (Lemmas 2—86).
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The results thus obtained are applied in Sec. 3 to
energy—momentum, angular momentum, and particle
number operators for free quantum fields represented
on an infinite direct product of restricted Fock spaces.
The spectra of these operators are also investigated in
detail. Such applications, besides illustrating the gen-
eral theory, have been important for the discussion of
the infrared problem in Refs., 2—4.

2. DIRECT PRODUCTS OF UNITARY GROUPS AND
THEIR GENERATORS

We consider a sequence {4/, }=; of separable Hilbert
spaces and a family U,({), fe R, n=1,2,+++, of (strong-
ly) continuous unitary one-parameter groups on /.
Accordingly, U,(f) can be written as

U t)=exp(itA,) = | expltr)dE,(\)

with the self-adjoint generator A4, of U,(¢) and the
spectral resolution E,(A) of 4,. With ¢,/ , and ||¢,l|

=1 for all #, we denote by /=9 ,(#/,, ¢,) von Neumann’s
incomplete direct product of the Hilbert spaces //, with
reference vector =%, ¢,. !

The following lemma is an immediate generalization
of results of Ref, 6, It is obtained by replacing the
Weyl operators W,(s,t), the generators s,4,, and the
spectral resolutions s, [ £dE, () considered in Ref, 6
by U,(%), A,, and [ AdE (), respectively,

Lemma 1: The infinite direct product @, U,(f) is a
continuous unitary one-parameter group on & ,(#,, ¢,)
if and only if there is a product vector ¥ =% ,8,c® {*,, @,)
with {|9,1l =1 for all # and

(1) 20 | ey Anha) | < <,
(@) 25 [ Adl|® <.

Moreover, ¥ may be chosen to satisfy
(iii) (Eq() = E (= )=,
for almost all #, with e > 0 arbitrary but fixed.
Proof: See Ref. 6, Corollary 1. The proof given there
is not entirely complete since
Y= (E ) - E (=€) 0,

—corresponding to E, x, of Ref. 6—might be zero for
finitely many values of n, For such » we replace (2.1)
by an arbitrary y;#0 from D, , the domain of definition
of A,, in order to obtain a nonzero ¥'=®_ ¥;. The

2.1)
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transition from ¢;, to normalized y,= z,bﬁ,/lld):,ll leaves
properties (i)— (iii) unaffected and with ¥’ also ¥=®Q i,
belongs to & ,(H . €.)-

With the mean-square deviations Aw"A,, of A, in the
state ¢, defined by

(ay AY = [A0lI* - @, 4,0.)°, @.2)

condition (ii) may also be replaced by
1) 27 (ay A <=,
n

which is equivalent to (ii) if (i) holds true. Condition (ii)
is replaced in Ref. 6 by

23 (s AT L) < = (2.3)

n
which, requiring ¢,¢ DA% rather than §,€D, , is
stronger than (ii). The proof of Lemma 1 is insensitive
to this detail. ®

Since D, is dense in/,, it is always possible to
choose the reference vector ® =%,¢, so that ¢,c Dy
for all n. Lemma 1 applied to ® then yields a sufficient
condition for the existence of ® U, (f). For a necessary
condition involving the reference vector ¢ see the theo-
rem in Sec. 4 of Ref. 6.

Lemma 2: 1f U(t) =8,U,(¢) exists as a continuous uni-
tary one-parameter group on ®,(#,, ¢,), then

&
U(t) =s-lim ® U,() ®1

k= n=l

for all £.8
Pyvoof: See Ref. 5, or Ref. 6, Lemma 5.

Lennna 3: Any ¥ =9 ¢, fulfilling conditions (i) and
(ii) of Lemma 1 is contained in the domain of definition
D, of the generator A of U(t) =®,U, () = exp(it4). Ex-
pectation value and mean-square deviation of A in the
state ¥ are given by

(\Il, A‘Il) :E(wmAnd)n), (2-4)

(Ag AP = AV - (¥, AD)? =73 (A, A2,

n

(2.5)

Proof: Let A® be the generator of U*)(f)
=@, U, (13 L. Since U%(#) is the product of commut-
ing unitary groups U,(H® &t (n=1,...,k), A% is the
closure of ¥ %.,(A,® 1).% Conditions (i) and (ii)’ of Lemma
1 imply that A*’¥ is a Cauchy sequence, since (with
F<k)

”A(k)q,_A(i)q,Ha
B 2 k
:[2 (wn,Anwnﬂ +20 (A7 - (8, A,9,02] =0

n=j+l n=j+l

if j, k—=, By Lemma 2, exp(itA%’) converges strongly
to exp(itA) for all . Hence, by Theorems VIIIL. 21 and
VIIL 26 of Ref. 9, A is the strong graph limit of A%,
Since ¥« D, (k) for all » and A% converges strongly,
we conclude that ¥ & Dy and AY =s-lim,. . A%"¥, Equa-
tions (2.4) and (2.5) are then proved by direct
computation. =
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With Lemma 3, it is easy to find a dense set of vec-
tors X in D, with
Ax=s-limA%®x

b=~
which implies

(X, AX) =lim (, A*’X) and &A=1lim &A%,
R IR
Namely, take ¥ =8 ¢, as in Lemma 3, let ¥'=® y, with
dne D4, for all n and ¢y =Y, for almost all n, and take
for X any finite linear combination of vectors ¥’ of this
form. Since Dy, is dense in /4, the set of all such X's
is dense in / =® ,(H#,, ¢,).

The case of a ®,U,(!) not unitary on® (4, @,)
but only on ® ¥(#,, ¢,), constructed from the weak equiva-
lence class of ® ,¢,,  might be of physical interest since,
roughly speaking, product vectors in ®¥({H,, ¢,) and in
® (H,, @) differ from each other by “divergent phase
factors” only, By means of a “renormalization”

Ut = U, (1) = U, (D) exp(-ita,), A,~A,=A,-a,
(2.6)

with suitable real constants «,, such phase factors may
be incorporated into ®,U,.(t) so that the “renormalized”
product U(t) =® T (t) is unitary on each incomplete di-

rect product ® (#,, ¢!) contained in ® (#,, @,) and thus,
in particular, on® (4, @, itself. This follows imme-

diately from:

Lemma 4. There exists a sequence{a,,}:;l of real
numbers so that U() =® U, (t) exp(- ita,) is a continuous
unitary one-parameter group on® (/4 ,, @,) if and only
if

(1= e, Un(Bg) | ] <.

Proof: See Ref. 5, Theorem 2.5.

If suitably rewritten, the prevNious statements con-
cerning ®,U,(#) hold true for ® U,(t) also. Applying, in
particular, Lemma 1 to the “renormalized” product
® ,U,(), we obtain:

Lemma~5: There exists a real sequence {a,,}:;l which
renders U() =® ,U,(¢) exp(- it@,) a unitary one-parameter
group on ® ,(#,, ,) if and only if ® ,(#,, ¢,) contains a
product vector ¥ =® 4, with il =1 for all » and

2208, A2 =23 (1A, ,117 = (4, A ] <.

Proof: Necessity follows from condition (i)’ for the
“renormalized” generators A4,=4,- a,, since (4, A,
=(8,A,). Vice versa, take

Ay, = (wm And)n)y (2.7)
then conditions (i) and (ii) of Lemma 1 are satisfied for
the generators A,, which proves sufficiency. =

Remark: The choice (2.7) for a, is not the only pos-
sibility. Another sequence, {a’}%;, serves the same
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purpose if and only if®
Z) ‘ an_ ar:' <.
n

[In particular, o, =0 for all # is a possible choice if
and only if ¥ 1 (4,, A,¥,) <= sothat Lemma 5 leads
back to Lemma 1. ]

A sufficient criterion for the existence of ®,,(7,,(t)
[or, in case a,=0, of ®,U,(1)] is given by:

Lemma 6: If there is a sequence {oz,,},‘,”:l of real num-
bers and a product vector ¥ =9 1, e® ,(H,, ®,), 1,
=1 for all #, such that

E(vam \An" anl (pn) < <,

n
then U(t) =® U, (¢) exp(- ita,) exists as a continuous uni-
tary one-parameter group on® (//,, ¢,).

Proof: See Ref. 3, Lemma 4.

3. PHYSICAL APPLICATIONS

We now return to the example mentioned in the Intro-
duction. There we have defined restricted Fock spaces
7. and unitary operators U,(f) = exp(itH,) implementing
the time evolution of a free field in 7,. We note that
H  is positive for all # so that Lemma 6 provides a suf-
ficient condition under which

Uy(t) =%, expl(itH,)

exists as a continuous unitary one-parameter group on
7L/, :Qg}n(j ns 99"), namely

there is a product vector ¥ =& i, = // with
zv")n G DH,.,’ “d”n” =1 for all n, and En(lpm Hnd)n) <o,

(3.1

This condition is also necessary due to Lemma 1, con-
dition (i). If Uy(#) exists, we denote its generator (the
Hamiltonian) by H. It is positive because it is the limit
of

k
H® =37 (H 2 1)
=1

in the strong resolvent sense, and H®)> 0 since H,> 0
for all # (cf. Theorems VIII. 21, 24, and 33 of Ref. 9).
If, as usual in relativistic theories, the Hamiltonian is
required to be bounded from below, it is useless to look
for phase factors exp(- ita,) in order that Uy(t)

=®  explit(H, - a,)] might become a unitary group with

a “renormalized” Hamiltonian H as generator. Namely,
consider a product vector ¥ =® 3, as in Lemma 5 which,
according to the remark following that lemma, satisfies

El(d)mHnlpn)" anl <%,

Then either 3 (¢, H,¥,) <=, in which case the “unre-
normalized” Hamiltonian also exists, or 3 (¢, H,¥,)
diverges. In the latter case, let

N
n=1 n>N

with w, being the normalized Fock vacuum in 7,. Then,
by (the “renormalized” version of) Eq. (2.4),
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- N
(‘I’N,H‘I/N):—E_l o, +.Z>\;v ((d)m Hnll)")-' a")

N
:Z;(apm anvbn) - an) "Z_Z (Zﬁbm Hnlpn)-

The first term is finite and the second goes to — « with
N~ 50 that the “renormalized” Hamiltonian H is
not bounded from below.

The same reasoning also applies to the particle num-
ber operator N which we define, with the number oper-
ators N, in /,, as the generator of Uy(f) =8, exp(i/N,).
A “renormalized” N (with 3 ,] @,| =) thus cannot be
interpreted as a particle number operator. However,
if N itself exists on // =% ,(,, ¢,), then Lemma 1, con-
dition (iii) with € <1 and the known spectrum properties
of N, imply that // contains a product vector ¥ =% 1,
with ¥, = exp(iB,)w, for almost all #n. This, in turn, im-
plies that /7 =® (7., ¢.) =® (7., ¥,) and the Fock space
F =3 .(4,, w,) belongs to the same weak equivalence
class, ! which means that the representation of the
CCRs on/ is unitarily equivalent to the Fock represen-
tation.'’ With similar methods, a corresponding result
for infinite direct products of Schrddinger representa-
tions was obtained by Chaiken.! If we are dealing with
massive particles, the same arguments are applicable
also to the Hamiltonian, since then there is a mass gap
in the spectrum of each H, and we can choose € to be
smaller than this mass gap. Thus the free Hamiltonian
cannot exist in non-Fock direct product representations
of the type studied here unless the particles considered
have zero mass.

As far as the momentum operator P is concerned
[again considered as the generator of ¥, exp(iaP,) with
the momentum operators P, in 7,], we may exploit the
spectrum conditions in 7, which imply | P,;| <H, for
each component P,; of P,. By (3.1) and Lemma 6, then,
P exists when H exists. On the other hand, P may ex-
ist even if H does not, as the following example shows
(cf. also Ref. 12). Consider particles of arbitrary mass
m = 0, and take the subsets I, of momentum space to be
invariant under the reflection p—~ - p. The (four-dimen-
sional) spectrum of the Fock space energy—momentum
operator P,={P,, H,} in 7, contains all finite sums of
one-particle energy—momenta p =1{p, (p? + m%)! /% with
pcl,. Therefore, in particular, it contains some point
¢,=10, €, with €, ~¢€,, where €;> 0 is chosen indepen-
dent of #. Denote by E,(A) the spectral measure cor-
responding to the four-dimensional spectral represen-
tation of P, i.e.,

P = ‘{' PE(d*),

and choose a reference vector ® =% @, lig,li=1, which
satisfies

En(An)wn =@y
with four-dimensional spheres &, of radii 1/#% centered
at g,. Then

(@n, 1Pt @) < 1/0°

for each component P,; of P,, and thus P exists by
Lemma 6. On the other hand, H cannot exist since any
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vector ¥ =® ¥, fulfilling condition (iii) of Lemma 1
satisfies (¢,, ¥,) =0 for almost all n if € <€, and thus
cannot be strongly equivalent to ¢. Although for this
example “renormalized” Hamiltonians H still exist
(e.g. ,_for a,=¢€,), one may easily modify it so that not
even H’s may be constructed.

In order to discuss the angular momentum operator,
we assume that the subsets I, are invariant under ro-
tations. Then there exist continuous unitary represen-
tations U, (A) of SU(2), the covering group of the rota-
tion group, in each restricted Fock space /,. The cor-
responding angular momentum components L,; (i =1, 2, 3)
generate the one-parameter subgroups U,;(#)
—expliiL,;) of U,(A) on },. In this case we can prove
that ® ,U,(A) exists on// =& (7., ¢,) as a continuous
unitary representation U{A) of SU(2) if and only if the
infinite products ® ,U,;(f) define three continuous uni-
tary one-parameter groups on#. It is even sufficient
to assume this for ® 0, (1), where U (t)=U,;(t)

X exp(- ita,;) with suitable real constants @,;. (Thus,
again, “renormalized” angular momenta need not be
considered at all.) Morevoer, if one of these conditions
is satisfied, then the reference vector ® ,¢, is strongly
equivalent to a product vector ® ,0, with U,(4)o, =0, for
each #. The proof of these statements is given in the
Appendix.

The previous results imply that particle number and
angular momentum operators, if existing on
=%, (7., ¢,), have the same spectrum as the correspond-
ing operators on Fock space. The same will now be
shown for the energy—momentum operator P :{P, H}.
[Note that Up(a) =exp(-—iaP) =&, exp(-iaP,) and Uy(?)
= explitH) =¥, exp(i/H,) commute. ] Only massless par-
ticles need be considered, as remarked above. The
Fock space spectrum of P then consists of the closed
forward light cone V,. The generators a,H — aP of
space~time translations Uy (a))Up(a) into timelike or
lightlike directions (i.e., @%—a®> 0) are easily seen to
be positive (cf. the previous argument for # or Ref. 3).
This implies that the spectrum of P is confined to V,.
It remains to be shown that, vice versa, any pc V,
belongs to the spectrum of P, and it suffices to consider
the case p#0. Any such p is a sum of two lightlike 4-
vectors p; ={p;, Ip;!}, 7=1, 2, which may be interpreted
as energy—momentum 4-vectors of single particles. If
p; < 1,,, the 4-vector p; belongs to the spectrum of the
energy— momentum operator Pni in },,i. First assume
n # 1y, decompose the space—time translation
operators

U{a) = exp(iaP) = Uy{a,) Up(a) =& ,U,(a)

(with @ ={a, a,}, aP=a,H - aP) in the form

U(a) = U, (0)® U, ()% ( ® U,,(a)),

n#ny ,ng

(3.2

and denote the energy- momentum operator on #/’

=® (7, ¢.)** corresponding to U’'{a) =% U, (a) by P’.
Since (3. 2) implies that the spectrum of P is generated
by adding the spectra of P,, P,,, and P’ (cf. Ref. 9,
Theorem VIII. 33), the proof is complete if we show
that {0, O} belongs to the spectrum of P’ ={P’, H'}. It
suffies to prove that 0 belongs to the spectrum of H',
since the spectrum of P’ is also confined to V,. Con-
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sider, therefore, exp(itH')=®exp(itH,). By Lemma
1, there is a vector ¥=®/y, c/{’ with 1,1l =1 and
Sy, H,) <. For N>y, n,, define ¥y c/’ by ¥y
=®,eyw,)® @®,5y¥,) with the vacuum states w, in 7,.
With H,w, =0 we get (‘IJN, H,‘I/N) :2n>N(d)m anl)n), which
converges to zero for N—~*, Together with the positi-
vity of H’ this yields the desired conclusion. If 7y =n,,
(8.2) has to be replaced by U(a) = U, (@)® (8 2, U,(a)).
In this case, p=p; +p, belongs to the spectrum of P"1’
and the rest of the proof goes through as above. We
will finally show that, if P exists in/7 =® (#,, ¢,), its
spectrum is purely continuous unless ®,¢, is weakly
equivalent to the Fock vacuum 2=® w,. Thus, in par-
ticular, translation invariant vectors do not exist in
non-Fock representations of the type considered here.
To prove this we need the following lemma:

Lemma 7: Let V; and V, be unitary operators on 4,
and /75, respectively. Suppose that multiples of # &/,
are the only eigenvectors of V;. Then every eigenvector
dof V=V,® V, in H =H,®H, is of the form d=y® U,
where ¥, is an eigenvector of V,.

Proof: We assume that Vi =exp(ia)y, i =1, and
use the standard diagonal expansion!*

=2091® ¢

with orthonormal systems {¢;'};" and {¢;%;" in#, and
15, respectively, and ;= 0. For every bounded opera-
tor T on// we have (¢, V¥TV{) = (¢, T4). In particular,
if T=T;® 1 this implies

2. Aiz((pil, Vi“ Tl Vl(pil) :ZI )\iz(q)ily Tl(pil)i
i i
or
Tr(VET VW) = Tr(T, W)
with

(3.3

Wy :Z_))‘iz| e et | .
As Ty is arbitrary, (3.3) leads to
VW, V=2, 7‘1'2' Vot XV ot | = Wi.
i

Since 3 ; ;*=1, and the only finite-dimensional sub-
space of //; invariant under V, is the one generated by
i, it follows that only a single A; is #0 and thus =1,

M =1 say, and ¢, is a multiple of §y. Hence ¥=§}® iy,
and then ¥, must be an eigenvector of V,. =

We assume now that there exists an eigenvector ¥ of
Ula) =8, expliaP,) in H =% (},, ¢,). We know that w, is
the only eigenvector of exp(iaP,). Writing // =7,

4 (® n>IGna (pn)) and U(a) = eXP(iaP]_)@ (®,,>1 exp(zaP,,))

we obtain, by Lemma 7, ¥ =w,® ¥,, Applying the same
argument to ¥,, etc., we conclude that ¥ is factorizable
and, morevoer, ¥ =8, exp(iB,)w,.'* Since ¥ is strongly
equivalent to ¢ =® ,¢,, the latter is weakly equivalent

to =% ,w,. Vice versa, of course, weak equivalence

of 2 and ¢ implies that /#/ =® (7, ,) contains ¥

=®  exp(iB,)w, with suitable 8,, so that U(a) exists in

# and leaves ¥ invariant.
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APPENDIX

Consider Hilbert spaces #/,, »=1, 2, ..., and continu-
ous unitary representations U,{4) of SU(2) on #,. Denote
by L, 1=1,2,3, the corresponding angular momentum
components on /-/,,, which generate the one-parameter
subgroups U,;(¢) = exp(itL,;) of U,(A). LetH =® (H, o,
with 1@, Il =1 for all n.

Theovem: The following statements are equivalent:

(a) # contains a product vector &0, with lic, il =1 for
all n and U,(A)o, =0, for almost all # and all A< SU(2).

(b) ® ,U,(A) exists on# as a continuous unitary repre-
sentation U(A) of SU(2).

() ®,U,;(t) exist, for i=1, 2,3, as continuous uni-
tary one-parameter groups onH.

(d) There are three sequences {a,hm,, i=1,2,3, of
real numbers «,;, so that the direct products Qﬁ ,,,(t)
of U ()= U,,,(f) exp(- ita,;) define unitary one- parameter
groups on

For the proof we need the following lemma. Consider
a continuous unitary representation D(4) of SU(2) on a
Hilbert space /), and dencte by L, the corresponding
angular momentum components.

Lemma 8: M D does not contain vectors ¢ # 0 with
D(A)p = ¢ for all Ae SU(2), then

L@, x)] < /vl Nx)l

for arbitrary eigenstates ¢ of L; and x of L;, withi#j.

This lemma may be proved first for an irreducible
representation with L?# 0. The general case then follows
by decomposing /) into irreducible subspaces. Both
steps of the proof are elementary, and are thus omitted
here.

Pyoof of the Theovem: Obviously it suffices to derive
(b) from (a) and (a) from (d). Assume (a) to be true.
Lemma 1 applied to ® .0, then implies that, for an arbi-
trary one-parameter subgroup 4, of SU(2), ® U, (A)
is unitary and continuous on /4. Since each A  SU(2) be-
longs to some subgroup A,, U(A)=g,U,(A) is unitary on
#H. The representation property of U(A) is obvious, and
continuity then follows from the continuity of U(4,) for
one-parameter subgroups 4,.

Assume (d) to be true so that, in particular, @ U4t
exists. Then, with E,4()) denoting the spectral resolu-
tion of Lz =L ;- a4 and € > 0 fixed but arbitrary, there
exists in // a product vector ®,¢,, ¥, =1, such that

(B(€) = Epg= =1,

for almost all 7 [Lemma 1, condition (iii). ]Smce the
spectrum of L 3 18 discrete with spacing > 3, we may
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choose € < and conclude that, for all w >N say,
L, =m,,.

Let A; € SU(2) correspond to a rotation by 7/2 around
the 1 axis. Then X, = U(4))¥, satisfies, for n >N,

LooX, = W ,X,.

S'1n~ce®nl7nl(ﬂ/2) is also unitary, the product vector

® X, =® , exp[-i(7/2) a4 ]x, belongs to #, too, and

therefore
© = = (U X > (1= x|

Write, for n >N, ,= ¢+ §" and similarly for x,, with
L2 =0 and 47, c[),,, the subspace of/‘/ belongmg to
nonzero eigenvalues of L2, Then x= U(A1)¢J° ¥ and
Lostr=mydn, LuaXn=m,X;, and thus Lemma 8 implies,

for # > N,
| X | < 02+ | (85, X0
itz . L e
< 2 + 7 lgah?

A (1 _7-15—) < 1.
Therefore,

m%h-](wn,xn)l]

-~ 1 )
(1-7-_5) RN

This implies ¢¥2# 0 (and, consequently, m, =0) for al-
most all » >N, Moreover, with

{wﬁ/uwﬂn if n>N and yi#0,
Grl

~ lany unit vector in#4, if n<N or ¢'=0,

the product vector ® 0, belongs to /. Choosing N’ so
that o, =2%/141 for all n >N’, we have

2=, )Y =20
wN? Nt

=25 (L-1tgim

N

(1= (&, 90 /l19301]

< 25 (L= 1gdi?) <o,

noN*

which proves the strong equivalence of @ ¥, and® ,0,. ®

Remarks: (1) If (as in the case //,= 7, considered

here) each #, contains vectors with 12=0, then we may
achieve L%, =0 for all n.

(2) It was sufficient for our proof to require, instead
of (d), only the existence of ® I ,(#) for a single axis ¢
and the unitarity of ®, exp(iB,)U,;{7/2), with suitable
real B,, for a second axis j#i. However, this require-
ment is easily shown to be equivalent to (d).
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Sequences of transformations for particle-field Hamiltonians?
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The nonrelativistic Hamiltonian for a particle interacting with a scalar field is studied by a method that
involves a product of unitary transforms. We use intermediate coupling transforms for finite particle

momenta to treat the interaction with oscillators with a range of wave vectors. Elimination of the

oscillators in the range leads to a new Hamiitonian of the identical operator structure but with a modified
interaction and mass. We show that with any finite number of divisions the self energy is always lower
than the intermediate coupling result. In the limit of infinitely many divisions differential equations are
derived for the interaction and effective mass as a function of the smallest wave vector of the oscillators

that have been removed.

1. INTRODUCTION

In the present paper we study the nonrelativistic
particle-field Hamiltonian from a point of view which
is in the spirit of the ideas of Wilson! and of Anderson.
We note that the well known intermediate coupling
theory® can be applied to study the interaction of a par-
ticle with a set of field oscillators with wave vectors
that lie in a narrow band (in one dimension) or narrow
shell (in three dimensions). This treatment is im-
plemented by a simple, explicit canonical transforma-
tion. If one then takes the vacuum expectation value
for the oscillators in question, one has “eliminated”
these oscillators. One is left with a new Hamiltonian
which has the following features. First there isac
number contribution to the self energy arising from the
interaction of the particle with the oscillators in the
band. Second there is an addition to the mass of the
particle. Finally the interaction of the particle with
the other oscillators is modified. The transformation
that we use is sufficiently elementary that the new
Hamiltonian has exactly the same operator structure
as the old one.

2

The simplest illustration of the procedure is a one
slice theory. Here the interaction of the particles with
oscillators of wave vectors greater than |K;! is treated
first by an intermediate coupling transformation. We
then show that treating the residual Hamiltonian by a
new transformation leads to a lower ground state en-
ergy than the one obtained with a single IC transforma-
tion. It is also possible to treat the residual Hamiltonian
by standard strong coupling techniques and to show that
the combination of steps improves strong coupling
theory. We will however not go into this in the present

paper.

A more interesting application results when one pass-
es to the infinite limit of a many band theory. The
theory then contains a function m(k) which tends to the
value of the bare mass as k& —« and to the dressed
mass as £ —0. At a given value of k! it represents
the effective mass arising from the elimination of os-
cillators from k| to ©. There is a vertex correction
V(i) = Vo{k) expl— K A(R)] where Vi(k) is the original

2)Work supported by the National Science Foundation under
grant DMR-76-02048,
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interaction and A(k) is a function that tends to zero as
k| —. The functions m(k) and A(k) obey a set of
coupled differential equations, The ground state energy
has the IC form with V(%) and m(k) replacing the bare
quantities in the integral over wave vectors.

Our results however yield only a modest improve-
ment of standard theories. For example, for weak
coupling the energy is lower than standard IC theory,
but one does not obtain the full perturbation theoretic
correction to that theory. The averaging procedure in
the elimination of each band ignores certain correla-
tions. In addition we do not obtain the strong coupling
limit correctly with the simple procedure used in the
present paper. To do that we need to diagonalize the
Hamiltonian for bands of a finite width (that depends on
the coupling constant) by methods more accurate than
the one employed here. The use of repeated unitary
transformations in the strong coupling limit requires
further investigation,

The Hamiltonian that we will study has the form

H=pt/2+g [[Vy(k)alk) explikg) +h.c. ]dk
+ [ w(k) @ (k) alk) dk (1.1)

for the one-dimensional case. Here % =1 and the bare
mass has been taken to be unity. V() is the bare inter-
action and w(k) the oscillator spectrum, and k2 ranges
from — © to +%°, We operate in the continuum with

la(k), a* @) =8(k-1). (1.2)
For the three-dimensional case we have
H=p%/2+g; [IW;(k) alk) exp(ik *q) + h. c. | &k
+ [ w(k) a(k) alk) d°k. (1.3)

Because of the spherical averaging involved in our
procedure the results for the three-dimensional case
are simply obtained from the one-dimensional case by
replacing Vy(k) by W;(k)k* and g by g; times a numeri-
cal factor, In some parts of the paper more explicit
calculations are carried out for the special one-dimen-
sional case Vy(k)=w(k)=1.

2. TREATMENT OF A BAND OF OSCILLATORS

For the one-dimensional case, let

Copyright © 1977 American Institute of Physics 2172



Hy=p*/2m+g [, [V,(k) a(k) exp(ikq) +h. c. ] dk

+ [, w(k) a*(k) a(k) dk. (2.1)

Here A includes the range K; to K;, K;<K,, and also
the corresponding range — Ky to — K.

Consider the unitary transform U(a),

U(a) = expliq fA ka*adk], (2.2)
U(A) a(k) U1(A) = a(k) exp(~ ikgq), (2.3)
for k inside the band A
Ua) pU-t(a) =p - fA katadk,
(2.4)

U(a)qUu(a) =q.

Next we introduce a form of intermediate coupling
theory appropriate for low particle momenta. It is an
essential feature of the present approach that we need
to perform a sequence of transforms for nonzero mo-
menta even if our aim is to compute only the ground
state energy. We use a function

f(k, p) = - gV,(k) D[1 + kpD*1/m*}, (2.5)
where
m* =m+2g* [ BVi(k) D dk (2.6)
and
Dk, m)=[w+R/2m]1.
We perform the unitary transform
w(a)=exp [,la(k) - a*(k)f(k, p) dk o)

W(A) a(k) W-1(a) = alk) + f(k, p)

for % in the band 4;
w(a)pw-i(a)=p,

g'= W(a)qW(8) =g - f ai(a%ﬁ (a(k) - a* (k) k.
(2. 8)
Note that 8f/3p is independent of p.

Next, we take a vacuum expectation value with respect
to the oscillators in the band, viz. state vectors such
that a(k) ,=0. We then have

E(a) = (&, W(A) U(A)H, U Q)W HA) 89,

=p*/2m* - g* [, VidkD(k,m). (2.9)

We now focus on the complete Hamiltonian, including
the oscillators (labelled by ) that lie outside the band
considered. Since this Hamiltonian is additive in the
oscillators the only coupling between bands occurs
through the coordinate g. We have

(B, W(A) U(A) explirg) UH(a) W-HA) &)
= exp(idg) exp(- 2*a /2), (2.10)

where

2
@ :-’5—*,[ Vi(k) D*R? dk
A
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Thus the Hamiltonian after removal of the band & is
H=p*/2m* +g fA[Vo(h) exp(- 2*a/2) a(r) exp(irg)
+hoc. ]+ [ watady-g* [ Vi(R) D(k, m) dk,
(2.11)

where A refers to the remaining part of the range.

We will need to do this repeatedly, starting with a
problem where there is an upper cutoff K. The start-
ing interaction is V(%) and bare mass is m; The
define

2 2 -1
€, =—g f 2 = k
i \, | V4| D;4(R)dRy D= (w 2mj-:> ,

(2.12)

my -y =2g" fA,.f V4 |* D3 dk, (2.13)

mho; =g [, Viq(k) D] 4 dk. (2.14)
Here

V,;(k) = Vo(k) exp[— (F2/2)(a, + ay+ -+ +a,). (2.15)

After averaging over j bands we have the residual
Hamiltonian
P

Hf_z_m—, +g[A [V, (k) a(k) exp(ikq) +h. c. | dk

i

i
+ f watadk+ 7 €,.
n=0
A

i

(2.16)

Here A; refers to the remaining wave vector domain,

We now make N slices of the domain 0 to K; (with the
corresponding negative part — K; to 0). In the limit of
large N we have a function m(k). We work with the posi-
tive wave vector range A} and double the integrals in-
volved in m;, a;, Since m; refers to lower & values than
m;_4, we have in the limit N -

- ) gy D2 -4,
( B2 ) - (2.17)
D(k) = w(k) + W o
Each ¢, is proportional to K/N. The sum
Aj-15a1+...+(yj_1 (2= 18)
becomes a function A(k),
K, 1
aw=2¢* [ ' ax s rOEOaE  (2.19)
k
and
V(k) =exp(- £ /2) A(R))V (%), (2.20)
Thus we find the differential equations
dA(R) 2g° 9 9 1
T = i) k2 VE(k) expl— £*A (k)] D (k), (2.21)
am _, 212 2 3
-5 =4g k*Vi(R) exp(— B A) D*(R), (2.22)
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with
mk=Kg)=mg, A(k=Ky)=0.
Since
dm/dk<0, m(k=0)>my, and A(k=0)> 0.

The expression for the total energy is

_ b 2 o
E= (0)—2g[ VA(k)dk D(R).

. (2.23)

Finally, we pass to the limit K —o,
3. ENERGY FOR A SINGLE SLICE
We now examine the ground state energy for a single

slice when both sides are treated by distinet IC trans-
formations. The energy is

%0 K1
E:—2g2f ar V%]Do(k)—Zng vé
K1 0
1 ) k2 -1
X - A
exp(- ko (w + 2ty ) dk, (3.1)
28 [
yi=a=5 f Vi die D,
7VI1 K1
n71—1=4g2/ V3 dk D3, (3.2)
y
Dy(k)=(w+ Br/2)1,
We study the expression in detail for w=V;=1,
Domain A: K> 1
This is the most important domain, Define
2
. _g° 32
“=% 3 (3.3)
Expanding D(k) in the high % region
=1t @ e, a—y 3 ¢
1 TS R
2 (3.4)

3 €
(Kﬂ))z_’g m sV3;20.

The first term in the energy is the standard IC contribu-
tion from the high % part. The second term represents

a modified contribution from the low & part. It may be
written as

1 2 2
92 expl-n*(Kpy)ildn 5, _ 1
5FE 2g K‘f —~—————2—1—7——~1 TR ) , X Bty (3.5)
0
This is to be compared with the value —g? 2v2 tan"!(K,/

v2) which is the contribution of this wave vector range
to the self energy in standard IC theory.

Expanding the exponential we find

_ 2t - ¥ -1
==~ | tan Kix—;g[le—tan Kyx]+ . (3.6)

There are a number of subcases.

1. Kjx>»1
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This condition is (1 +¢*)!/?«< K,;/V2. It of course in-
cludes the situation €? <1 when
vz

2
6E"—g2 2‘/7 (E—T{-—> —gz\/?— %.
1

5 (3.7)

The first term is the intermediate coupling contribution
and the last term represents a lowering of the energy
of order g*. Note that € <«<1 is compatible with g?>1
provided that g?< - K}. We can also have €2 > 1, i.e.
even stronger couplings. Then x —~1/V2¢ and

BE — V2 g%,

2

(3.8)

which is much lower than ~v2 g7,
2. Kix <1

This is the domain of very large coupling strengths,

viz. g¥> K] & . We have
2
OE — - 2g 'K, (1—95315)— +> (3.9)

The leading term is the lower bound for the self energy
noted by Lee and Pines.* It is the self energy of an in-
finitely massive source with a wave vector cutoff that is
independent of coupling constant, It is interesting that
this saturation of the interaction with a group of oscil-
lators is obtained here as a result of the modification of
the vertex and effective mass due to interaction.

Domain B: Ky <1

In this limit only a small part of the problem is treat-
ed with the corrected mass and interaction. We find that
both Kyx and K,y are less than unity. The energy is

2
bE =-2g'K, (1—%1(752-%-3)2)4—-'-). (3.10)
The IC result is
K% 1
—_—— 2 [l Rt . e
bE 28 °K, <1 33 ) (3.11)
We write
2
my=1+g%A,, yz:Zi’} B,. (3.12)

mq
In the limit K, «<1,
b V2T " 21 1
—- 2 3_ - 2 4 =
Ay f k*dkDy= g By R dk Dy 73 16
0 0
(3.13)

In small g%, (x*+y%) — % and we obtain the IC result.
On the other hand, for g?>1 we find
2,2 A+B 11
Ty TTAT 9

which tends to zero. Thus the interaction saturates,
i.e., reaches the lower bound. This is a general result
for g?>1. We have

B

:___ & -
V= eeiAy 0
so that the energy approaches

8E — - 2g%V2m, tan- %———2;;21{1. (3.14)
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With a more general w(k) and V(k) <1 it is easy to
treat the case K;> 1 when Kjy <1, my-1<1. The en~
ergy is lower than the IC result by the positive quantity

K o
2g* f 1V%,(k)kzdkv(k) f 12V DYO)D (k) - Dy(D)]dl
Xy

0

X Dy(k) = (w+%2 )'1 (3.15)

The same considerations go through with trivial modi-
fications in the three-dimensional case.

Finally, it is of interest to examine the ground state
wavefunction corresponding to the two step IC theory.
Standard IC theory works with states of total momentum

bo-
¥=UV 5,
= exp(- ig f ka*adr) expl [ (a* - a)f(k, p) dk] explipyg) &,
=exp[- § [ BYk, p,) dk] expla + (k)
X exp(— ikg) f(k, po) dky] &y expl(ip), (3.16)

Wheref(k,po) contains the bare mass. In the two step
theory
T =U-(k) V-I(R) U1\ V1) explip ) &, (3.17)
or
¥ =expl-ig [ ka*adk-iq” [ ra*ad\] V-i(r) V-1(r)
X explipog) &. (3.18)

Here again % refers to the high wave vector region and
A to the low wave vector region. We also have

q iy, 3° 19
G f l—{’l a(k) -a (k)] d <.

We use f,(A, py) to remind ourselves that in the A region
the corrected vertex and mass are used as parameters
in the transformation. Defining

F*= [ a*(k) exp(~ ikq) f(k, po) — & ff2 dk,

Fi= [ @) exp(- idg) S0 p0) - & [ foan,
we write

¥ = exp( f Aa*ad\ * G) exp(F* + F?) exp(ipgg) &;. (3.21)

It is clear that the type of correlations between bands
in the present theory is different from conventional
variational choices, This is even more pronounced in
a multiband theory.

(3.20)

4. CONTINUOUS COMPOUNDING

We now return to Sec. 2 and examine the ground state
energy for the continuum product of unitary transforms.
We first study the differential equations in the limit of
weak coupling and show that there is a g* lowering of
the IC energy. The weak coupling limit is obtained by
setting A(k) =0, m(k)=m;y=1 on the right-band side of
Eq. (2.21), (2.22). To order g2, m(k)=1+ dm(k),

Sm(k)=4g" [“#* V] D}(k) dk, (4.1)

A(R)=2g? ["I*ViD}al. (4.2)
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The energy to order gt is

__ 1 92 ’ V2

—2g2/ VERED([Dydm — Aldk. (4.3)

0
The energy for p =0 is the IC value plus the last term

SE. The effective mass m(k =0) is the IC value. We
note first that 6F is indeed negative since

Dy(k) [= VRO DY al> [ Vi) 1 DY) dl. (4.4)
We have
OE = - 4g* ( J7 B VER) Dy(R) R [ V@) 1*D3(0) dl
— J,T B VE(R) Dolke) N zﬂvguf,(l)dz) .
(4.5)

For the case w=V;=1 we do the integrals explicitly
to find

37t 1
6E:—4g4(—3? - Z) .

This improvement of IC does not contain the entire
g% correction. Perturbation theory yields

5E=-g4[/vg(k)podk ] i

Va(k) Dy(k) VA(1) Do)
-g* ff drdl oy o F (e F 13 °

(4.6)

(4.7)

It is apparent that correlations are lost in the averaging
process. This is already the case in one dimension. In

three dimensions the loss is obvious because of angular
averaging,

We now briefly analyze the differential equations for
general coupling strengths, We scale variables by intro-
ducing k*=g*/% and

E=k/k*, B=ARK*®. (4.8)
Then
d 2 -3
- g (k_i, g ) exp(- £2B), (4.9)
dB _ 2¢? ( 1 i)"‘ 2
o = + T exp(- £°B), 4.10)

m(E ~=)=1, B(f—=)=0,

We note that both m(t) and B(£) are monotone functions.

There are two main regions. The outer region is de-
fined by £2/2m > 1/k*¥* =1/g%/3. As the coupling in-
creases 1/k** moves inward to a point <1, We can show
that £2/2m(%) is also a monotone function, increasing
with increasing £. For small coupling constant g the
point £, defined by £3/2m(£)) =1/g%* isat £;>1, As g
increases £,(g) moves closer to zero and £, becomes
«<1.
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In the large £ region the differential equations

3
- d—’? =32 %4— exp(~ £2B), (4.11)
- %—? = %,zr m* exp(~ £2B), (4.12)

are independent of the coupling constant. The equations
may be integrated inward to some point £, In moderate
and strong coupling £; is of order unity., This is easily

done by noting that in the outer region

dm 2 d_B

aE =tm aE (4.13)
SO

m(E) = exp (-[ & o ds), (4.14)

¢
We find the differential equation for B(f),
4 8\ dB _,dB (d 2
(ds+e) P (ds s)B‘ (4.15)

This yields the expansion for large £

32 1 28 1 32(28)(106) ,
B=3 ?(“ 3 P T Eean e T ) (4.16)

64
2 _
m-=1+ 3

1 (64) < 2 1)1

+ — - == seo, .
P 3 (32) 37 15) F + (4.17)
In coupling strengths g~2 — 10 these series may be used
to find B(&,), m(E,) at £,~4 and the differential equations

can be integrated numerically in the inner region.

In the extreme inner region we have

k*? 1 1

B_B(£1):—_2— m—m N (4918)

where £; «<1. The region £, to £, can be treated numeri-
cally. The limiting values for small ¢ are given by

m(E) =m(0) - %53(,‘3*)6 foee,

3¢7,%3)8
B(ﬁ):B(O)_gﬁm_((%))rer.

(4.19)

It is not profitable to study the asymptotic forms in
the limit of strong coupling since we do not expect the
theory to be correct in that limit. The averaging
procedure that has been used in the continuous com-
pounding case is so drastic that it throws away impor-
tant correlations. The present method also has no ap-
parent relation to the well known physical picture of the
strong coupling limit.?
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5. CONCLUSIONS

We comment on extensions of the work reported here,
some of which have been explored in detail. In the case
of the single slice theory one can treat the low wave
vector domain by more accurate methods than IC. For
example, if K, is independent of a coupling constant a
method such as that of Lee and Pines! yields the lower
bound limit in strong coupling and is also accurate in
the weak coupling limit, The Hamiltonian for this do-
main can also be treated by adiabatic strong coupling
techniques of Pekar or Bogolyubov—Tyablikov,? If
however we are concerned with a problem with an in-
finite cutoff we can take the slice K, to be coupling con-
stant dependent. If K; increases at least as fast as g?
the high momentum region can be accurately treated
by IC. But then the Lee— Pines! method does not give
the strong coupling limit for the low wave vector domain
(which grows with increasing coupling). One must use
the adiabatic method. The resulting theory is closely
related but not identical to the author’s transition
theory® and also handles a certain class of ultraviolet
divergent theories.

We have noted that in the continuous case, i.e., the
use of infinitely many unitary transforms, one loses
accuracy because of the averaging steps. It appears to
be difficult to hold the operator parts and to organize
them in a definite way as the unitary transforms are
performed. This has to be done if the theory is to be
systematic. An alternative approach is to take a finite
number of bands whose width is coupling constant de-
pendent, Each band is treated by canonical transforma-
tions and the modified Hamiltonian for the other bands
can be obtained.

In summary, in the present paper we have studied an
example in which explicit unitary transforms have been
successful in treating the interaction of a particle with
oscillators with a spectrum of wavelengths, We have
shown that treating the interaction with different wave-
length ranges sequentially leads to improved results,

1K, Wilson, Rev, Mod. Phys, 47, 773 (1975).

p.W. Anderson, J. Phys, C 3, 2436 (1970).

3T.D. Lee, F,E, Low, and D, Pines, Phys, Rev. 90, 297
(1953); 8,V, Tyablikov, Zh, Eksp. Teor. Fiz. 25, 688
(1953); M. Gurari, Phil. Mag. 44, 329 (1953).

4T,D. Lee and D. Pines, Phys. Rev. 92, 883 (1953).

SN.N. Bogolyubov and S, W, Tyablikov, Zh, Eksp. Teor. Fiz.
19, 256 (1949); G.R. Allcock, Adv. Physics 5, 412 (1956);
S.1. Pekar, Untersuchungen u.d. Electvoneltheovic der
Krislalle (Akademie-Verlag, Berlin, 1954).

%k, P. Gross, Ann., Phys, {N.Y.) 8, 78 (1959); 19, 219 (1962);
Phys. Rev. D 12, 421 (1975),

Eugene P. Gross 2176



Magnetic monopoles in SU(4) gauge theories
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All spherically symmetric magnetic poles are explictly constructed in SU(4). We show the relevance of the
concept of the little group which transforms spherically symmetric solutions among themselves. Unlike the
SU(2) and SU(3) situation this little group is not ailways Abelian in SU(4). On the other hand, it is shown
that while the total strength of the pole is always quantized its projection along the Higgs field is
sometimes arbitrary. This is also in contrast with the SU(2) and SU(3) cases.

. INTRODUCTION

Many papers' generalizing 't Hooft? initial construc-
tion have solved the problem of finding magnetic poles
in gauge theories with symmetry groups A larger than
SU(2). We here present in great detail the SU(4) case.

We want to put the emphasis on the underlying invari-
ance properties of the explicit solutions. In particular
we will show the crucial role played by two groups and
their algebra which we will call respectively the dia-
gonal group D and the little group£.

(a) The diagonal group D

Let E, (i=1,2,3) be a subalgebra of the algebra of H
with the commutation relation of SU(2),

[EE’EJ]=i€ikak' (1.1)

This corresponds in the global group H to a subgroup
which could be SU(2) or SO(3)=SU(2)/Z,. LetdJ; (i
=1,2,3) be the generators of the space rotation group
(including spin if needed). Clearly

J;=i€;1,X ;8,+ (spin part), (1.2)
[, d,)=ie; 0, (1.3)
[J;,E;]=0. (1.4)

The diagonal group D has generators defined by
L;=J;+E; (1.5)

and has the commutation relations (1.1) of the algebra
of SU(2). Use of (1.5) clearly mixes internal indices
with space indices. The solutions we are looking for
are static, i.e., they have no time dependence and are
“spherically symmetric, ” i. e., they are annihilated by
L;. In other words, the solutions are time-independent
singlets under the diagonal group.

(b) The little group ¢

Let us consider the vector space of the algebra of H
with position, x, dependent scalars, and the subset £ of
these operators which commute with the L,,

[e,L;]=0. (1.6)

These operators, once normalized, generate an algebra
which will be called the little group algebra.

It is clear from their definition that little group
transformations transform spherically symmetric so-
lutions into spherically symmetric solutions. One par-
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ticularly important operator belonging to! is E, the
radial component of E, [see (2.9) for notations],

E=%E,. (1.7)

We stress here that this little group ¢ is not the little
group { , which is generally used. To make the connec-
tions more clearly we will introduce three other little
groups:

(i) ¢, will denote the generators of the little group of

the Higgs fields. {, correspond to the little group of the
vacuum, Its generators annihilate &,

,®=0. (1.8)

Their direction in SU(4) correspond to the remaining
mass zero vector bosons,

(ii) £, will denote the generators of the little group of
G

YA

£6G,,=0. (1.9)
(iii) £ 5 will denote the intersection of £, and ;. It is
the true little group of the full solution,

(=0, NL,. (1.10)

The paper is organized as follows. In Sec. II, we de-
fine our notation, the type of solution we try to find, the
four inequivalent embeddings of the algebra E; in SU(4),
and show how the calculation can be simplified by sub-
traction from W, a specific term S,. We end with some
general considerations. In Sec. IiI we study in turn the
four embeddings. In every instance we present:

(i) the generators of SU(4) decomposed with respect to
E

i

(ii) the little group generators ¢,

(iii) the natural basis vectors for W, (2.16) and the
change of basis suggested by £, These basis vectors
are identical for G, (3.A.27) and D, .

(iv) G,, and the Lagrangian,

(v) pointlike solutions for G,,,
(vi) Higgs scalars-potential,

(vii) Higgs scalars, kinetic term,
(viii) discussion,

In Sec. IV all the solutions are discussed and the con-
clusions are obtained.
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1I. NOTATION-SU(2) SUBALGEBRA—-
INHOMOGENEOUS SUBSTRACTION

In this section we recall some known facts. First we
give the gauge invariant equation and discuss the static
solutions we want to find. Then we identify in SU(4) all
possible inequivalent SU(2) subalgebras [the E, of (1.1}
We find that there are four distinct such embeddings.
Finally we explain why it is convenient to separate W,
into two pieces, one piece S, the inhomogeneous sub-
straction being written explicitly. This simplifies the
computations considerably and makes the little group
properties clearer.

A. Notation

In order to specify the notation let us recall the SU(4)
gauge invariant Lagrangian L

L=—5(G%,) -3(D,®)* - V(®) (2.1)
for the fifteen gauge fields W3 and the Higgs fields &,

GS,=0, W2 -9, W2 +ef " Wh W, (2.2)
where f%° are the (completely antisymmetric) SU(4)
structure constants. The covariant derivatives

D, =8, - ieWS,H, 2.3)

with the H* the appropriate generators corresponding to
the representation chosen for the Higgs fields. To be
specific we will later also assume that ®° belongs to the
adjoint 15-dimensional representation, Many arguments
in the paper however do not depend on this hypothesis.

Introducing A% (a=1,...,15) as the (basic) four-di-
mensional representation of SU(4), it is convenient to
associate in a one-to-one correspondence a four by
four traceless matrix W, (or G,, or ¢) to the 15 com-
ponents W5, (or GS, or &%) by

5

W, = > wen,, (2.4)
a=}

W2 =3 Tr(W,A,). {2.5)

In this notation, for G,, and for a 15-dimensional ¢,
G,,=0,W,-da,W, +(e/i)W,,W,],
D, ®=3,%+(e/i)W,,&],

(2.6)

while the space dependent SU(4) gauge transformations
(MM*=1) are
] - * H a *
W,=MW M"+ (i/e)M M (2.7)
G, =MG, M, @'=M®M".

We want to find asymptotic (pointlike) time indepen-
dent solutions. By time independent we mean that

W,=0 (2.8)

and that no explicit time dependence appears (static so-
lutions). The problem reduces to a three-dimensional
%; (i=1,2,3) one. We choose the Euclidean metric. It
is convenient to work with the following variables %;,7:

ri=2,x%, X,=x,/r. (2.9)
i

2178 J. Math. Phys., Vol. 18, No. 11, November 1977

Asymptotically the three terms in (2.1) will behave
differently,

V(®) -~ const,
(the constants

t -
D & y—wo 2208 , may be x; (2.10)
B v t
dependent)
const
Guv (i 72

Hence, in this approximation, all three terms in (2.1)
have to be maximized separately. In all cases we will
focus our attention first on G, and only later study
the two other terms. In particular, it will turn out in
all instances, as is well known, that

D,®=0, (2.11)

but this equation will not be used as a starting point,

B. SU(2) subalgebra

In order to define the diagonal subgroup we need to
know all possible ways to extract from the algebra of
SU(4) the SU(2) subalgebra E;. Up to an equivalence
this is done quite easily by considering the four-di-
mensional (faithful) representation. Under SU(2) this
representation splits into irreducible representations
of SU(2). All possible embeddings thus correspond to
partitions of 4, namely,

44, (2.12a)
4103, (2.12b)
4-2d2, (2.12¢)
4-191D52, (2.12d)
4-1F1D1& 1. (2.12e)

The possibility (2.12b), for example, means that 4 de-
composes in a triplet plus a singlet under SU(2). The
(2. 12e) possibility is clearly excluded since it means
that SU(2) does not act at all on the representation. It
is easy to see that the other possibilities (2.12a)-
(2.12d) can be realized. These decompositions are
unique up to an equivalence (inner automorphism).

Since the representations of SU(2) are all self conju-
gate, the decomposition of 4 [the representation conju-
gate to 4 in SU(4)] is identical. From these remarks it
is then easy to construct the decomposition of any other
representation of SU(4). In particular since the adjoint
(15-dimensional) representation is obtained in

4:4=1D15. (2.13)

The decomposition of 15 can be obtained by simple
SU(2) decompositions as

15-3B5D 7T, (2.14a)
15-123P3D3EB5, (2.14b)
15-101015303B3D 3, (2.14c)
1512101012620 28283. (2.144)

These results will be used extensively later.
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C. Inhomogeneous subtraction

We have seen that under SU(4) gauge transformations
M the gauge fields transform (2.7) with an inhomogene-
ous part. For certain subsets of gauge transformations
which will turn out to be those of the little group £ it is
possible to find a solution S, of the following matrix
equation:

S,=MS M* — (i/e)Md,M*. (2.15)
If one then defines

W,=W,+S, (2.16)
under the little group transformations one has

W.=MWM (Mc), (2.17)
i.e., there is no inhomogeneous part.

It turns out that for all known cases
S,=(1/er)e, ,%,E,. (2.18)

This is checked easily for the group transformations
generated by E of (1.7).

It is precisely the property (2.17) which enables one
to greatly simplify the computation if one works with
W, rather than W,.

D. General considerations

Let us now stress two important results which are
valid when ¢ belongs to the adjoined representation.

First it will turn out in all instances that maximal
G,, [G, or better G; see (3.A.27) and (3.A.40) for nota-
tion| lie as ¢ in the little group { directions and more-
over that

[G,0)=0. (2.19)

This implies that they can be diagonalized together and
the eigenvalues of both matrices [remember (2.4)] are
of great importance,

Also the other quantity which plays a major role is

tr(G¢)

g= CICRIEEE (2.20)

It is the strength of the magnetic pole in the direction
of ¢ as opposed to the total strength as given by

8t =tr(G?). (2.21)

IHt. THE FOUR CASES

We now turn to the explicit solutions of the equations
in the four cases A, B, C, and D, We discuss in turn
the three parts of (2.1).

A. The 4 — 4 embedding

(i) Decomposition of the generators of SU(4)

There is only one way up to a SU(4) equivalence to
embed the four-dimensional representation (S=%) of
SU(2) in the four-dimensional representation of SU(4).
A specific set of properties of E, is given in Appendix
A. The remaining 12 generators of SU(4) decompose
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according to (2.14a) in a 5-plet K;; (K;;=K;;, 2..K;; =0),

K”=%(E¢E1+E1E¢)—%611(EmEm), (3'A'1)
and a completely symmetrical 7-plet
N{jh(ENiik =0>;
i (3.A.2)

Nijp=5E{E;Ex+E;ERE; +EyE{E;
+E,E,E,+E,E, E;+E,E,E,)
‘% (B By + 0, Ej +04; Ep).

The commutations relations of these operators and
relevant traces are in Appendix A,

Let us also introduce the projections of these opera-

tors along the x; direction (2.9) by
E=X,E;,

K=%K, K;=XK;, (3.A.3)

N=%N;, Ni=%,Ny;, Ny =N
(ii) The little group

The three operators {P}={E, K, N} generate the little

group { and commute. Hence
L={E,K, N} =U(1)®U(1) ®U(1). (3.A.4)

Yet it is useful to introduce a new basis for these
generators by defining the three commuting generators
R={A,B,C} by

A=-2E +N/3,
B=E+N/3,
C=K/2,

(3.A.5)

An infinitesimal transformation of { is

M=1+inP, (3.A.6)
with the three veal v-independent parameters 7
={e, k,n} or

M=1+ipR, (3.A.7)
with the three real parameters p={a, 8,7}

a=-c b,

B=e+En, (3.A.8)

v =2k,

It is then easy to check that formula (2.17) and (2.18)

are valid for M of the form (3.A.6) and (3.A.7).

(iii) Basis vectors for W,

We now want to construct the most general basis for
static spherically symmetric W) (W§=0, n=1,2,3,
a=1,...,15). There are nine independent orthogonal
basic vectors. Their corresponding matrices (2.4) are
naturally chosen as

Tll,u =5CpP7 {P} :{E’ K: ~V}, (3.A.93)
TZPU =('?M;Ci_61‘i)Pi’ {Pt} :{EUKU‘V:'}’ (3A-9b)
T§u =€,4P;. (3.A.9¢)
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Orthogonality is defined by the scalar product [see
(A10) for the norms]

2 Tr(TE, TP, (3.A.10)
u

In this basis W,, W, are written
W, =WiT},, W, =W{T%,, (3.A.11)

where summation on P and 7 is understood.

The components Wf then depend upon » only. In
writing (3.A.5) we have introduced the natural choice.
In particular, in (3.A.9a) the tensor T, is in the direc-
tion of %, while in (3.A.9b) and (3.A.9¢) T, are ortho-
gonal in directions orthogonal to ¥ .- In other words,
(3.A.9a) is the radial component and (3.A.9b) and
(3.A.9c) are the tangential components. This distinction
is well suited for spherically symmetric solutions,

Consideration of ¢ however suggests (see Appendix
E) another choice for the basis vector of W, [(2.16) and
2.1m],
T i )
W, =W ,T¢
=Wue T(um) +W(A)TL(JA) + W(A B\TLAB)
=W TUP +WHF, +tr(W*T,), (3.A.12)

»

T? is the new set of nine basis vectors (Tfﬁ”, T 275"
T ETgAw;A, B=1,2) which we now define.

The set -T-fj has simple transformation properties
under ¢ in its new basis (4, B, C) (see Appendix E). It
is composed of the three singlets (Tfﬁp))

TPP =714, (3.A.13)
with P=1{E,K,N} or P=4{A,B,C}, and

W(lp) :Wlp: (3.A.14)
of a doublet under the A transformation

- T _2pE _ W

T, s?ﬂ,"(T” 2Ty = T2y > (3.A.15)

T® =_27Z <78,
with
(3.A.16)

(o ewE i
WEW(A):<—(1) _ZE 3_‘ZN ,
Wioy=-Wi+sWy

the remaining four tensors Tz’“ form a (2®2) multiplet
under B® C transformations

- il 3 T(12) _ K
T ET(AB)E<TL11)=ngu+TJBVu T”=T >’
w=tu _ _
r = AT -, TE=1Y
(3.A.17)
with
_ s _
= _ Wan= Wi+ Wy W= Wy
W=Wp = e o )
W =-Ws; —s Wy Wig=Ws
(3.A.18)

By considering global transformations
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cosp si
M, =( €O5P SIP (3.A.19)
~-sinp cosp
corresponding to two-dimensional representations for
the three U(1) groups, then
Wi=M W, (3.A.20)
W’ =MWt (3.A.21)

This can be proved easily by using (2.17) and exponen-
tiating the transformation (3.A.7) (3.A.8). These con-
siderations will not be repeated for cases B, C, and D.

Finally before going to the G, it is useful to factor-

ize for all W a term (er)™,
W=(1/ev)V. (3.A.22)

Asymptotic conditions (2.10) will then correspond to
constant V’s.

Elementary group properties then tell us the results:

(a) The following quantities are £ invariant:

1=Tr(7D), (3.A.23)
1,=det(9), (3.A.24)
1= (V*7). (3.A.25)

(b) Multiplication of 1% (or H~/) on the left (i7 or W on
either side) by io, does not change their transformation
properties since

(io,)M(io,)" =M. (3.A.26)
(iv) G,, and the Lagrangian

In this subsection we present the general form of the
spherically symmetric static G,,’s and find the asymp-
totic (maximal) solutions.

Since G,, is antisymmetric with nonvanishing space
components only we define

Gn=%€puvcuw Guv=€ u-vap (3'A'27)
whose transformation properties are
G,=MGM", (3.A.28)

The basis for spherically symmetric G,’s will thus be
identical to the basis for W, [i.e. (3.A.9) or (3.A.13),
(3.A.15), and (3.A.17)]. Hence under the little group the
15 component§ of G, decompose as three singlets G, p),
an A doublet G, and a B®C-2®2 representation G.
After some computations one finds [(2.6),(3.A.27)]

G,=G T (3.A.29)

with the values [see (3.A.13)-(3.A.18) and (3.A.26)].
First

13 2

Gupy= Wz(glﬁ 515 - 1>, (3.A.30)
3

G(u()="e712, (3.A.31)
2

Gam=—z 1), (3.A.32)

the three invariant components. The A doublet is
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TABLE I. The six maximal solutions (a~f) [£=TU(1)® U1) ® U1)] for the (4~ 4) spherically
symmetric G,,. The defining equations are: for I; (3.A.23)-(3.A.25), for G (3.A.27),

(3.A.40), (3.A.5), for g; (3.A.41), forl;(1.9), and for gi, (2.21),

(3.A.42), m® n is a short-

hand for the Lie algebra of SU(m)®SU(r) except when m or n equals one where it means the

Lie algebra of U(1).

a b ct d#

e f
I 1 + : 1 0 0
I, 0 0 —te € 0 0
Iy 1 0 5 0 1 0
G 0 24 ~(B+€Q) $[34 - (B+€0)] -3iB A-B
€=+1 €=-~1 €=+1 €==1
e T T T T S
1 1 1 1
& 0 -1 T -7 -7 -1 0 )
1 1 1 1
& 0 1 7 -7 1 T 0 T
1 3 3 3 3
& 0 1 T i 1 H 7 T
Le 4 2®2Q®1 3®1 2Q01®1 20181 1®1®1
Stot 0 4 3 % % 5
unit 2
~ 1 -
G= 7”—[ (wz)rV V'], (3.A.33) V= i 412 (C 1, -2C,L,),
= ¥
where the dot means differentiation with respect to 7; Var) = 20 __412) (2C,1, - Cl), (3.A.37)
while the B®C, 2® 2 representation is [(E4)] _ v
V(xN)=+an'
G= [ (o )rV+V 5,V Replacing these values back in the Lagrangian one ob-
_ - tains
- Vuc>(wz)V(wz)]- (3.A.34) LB e )
~FemAL A\ T T
The covariance of the formulas under the { transforma- ’ -
tion is obvious, (3.A.26). 1
10n 1S Viou ( ) _W[é[s(lt-'—‘l-)-'- 213 _ 5]2+ 9(1’ _1_)2
We now turn to the Lagrangian and to maximization. 36 9
[, +1)-1 3.A.38
First using (2.4), (3.A.27), and the normalization of the +3 A +1)-1)] (3.A.38)
T tensors from Appendix A, with
__%Gf‘av)G‘(‘a) I =(1£25)/2. (3.A.39)
= —%Tr(GDG,) The form (3.A.38) together with the definition of the

1 2 2 9 2
-4[5Gt 5+ 4Gk + £ Gl

+4(GtG)+ 6T (GG, (3.A.35)

As is clear from (3.A.30)—(3.A.34), the V5, do not
appear. This means that the V,», are simply con-
strained. After some straightforward computation one
can eliminate these components. At the same time
three of the remaining six derivatives of V and V will
be eliminated. Hence only three linearly independent
combinations of these six derivatives will survive,
namely Il, I and I Indeed if we define

C,= —Tr(&ﬁ‘w ),
= —Tr-(V(wz)V)
C3= —(V‘io'ZV),

(3.A.36)

then
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invariants (3.A.23)-(3.A.25), and (3.A.39) is particular-
ly simple and elegant and shows the importance of the
little group properties.

A final remark is useful here. Asymptotically [(2.10)]
V will behave as a constant. Thus in this approximation
G, will correspond to a field which is of the magnetic
type with its nonzero components given by (3.A.30)-
(3.A.32). At this point G, is still a matrix whose physi-
cal interpretation will be given later. Asymptotically

G,=%,G/er? (3.A.40)
and the eigenvalues of G are g;:

g =3, +21,-1),

§2=2 (=30, = 6l,+ 41, - 1) (3.4.41)
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TA?LE II. The six solutions (1-6) for the (4— 4) spherically symmetric Higgs fields. The
defining equations are for & (3, A, 5), for I; (3. A.23—25) for &, (3.A.44), for g? (2.20), for/,

(1.8), and for m®n see Table I.

1 2 3¢ 4* 5 6
® 0 ®,A ®p(B+eC) P A+ Sp(B+€C)  @pB+dC
€=+1 €e==1 €=+1 €=-1
o, 0 $1=0, &y=0; =%, P3=8 &,;=-9, @, =9, arbitrary
¢3=¢4 ’—‘@4 =@3
I, arbitrary I3=0 L =—2¢l, Iy ==2¢l, I1=1, Li=I=1I
I;=0 =0 =
Ly 4 202Q1 381 2Q1®1 201®1 1I01®1
The norm of G is defined by b, = ,= b= -3¢, (3.A.45Db)
1/2
ot =[tr(GG)]"2=(Zi>g§> . (3.A.42) = 0. F Oy= by, (3.A.45¢)
all ¢,’s are different, (3.A.45d)

It will correspond to the strength of the monopole.
(v) Pointlike solution

Pointlike asymptotic solutions are obtained by maxi-
malizing the nonderivative part of (3.A.38) with respect
to the parameters 7 and V. One obtains six different
types of solutions which are given in Table I together
with relevant properties. It is remarkable that the re-
sults are expressed most simply in the (4, B, C) basis
(3.A.5).

(vi) Higgs scalars—potential term

The Higgs scalar ¢ could belong to any representa-
tion of SU(4). To be specific we will treat here the
case where ¢ transforms with the adjoint representa-
tion of SU(4).

The most general form of a spherically symmetric
solution is [see (3.A.5)]

b= QgE+ dpK+ QyN=0pP
= A+ pgB+ b C=d R,

Gp=—p+§ Oy,

bp=Pp+e Py,

bc=20k,

with ¢, or ¢ depending on # only. General theorems
about the maximalizations of the Higgs potential V,
(2.1), tells us that ¢ is generally maximal when it has
one or more equal eigenvalues. Nonequal eigenvalues
are also possible but correspond to less interesting
situations. The eigenvalues of ¢ are

¢1=%¢E+¢K+%¢N7
$,=305 - Ox — 5y,
Py= -3 05 - Ox+5 PN,
$s= 205+ Ok ~ 5 P

It is not difficult to discuss all the possibilities; there
are four types:

¢3¢ ¢1= ¢2¢ ¢4$¢'3v

(3.A.43)

(3.A.44)

(3.A.45a)
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and all the distinct permutations of the indices (1,2,3,4).
The little group {4 (or stability group) of ¢ always con-
tains the £ group but is in general larger, Correspond-
ing to the four cases just mentioned, the little group
algebras are isomorphic to

SU(2)®U(1)®U(1) locally, (3.A.46a)
SU(3)®U(1) locally, (3.A.46b)
SU(2)®SU(2)@U(1) locally, (3.A.46¢)
U(1RU(1)RU(1)®U(1) locally. (3.A.464)

We now turn immediately to the maximalization of the
kinetic terms of the Higgs fields. We will show that its
maximalization establishes a precise correspondence
between the extremal values of G, and of ¢.

(vii) Higgs scalars—Kkinetic term

In terms of the definition (3.A.43), (2.16), (3.A.12),
and (3.A.23)-(3.A.25), the kinetic term of the Higgs
fields become [(2.6)]

$D,¢''D, ¢ =5:Tr(D,$D, )
—4f565+ 463244
6
_ﬁ

+—5 (0% +40%) [ +40p0c]y)

+%2 ¢,§,13], (3.A.47)
Asymptotically again the derivatives do not contribute
while the maximalization with respect to V, 17, and ¢
considered as constant leads to Table II. In any in-
stance, D, ¢ turns out to be identically zero in agree-
ment with the general theorems, and ¢ commutes with

G [see (2.19)].

(viii) Discussion

Comparing Table I and Table II leads to a correspon-
dence between the asymptotic solutions. This is given
in Table III. Following ’t Hooft, the component of G,
in the direction of ¢ in internal space is called the elec-
tromagnetic monopole, its strength (3.A.40) is
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TABLE III, The correspondence between the solutions for G,, and & in the (4—4) case, The defining equations are: for{q,{;, /g
(1.8)—(1.10), for g% (2,20), (3.A.48), g? is defined as the strength of the component of the G2 orthogonal to the direction of ¢,

for m ® n see Table I,

1(a~f) 2b 24 2f Be) (3d)* (4d)* 5e 5f
lo 4 292®1 20201 23201 3®1 331 20191 22191 201®1 1Q1Q1
Is=L¢ see [ 20291 1®1®1 [ 211 lo [ 191®1 [
Table I
2 (2@, — 3®5)2 952 942 )
g SCLY Sl L7 VR R — L T
unit ¢ / 4 4 4 8 3 TL+30] 20,8, 204+%5 204+ 0% &
gLZ see 0 % 1 0 _g_ %_gZ %_gil S_gZ 5_g2
unit 2 Table 1
gin see 4 % 5 3 T 3 % 5 >
unit e Table I
ii) The little group
Tr(G¢) (G.A48)

= Tr(pn)] ™

but as is seen in Table IIT and as was already known in
SU(3), G, does not always lie in the direction of ¢. This
is unlike the SU(2) case where G, and ¢ are parailel.
The components of G, orthogonal to ¢ lie in the little
group £. At this point it is useful to introduce €s: the
little group of the full solution , i.e., the stability
group of G and ¢. The part of G, orthogonal to ¢ will
always be called a monopole because the { little group,
being U(1)® U(1)® U(1), allows no freedom for an
isopole.

In SU(3) the angles between ¢ and G, in SU(3) could
only take special value. This leads to a quantization of
charge. Here, as seen in Table III, a new freedom ap-~
pears because the angle between ¢ and G, in £ is some-
times arbitrary. No direct quantization follows! In
other words, once the direction of charge is fixed the
direction of the magnetic poles is still arbitrary. This
is due to the fact that since the little group £ 4 is larger
than U(1) there may exist more than one mass zero vec-
tor boson compatible with electromagnetism.

B. The 4 - 3+ 1 embedding

We will now repeat more briefly the computation for
the case 4~ 3 +1. The procedure will be very analogous
though the details are quite different.

(i) Decomposition of the generators of SU(4)

The identification of a three-dimensional {vector) rep-
resentation of SU(2) in the four-dimensijonal representa-
tion of SU(4) is again unique up to equivalence. The E,
are given in Appendix B. Taking into account (2. 14b),
the remaining twelve generators of SU(4) decompose into
a singlet which will be called Z, two triplets K;, N;, and
one 5-plet F;; [7), F;, =0, F,;=F,; (see Appendix B)]. As
in the preceding case we also define the projections of
these generators along %, directions,

E=21Ei, K=’?iKn (3B1)
N=5ZiNi’ F::)?in F‘izijFi

i
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The operators {Q}={z,{P}}, {P}={E,& N, F} gen-
erate the little group {. These generators close in the
algebra of SU(2)Q U(1)® U(1) as can be seen by a change
of basis, Let

A, =K, A,=N,
A,=%Z -F, {R}=(A,/2,B,C)=SUQ2)®U(1)& U(1),
B=E, C=3Z +2F, (3.B.2)

A;/2 have the commutation relations of SU(2) and com-
mute with B and C, Let R={A,, B,C}. An infinitesimal
transformation of £ is written

M=1+itQ=1+ipR (3.B.3)

with five real independent parameters §=(¢, €, k,1, ¢),
p= {a,-, B, y}. These two sets are related by obvious re-
lations.

(iii) Basis vectors for W,

Quite naturally the 13 basis vectors for W,, are written

TR =%, R, {(R)}=1{4,,B,C},
Ty, =(%,% -8, )P, {P}={E, K,N, F}, (3.B.4)
Tow=€uis &, 85 .

With these definitions the basis vector for W, are

Tf;J:’?uR; {R}:{A“B,C}, (3.B.5)

Under the little group transformation Tfu and Tﬁ, are
singlets while Tﬁf form a triplet (vector) under the SU(2)
(A generators). The remaining eight components behave
as a tensor

T4BC A=(1,2), B=(1,2), c=(Q1,2), (3.B.6)

transforming as a 2® 2® 2 representation of SU(2)® U(1)
®U(1)A,, B,C). For example, for B and C fixed, T4°2:¢
(A =1, 2) behaves as a spinor under A; transformations,
The precise correspondence is given in (B18). At the

same time [see (3.A.22), (2.16)]
Vy =VenyTF, +V.p,cTABC . (3.B.7)

It is also useful to write
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TABLE IV. The four maximal solutions (a—d) for the @~ 3

® 1) spherically symmetric G, [ =SU©)® U1)® U@)l. The
defining equations are: for I; (3.B.9), for G (3.A.27),
(3.A.40), for g; (3.B,16), forl,; (1.9), and for g, (2.21); for
m & n, see Table I,

a b c d*
I 2 1 0 5
€
I, 0 0 0 3
Iy o 1/2 0 5
€e=+1 €=1
& 0 —1/2 -1 ~1/2 -1
& 0 1/2 1 1 5
g3 0 1/2 0 0 %
g4 0 -1/2 0 -3 0
;. 4 28281 2@1¢1 28 1@ 1
2 3
Stot 0 1 2 5
unit e
Va, =iVo =iV,
— 1 - -
VAz =2 Vi~ Ve, (3.B.8)

VAs = ‘%(VU_ +V22) .

Hence, defining a symmetric matrix V,, =V3,. This
corresponds mathematically to writing a vector as a
symmetrized product of two spinors.

The following invariants are then constructed:
1, =V 5.cVa%n", c€an€cocOnp,
1,=Va,8,cVa" 87 ,c'€anr€ppOccr {3.B.9)

13 :UAAIUAIIAIIIEAAHEAIAN, y

Usar =Va,5.cVar, 8", c€8p€cer =Una (3.B.10)
The metric has been used explicitly,
(20,)anr =€a4r. (3.B.11)

(iv) G, and the Lagrangian

Spherically symmetric G, (3.A.27) have the same
basis as W,. Hence e72G, is composed of two singlets
Gg, G, and a A triplet GA{’ i.e., the set {GR},

. 1
GA1 =10, Ga,= 927 G, - Uzz))

(3.B.12)
GA_q:'—%(Ull +Uzz), Gp =%11 -1, Ge=1,.
We note that
Ga,Ga, =215, (3.B.13)

The remaining eight components contain derivatives and
guadratic functions of V’s,

Gap.c==€ppVa,p',c+VisyWa.n.c
-Vieresnr€ce'Va,p e’

{3.B.14)

~Vaar€a'ar€pp'Var 5", c.
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As in the preceding case, the Lagrangian does not de-
pend on the derivatives of the {VR} components. These
can be eliminated., The essential ingredient is that the
Lagrange equations for {V,} are linear in {VR} and that
the inhomogeneous terms are linear in V, 5 .. We will
not give these lengthy details here. It is sufficient for
our purpose to note that the elimination of these five
components eliminates five derivatives V, 5 c. Since
there were eight derivatives (considered as a vector
space) to stz_zrt with, there remain three derivatives,
namely 1,, I,, and 1'3. Hence the G,,5,c term only con-
tributes to the kinetic term.

(v) Pointlike solutions

As in the preceding, the asymptotic pointlike solutions
are obtained by maximalizing the nonderivative part of
G,, i.e., the set G;. Using Appendix B, that part of the
Lagrangian becomes |{3. B. 12)],

1 1
=i <E i, - 2% +1§ +13) +derivatives .
(3.B.15)

The eigenvalues of G [(3.A.40)] for asymptotic solutions
are as follows:

& :%(12“’11—2)’ & :%(12—11 +2),
g =-3ll,~ (213)1/2] , & ==z, +(213)1/21

Maximalization leads to four different solutions which
are listed in Table IV. Again the strength of the mono-
pole is defined by (3.A.42).

(3.B.16)

{vi) Higgs scalars—potential

A 15-plet of Higgs vectors reduces, for spherically
symmetric solutions, to

P =¢pR, {R}:{Ai’B’ C}—
Let us define
Op = (95, + 04, + 65 V2,
the length of d)Ai and also:
(PAl = i¢12 = Ll%l ’

(3.B.17)

(3.B.18)

1
¢A2:E (d’u" ‘1)22)’ (3-B-19)

ba, = =2 (O + Do) .

The eigenvalues of ¢ are then
Gy =@c+dp, P=¢c— b5,
Py=~bc+da, P;=—0c—P4.

They are clearly { invariant.

(3.B.20)

According to the equalities between these eigenvalues
the Higgs vector little group can belong to one of the
sets (3.A.45) and (3.A.46). They correspond to maximal-
ization of the potential.

(vii) Higgs scalar~kinetic terms

Owing again to the { little group properties D, ¢ the
covariant derivative of ¢ can be written very simply
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TABLE V. The six possible solutions (1—6) for the (4— 3 & 1) spherically symmetric Higgs fields. The defining equations are for

&, (3.B.20), for I; (3.B.9), for & (2.20), and for {4 (1.8); for m ® n see Table I,

1 2 3 4 5 6
o, &,=0 Sy=dy  By=®; By=®y By=®, b=y By =0y By=8; P;=9%; &=%; =%, arbitrary
By=8; by =By =, =d, =&, =&,
I;  arbitrary 2 L=I 2 I=I} arbitrary 2 L=1f=1} L=0
g2/ 1 0 ‘é— arbitrary arbitrary
le 4 29 2@ 1 3€1 3% 1 2©1©1 18181

with the same tensors as W, [(3.B.5), (3.B.8)]

and three triplets

(3.C.2)
The projections in the %; direction of the triplets are
(3.C.3)

The seven operators {R}={E,K*’ N®} generate the

Dy ¢=DgTT, +D4,p5,cT1""C, (3.B.21) N (k=1,2,3).
and N
; 2 =3 E=%,E;, N®=%,N®¥,
Dy =, +=—€,,V, ¢
STy T AT (il) The little group
DB=¢>By Dc'—"bc,
(3.B.22)

1 _ _
Dy,g.c= ’a (-®s€p8'Va,pc=2¢c€ccVa,a,¢’

~Pan€aranVar p.c).
Again the covariance properties under ¢ ensure the cor-
rect transformation laws of the different terms. Maxi-
malization leads to D, ¢ =0. In view of the first equation
of (3.B.22) this implies in particular that V,, and ¢,, be
parallel three vectors,

The results of the maximalization are given in Table
V, and comparison between Tables IV and V are sum-
marized in Table VI. The discussion is analogous to the
discussion of the A case.

C. The 4 —+ 2 + 2 embedding

(i) Decomposition of the generators of SU(4)

The generators E; forming a doublet of the spin-3
representation of SU(2) as a subset of the 4 X4 SU(4)

generators are unique up to an equivalence and are given
in Appendix C. The remaining 12 generators decompose

little group (. They close under the commutation rela-
tions of

Q ={E,K® ;N® K® _N®}=y1)®SU@2)&SU?2).
(3.C.4)

We note that SU(2)® SU(2) is locally isomorphic to SO(4).
And hence the antisymmetric tensor K4% (4, B=1, 2,3, 0),

Kok :N(k), Klzl zelka(P) , (3.C.5)
has the commutation relation of the Euclidean form

(g45=04p) of the Lorentz group. The infinitesimal

transformation of £,
M=1+IipR, (3.C.8)

depend on seven real parameters p ={e, k* p®} or
p = {€, k*B} with the correspondence (3.C.5).

(iii) Basic vector for W,
The natural 15 basis vectors for W, are
Tl =%, R, {R}={E,K® N®}

u
Ty =(%,% =6,,)0P;, {Py={E,N®},

according to (2.14¢) in three singlets, (3.C.7
P "
K*® (k=1,2,3), (3.c.1) Tou =€y %, Py
TABLE VI. The correspondence between the solutions for G,, and ¢ in the 4—3© 1) case, See Table III for notation,
labed 2b 2¢ 2-g* 3a 3c Ry 4e 4xd* 5¢ 5d* 6c
{o 4 28212821 2@ 2€1{3®€1 131 31 3&1 31 2x1%1 2221@1#1@1@1
lc see s 2811 281« 1|4 2 1®1|2€1Q1|2€1IR]1|2R1&®1 2%1@1|12%18€1 128 1&1
Table
BI
26 1% 1!
Is lc lo 18181 | 281&1 |/, 181211280181 181®1{281%1] 1¢1x1 or /g
161&1|
gt / 1 1 1 0 0 o 4 4 ol ot o2
unit 3 3
o2
gf / 0 1 3 0 2 3 3 L 2-g% §3-g% 2-g°
unit ! !
e? J
Fhot see |1 2 3 0 2 3 2 2 2 5 ‘ 2
unit Table !
et BI ) |
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TABLE VII. The three maximal solutions (a—c) for the (¢—2
@ 2) spherically symmetric G,, [2=SU@)® sUR)® U@)]. The
defining equations are: for I; (3.C.13), for G (3.A.27),
(3.A.40), for g; (3.C.18), for¢ (1.9), and for g,

(2.21); for m ® n see Table I.

a b c
I 3
I, 0 0 1
16
&1 0 z 3
) 0 3 0
&3 0 -3 0
& 0 -3 -3
le 4 2®29®1 28181
Ziat
unit &? 0 1 1

Under the little group transformations, the 15 basic

tensors transform as a singlet,
T{ =T =2,F, (3.C.8)

a six-dimensional (1,0) +(0,1) representation of SU(2)
® SU(2) represented by an antisymmetric tensor (3.C.5)

TAB__TBA (3.C.9)
with

_ (I — »)

e =T, T e T, (5.C.10)

The remaining eight tensors form a four-dimensional
vector (3 ® 3) representation under SU(2)® SU(2) which
is also a doublet under the U(1),

T?J,l:TE T?L'z:_Tfp (A:15213’0)’

T, 205
B e o w® . ke oy ®
I LA L N TS T

(3.C.11)
With the same convention as before [(2.16), (3.A.22)],

V, =VeT, +VapT42 4V, o Th' . (3.C.12)
The relevant invariants are

1,=Va,aVa.a» 1,52G45G4s, (3.C.13)
with

Gap=€osVaaVas - (3.C.14)
(iv) G,, and the Lagrangian

Spherically symmetric G, (3.A.27) have the same basis
as W,. After some computation G, is written,

1

G,= ?(11—I)TP+GABT‘;B+GA'QT;"°‘, (3.C.15)
with (3.C.14) and
GA,Q(‘:eaeVA,B""—/E—‘;A,O(+€0¢B‘7ABVB,B' (3'C'16)

As in the preceding cases the Lagrangian does not de-
pend on the derivatives of ¥, and V,5. These compon-
ents can be eliminated together with six (and not seven)
derivatives.

The nonderivative part of the Lagrangian which only
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matters for asymptotic solutions is then [(3.C.15),
(3.C.13)]

L=—[U,-1)%+4 L] + derivatives. (3.C.17)

(v) Pointlike solutions

Maximalization with respect to the relevant VA,a leads
to the three solutions of Table VII. The asymptotic val-
ues of G (3.A.40) are

gi=es(I, - 1) +e'(1,)'?, (3.C.18)

where € and €’ are arbitrary signs. Again the strength
of the monopole is defined by (3.A.42).

(vi) Higgs scalars—potential
The 15-plet of Higgs scalars are written

¢=¢gR, R={E,K® N®}, (3.C.19)

for spherically symmetric solutions. The four eigenval-

ues of ¢ are

N ) 1/2

¢, =2 Pt {E (Gxey + O ve) J »

2 k (3.C.20)
1/2
‘1)3:‘% Q)Ei[zg (ke -(pN(k))z] .
4
It is easy to verify that the values are { invariant, by
using the notation [see (3.C.5)] ¢,5. Equalities between

these eigenvalues correspond to maximal potentials [see
(3.A.45), (3.A.46)].

(vii) Higgs scalars—Kinetic terms

The covariant derivatives of ¢ have the same basis
vectors of W, (3.C.12),

Dy9=DgT, +DagTa?+Da el (3.c.21)
and
DE = ¢'E 3
. 1 _ _
Dyp= ¢AB+7 (Var®rs—?arVis), (3.C.22)

1
DA,ot :7

Asymptotic maximization will again lead to D, ¢ =0.
This implies relations between the directions of ¢ and
G. The results are given in Tables VII and IX.

( ‘PEEaBVA,B - (PABVB,a) .

TABLE VIII. The four solutions (1—4) for the (4—2 v 2)
spherically symmetric Higgs fields. The defining equations
are: for &; (3.C.20), for I; (3.C.13), for g° (2,20), and for
g (1.8); for m & n see Table 1,

1 2 3 4
@, 0 by~ By &=, arbitrary
n:I)2 = (1)3
I arbitrary arbitrary 4 I, I} L=0
gt 0 0 arbitrary ® (21, —1) arbitrary
le 4 2®2@1 191®1 181@1

could be larger
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TABLE IX. The correspondence between the solutions for G,, and & in the 4—2®2) case. See Table III for notations,

1abe 2a 2b 2¢ 3b 3¢ 4b
Ly 4 2®2®1 2®2®1 2®2®1 2®1®1 2®1®1 1®1®1
l¢ see 4 2®2®1 2®1®1 2®2®1 201®1 2®28®1
Table VII
s tc [ 12181 2 1®1®1 181®1 [
&t 2 2
unit e/ 0 0 0 g 0 g
gf / 0 1 -% 1__g2 % 1_g2
g see 0 1 1 1 3 1
unit ¢ Table VII

D. The 4 > 2+ 1+ 1 embedding
(i) Decomposition of the generators of SU(4)

Up to an equivalence, the three E; matrices are given
in Appendix D. The remaining generators according to
(2.14d) decompose in four doublets, K& (k=1,2,3,4, «

=1,2), and four singlets
N,F%® (=1,2,3). (3.D.1)

As usual the projection of E; along the ¥; direction is
written by E,

E= £€Ei . (3.D.2)

(ii) The little group

The five operators {R}={E, N, F®} generate the little
group £. Their commutation relations are those of
{R}={E,N,F®}=U(1)® U(1)® SU(2). (3.D.3)
The infinitesimal transformation of ¢,
M=1+ipR, (3.D.4)

depend on the five real parameters p={¢,n, ¢®}.

(iii) Basis vectors for W,
The seven basis vectors for W“ are
75, =%,R, {R}={E,N,F®},

E _/5 2 E _ o
sz_(xpxi-ﬁui)Ei’ Tau =€y XE; .

(3.D.5)

Under the little group transformations 7%, and T%,
transform as singlets. TE® transforms as a triplet un-
der the SU(2) and as a singlet under the two U(1). Final
ly T4,

A _
T“—<

form a doublet under the E transformation and are sing
lets under the second U(1) and SU(2). With the same
convention as before

Ti=7E
H 2“) , (3.D.6)

T:=T},

‘7“ = VETf“ + VNTle +—VF(k)T};‘§k) + ‘_,AT‘: . (3.D.7)
The relevant invariant is
I=V,V,. (3.D.8)

(iv) G, and the Lagrangian
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Spherically symmetric G, have the same basis as Wu'
Computing (2.6) one finds

1

Go= 7 (GsT%, +GaT?), (3.D.9)
with

Ge=I-1, Gu=—r€,sVp+V;Va. (3.D.10)

Again tlle Lagrangian does not depend on the derivatives
Ve, Vs Vew- Infact, as seen in (3.D.10), it does not
depend on V and Vg, at all. The constraint equation
on Vg,

Ve=r(VacasVs)/1, (3.D.11)
then enables one to write the Lagrangian
1 .
L:—W[(Iz)/‘ll-k (1—1)2] B (3D12)

This is in fact the Lagrangian of t Hooft’s original paper.

(v) Pointlike solutions

The maximal asymptotic solutions of (3.D.12) corres-
pond to I=0 and /=1, respectively. See Table X. The
eigenvalues of G (3.A.40) are

g, =+z(I-1), (3.D.13)
2

£,=0.
4

Again the strength is defined by (3.A.42).

TABLE X. The two maximal solutions (a—b) for the 4—2S1
©1) spherically symmetric G,, [£=SU@)® U1) @ U1)]. The de-
fining equations are: for I 3.D.8), for G (3.A,27), (3.A,40),
for g; (3.D.13), for/; (1.9), and for g2, (2.21); for m ® n see
Table I,

—~
it
<

&1
&2
83
84

© o o o
|
S O e N

2®1®@1

[SE

& tzot 0
unit ¢
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TABLE XI. The two solutions (1—2) for the ¢—+2D1D1)
spherically symmetric Higgs fields, The defining equations
are: for ¢; (3.D.16), for I (3.D.8), for g? (2.20), and for
2¢ (1.8), for m ® n see Table I,

1 2
d; 0 arbitrary
I; arbitrary arbitrary
gt 0 arbitrary (- 1)%
Ls 4 181®@1

could be larger

(vi) Higgs scalars—potential
The 15-plet of spherically symmetric Higgs scalars is

®=¢yR, R={E,N,F®}. (3.D.14)

The four eigenvalues of & are written in terms of &g,
¢y, and

1/2
q»f@ égm> (3.D.15)

as

®,=3(xPp+®,), €,7z(-Pydy). (3.D.16)
2 4
As usual a maximal potential corresponds to equalities

between the eigenvalues [see (3.A.45), (3.A.46)].

(vii) Higgs scalars—kinetic terms

The covariant derivatives of & have the same basis
vectors as W, (3.D.7). Hence
_ E N F(R) A
D“‘i’—-DET”J +DNT1p+DF(k)T1u +DATu 3 (3.D.17)
Dg=®g, Dy=%y,

. 1 —
Dr@y=%pa + P EnimVr))Prm) > ( )
3.D.18

1 _
Da=-+ €4V Pg .

As is seen from the term Drw s the minimization D ¢
=0 implies in particular that Vg, and @, be parallel
vectors. From D,, one sees that &y must be zero un-
less I=0. Discussion of these cases and comparison
with the extremal G,, are given in Tables XI and XII.

IV. CONCLUSION

By treating explicitly the problem of finding spherical-
ly symmetric monopoles in SU(4) we have obtained the
following results:

(a) We have shown the relevance of the new group we
have introduced, the little group ¢ which transforms
spherically symmetric solutions into spherically sym-
metric solutions. Its use simplifies the problem great-
ly. In SU(2) and SU(3) this little group was always Abe-

lian.? Here in some cases it is non- Abelian.
(b) We have found all the possible embeddings of SU(2)

into SU(4) and in each case we have found a discrefe set
of asymptotic G,,’s decreasing as 1/»%. This is without
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reference to the existence or transformation properties
of the Higgs fields.

(c) In all instances we see that the eigenvalues of G
[see (3.A.27),(3.A.40) and the tables] turn out always to
be integers or half-integers. This is a particular case
of results* which shows that the possible values of the
magnetic poles are related to the Cartan subalgebras.
The direction and magnitude of the poles correspond to
weights of the dual group. Here the dual of SU(4) is
SU(4)/Z (4) and hence the results follow.

(d) Contrary to SU(2) and SU(3) the scalar product of
G, with a 15-plet (adjoint representation) of asymptotic
Higgs vectors does not necessarily quantize the charge.
The strengths g and g, (see the tables) of the component
of G parallel and orthogonal to ¢ may vary continuously
between prespecified limits.

The discussion of the smoothed out solution and of the
related stability has not been given here. The discus-
sion at the end of Ref. 1 applies wutadis mutandis,
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APPENDIX A
We here collect some formulas related to case A.
The commutation relations between E;, F,;;, and N,
are
’,Eiij] :iEijkEk! (Al)
[Ein K] =ile; K rein Ky)), (A2)
[Ei’ivjkl] :i(Gijm‘lezl +Eikmijt +€ilmlvjkm) ’ (A3)
i & &
[1<kl,l<mnj = —5-_ Z} 6kmélnr Er+1 Z 6}zmrA”[nr>1 (A4)
. . 1 12
[1\klﬂl\rmnpj = _g <Z €kmr61nKrp>
i 12
+ 56 <Z; EkmrelnaeuPsKrs> ) (AS)

TABLE XII. The correspondence between the sotution for G,
and @ in the @— 2% 1 1) case. See Table III for notation,

1 a—-b 2a 2b

Lo 4 19191 191®1
fc see Table X 4 2®¥1@1
{s fe Ly lo

2 2
unit e / 0 g
gi / 0 2 —g°
unit e
Ztat ,
unit e™* see Table X 0 3

Y. Brihaye and J. Nuyts 2188



1 36
LNklm»lvmr] = —z‘a (E 6lzpa 6lqjva:)

31
25 (Eekpa 61:1 mr)Ea

1 B
+ 1—07 <Z; €rpa €10 €mrc>lvaba:

3 18
+ W(Z ekPaeltJaEm'rc)Ec . (A8)

In these formulas )" means the sum of the inequiva-
lent permutations on the indices needed to obtain the
symmetry of the left-hand side, » is the number of
terms in the sum. The traces of the matrices are

Tr(E; Ej):56,-j, (AT)

TrK;; Ky)=3(0, 6, 26; 0r1s (A8)
9

Tr(Nm.N, :%<E 6y, 6;m6kn> - %(E 5ij Oy 6mn> .

(A9)

‘1+6i16‘k)—

The cross traces between E, F, and N are zero.

With (3.A.9) and (A7)~
basic vectors

A9) one finds the norms of the

w,=wiT%,,
(WEP +aWi P +2 WY )y

+10{(WEY + (W] +6[(W )" + (W3 )]

+ 2w+ wi] .

For 7!# and 7{*® the norms are respectively 4 and 6.

Tr(W ,W#)=5

(A10)

APPENDIX B

We here collect some formulas related to the case B.
The commutation relations between Z, E;, K;, N;, and
F;; are the following:

|E:, Z] =0, (B1)
[E.-,E,-] =i€;;x By, (B2)
[E,',K.]:ie,»j,zK,z. (B3)
[Ei, Nj| =€ Ny, (B4)
[E; ,k] =i(€;; Fp+€i Fjp),s (B5)
iz, =4iN;, (B6)
[Z, ] =-4iK;, (BT)
[Ki, K] =[Ny, Nj| =i€i By, (B8)
(Ki, Nj] ==2iF;; +%id;, Z, (B9)
(Ki, Fry) =34 (55i Ny +0,3 Np= 26, N,), (B10)
[Liy Frp) ==31(60 Ky +6,,K, — 26,:K,), (B11)
[Frps Frn) = 4z<2 Onkequ> (B12)
The traces are
Tr(Z?*) =12, (B13)
Tr(EE,)=25,,, (B14)-
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(B15)
(B16)
(B17)

Tr(Ki,Kj)=26gj s
Tr(NiaNj):zoij’
Tr(F;; Fy)= 30428, + 04,0, — 564, 0py) -

The correspondence between the natural tensors Tfu,
T%, [(3.B.4)], and T4:%:¢ [(3.B.6)] is

TP TERY) TE = —i(Tp T,
K _p1,1,2 2,1,1 K _ pi1,2,2 2,2,1
Tou=T " =T5 ’T3u‘Tu =Ty, (B18)
N
:T1'1'1+T21'1'2, T3y:T1£i.2'l+T2.2'29
Tfu: §(T1,1,1 Tzu’l'?‘), T;‘u: %(lel Tzu,z,Z).

The norm of W, with the natural tensors [see (3.A.11)
and (3.B.4)] is

Tr(W WH)=12(W; P +2[(WEP + (WP + (WY )?)
+%<Wf)2+4[(Wf) +(WE?+(WEP
+(WEP + Wy P+ WY P) + WP+ (WEP. (B19)

For T4:%:C the norms are

Tr(T4B:CT 4 B"C") = 2pBB A4 (CC" (B20)

APPENDIX C

We here present some formulas related to case C.
The generators E;, K¥ | and N{* take the simple form

E;={l®o,, {C1)
K®=30,01, (c2)
N¥=lo,00,, (C3)

in terms of the Pauli matrices o; and of the unit 2x2
matrix 1. The commutation relations between these
generators are

(EwE;] =ie;nEy, (C4)
[E;, K®]=0, (C5)
(E,,N'®) -ze,,kNE” , (C6)
[K®, K] =jettmgtm (C7)
[ NP ~z€“’"N("‘) (C8)
NG NSDT = (6%€,;, E + 0,68 " K™), (C9)

The nonzero traces are

Tr(EE;)=5,, (C10)

TrKVK™) =5"" (C11)

Tr(NIN{D) =65, . (C12)
In the natural basis (3.C.7), the norm of W, [(3.A.11)]
1s

Tr(W W)= WP+ WOy« wy

+2[(WEP + (WEP + Wy DR+ (Wi ]
(C13)

APPENDIX D

Here are some formulas related to case D. The non-
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zero commutation relations between E;, N, and F%
are

|EGE;) =i€;)Ey, (D1)

[F¥,FD] =jekimptm (D2)
The nonzero traces are chosen as

Tr(E;E;)=36,;, (D3)

Tr(N?)=1, (D4)

Tr(N N ) =306, (D5)

The norm of W, (3.A.11) in the natural basis (3.D.5) is
Tr(W W) =5 (WEP + (W2 + WER R+ (WE? + (W)

APPENDIX E

There are conflicting reasons for the two choices of
basis vectors T,’s and for the basis of the little group
generators. Let us make some remarks.

(a) in the natural choice for T, $, turns out to have

always the same form,

S,=(1/er)T5,. (E1)

The Tu becomes interesting once §, has been subtract-
ed.

(b) For case A in the natural choice E,K,N are or-
thogonal in the sense
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Tr(P,P')=apbpps . (E2)

This is not the case for A, B, C since it is easy to veri-
fy that

tr(AB)=-1. (E3)

(c) In view of Egs. (3.A.33), (3.A.34), (3.A.8) it looks
as if

V(lB):V(1E:+%V(1N>, V(m):‘V(w)Jf‘gV(m) (E4)

would be better tensor combinations to use. However
the corresponding tensors 7' (!4 and T(‘}B) would then
not be orthogonal.

IE, Corrigan, D. Fairlie, J. Nuyts, and D. Olive, Nucl. Phys.
B 106, 475 (1976).

2’t Hooft, Nucl. Phys. B 79, 276 (1974).

3For SU(2), the little group contains E only [(1.7)}. For SU(3),
the little groups in the 3— 3 case has a U(1)®@U(1) structure,
in the 3—2®1 case a U(1)®U(1)®U(1) structure. In all these
case / is Abelian. In SU(4) for the first time ¢ can be non-
Abelian.

4F, Englert and P. Windey, Phys. Rev, D 14, 2728 (1976).
We thank these authors for showing us the general theorem
they had found prior to publication and for discussion about
weights and roots of the dual group. Related material is also
found in D, Olive, Nucl, Phys. B 113, 413 (1976) and in P.
Goddard, J., Nuyts, and D, Olive, Nucl, Phys., B 125, 1
(1977), where direct use is made of /5. See also A,
Goldhaber and D, Wilkinson, “Spherically symmetric mono-
poles,” Stony Brook (1977-30).
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Stationary gravitational fields of a charged perfect fluid
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Einstein’s field equations which include electromagnetism are investigated when the metric admits a
timelike Killing motion and the source is a charged perfect fluid under isometric motion. It is shown that
the pressure must necessarily be a function of the electrostatic and gravitational potentials. A class of
solutions is found under the following simplifying assumptions: (i) The pressure is a constant, (ii) the
Lorentz force vanishes, and (iii) the magnetic and twist potentials are functionally related. In this class
the ratio of o/(p+3p) is a constant and this resembles an equilibrium condition. Finally a four-parameter
group (maximal) is supplied which can generate new solutions of this class.

1. INTRODUCTION

In this paper we investigate the stationary electro-
gravitational field equations in presence of a perfect
fluid in isometric motion (that is, the fluid motion is
along Killing direction). From the equation of motion in
this case, one can show that the pressure must be a
function of electrostatic and gravitational potentials,
or in other words an “equation of state” must exist. If,
moreover, the condition that 0/(p + 3p) is constant is
stipulated (this resembles an equilibrium), then the
pressure can be specified further.

Som and Ray Chaudhuri,? and Misra, Pandey and
Srivastava, %3 have shown that the ratio 0/p is a constant
for a stationary perfect fluid under the following three
assumptions: (i} p =0, (ii) the Lorentz force vanishes,
and (iii) the magnetic and twist potentials are functional-
ly related. This result is generalized here (Sec. 3) to
the constant pressure case: (i) p =const, where it is
found that ¢/(p + 3p) is constant.

Under the assumptions (i’), (ii), and (iii), it is shown
that the field equations reduce to the equations for
cosmological dust in isometric motion,* and hence any
such solution can generate a charged perfect fluid solu-
tion, As a corollary, every static vacuum metric can
generate a stationary charged dust solution. Thus we
have generalized the results of Ehlers? for the un-
charged case to the charged case.

Another class of solutions is found which depends on
solutions of Laplace’s equation in a three-dimensional
space of constant negative curvature, A constructive
method is given for finding these solutions. However,
all of these solutions have some unphysical aspects.

Finally a table is furnished to show how new station-
ary charged perfect fluid solutions can be derived by
the action of a four-parameter group on already known
solutions.

2. FIELD EQUATIONS

In a previous paper,® it was shown that when a
charged perfect fluid is in isometric motion one can de-
fine two complex potentials I =e* — 3k [®!% +4x and
&=A+iB, where A ;=-F,; and B ; =F};. The metric
is given by

— e (gqpdx® dxf) + e“(a, dx® + dx*)?, (2.1)
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with 7, =— e?* curl(a,) and X, o =Ty +zik(8* & o ~ 38%,).
Throughout this paper it is assumed that no monopoles
are present; i.e., 0* =0, Then the field equations®
become

Oy g=Roz—Ke™ Re(q)'u@fa‘i' 2Pgmﬂ)

+3e Re(T'¥, +k&8%,)(L s +x8*3 5) =0, (2.2)
VEA2 P - e-wé’a(rya + K (b*&ia)
- e/ Wiy 0=0, (2.3)
p=4,T —e™T ([ +x&*3')
+r(=3p—p+e“/ar 05*) =0, (2.4)

The number of unknowns is 13 =6 (g,z) +2(I') + 2(3)
+1(p) + 1(p) + 1(0), and the number of equations in the
system (2.2)—{2.4) is 13 =6 (0,5) +2(v) +2(1) + 3 (co-
ordinate conditions). It would appear that the equation
of state is already determined implicitly in this
problem,

This fact is explicitly shown by the equation of motion®

Do =5(p+p) w, —V4r e""/20A"“ (2.5)

which shows than an “equation of state” must exist,
namely,

p=p(A,w),

p,a=-Vame™/?0,

p,0=z0+p)
Furthermore, if a condition analogous to equilibrium
2.7)

is introduced, then (2.6) yields a partial differential
equation

(2.6)

o/(p + 3p) =b =const

2bVame™/tp ,+p 4 +2bVime /2 p=0. (2.8)
The above equation can be integrated by using the
characteristic curves’ to obtain

p=ef(Var bA — e“’?), (2.9)

where f is an arbitrary differentiable function of V4w bA
- ew/2°

3. EXACT SOLUTIONS

Solutions are obtained by making the following two
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assumptions:
(i’) p=const and (ii) A =0.

The first assumption means that the mechanical force
vanishes, while the second means that the Lorentz
force vanishes. By the equation of motion (2.5), w must
be constant, say w=21lnc,

Now we have & =¢B and I =c? - xB? +ix;
hence I'’™ + kd*&'* =ix'®. Equation (2.3) becomes
i8,B+c7B o X' =cVar o, (3.1)
Thus we must have, from the imaginary and real parts,

A,B=0, (3.2)
and

c(4n)1/2B o x*™ =o. (3.3)

By using (3.2) and (3.3), Eq. (2.4) can be reduced to
the following two equations:

Ayx =0, (3.4)

- KB ,B*® +c'2)<.a)<'°‘ =«k(3p +p). (3.5)
Finally, Eq. (2.2) becomes

Ryp=c"k(B 4B, 5+ 2pg0p) = 3¢ X o X 5 (3.6)

This is a generalization of Eq. (2.29) of Ehlers,

We now assume that x and B are functionally related.
Because of (3.2) and (3.4), this must be a linear rela-
tionship, ® which we write as

X=acv2k B, (3.7)

where a is a real constant (a possible additive constant
has been absorbed by a gauge transformation), Then
the system of Einstein—Maxwell equations (3.2)— (3. 6)
is reduced to the following:

A,B=0, (3.2)
0=2aB ,B*, (3.39
3p+p=Q2d-1)B B, (3.5
RaB:C-2K[(1—az)B,aB,BJf-ngaB]- (3.67)

Furthermore, Eq. (3.2) follows from (3. 6’) by using
the contracted Bianchi identity in V;. Note that

ﬁ%{; = Zjdza‘QTl‘ , 4 constant. (3- 8)

To obtain solutions of this system, we need only
solve Eq. (3.6’) since (3.3’) and (3.5") may be regard-
ed as definitions of ¢ and p.

Theorem 1: If — g, dx® dx® + (@, dx® + dt)* is the local
metric of a cosmological dust in isometric motion with
twist potential X and cosmological constant A, then
— ¢ (goupdx™ dx®) + c* (a, dx* +dt)* is the local metric
of charged perfect fluid in isometric motion with twist
potential X =ac*(a? - 1)-/2¥, magnetic potential

B =c[2k(a? - 1)]1/2X, charge density 0=2aB,,B"°,
and pressure p =ck-1A,

Proof: If we put the above values into Eq. (3.6’), we

2192 J. Math. Phys., Vol. 18, No. 11, November 1977

obtain

RuB:-%Y.a E.B'*'ZAgozﬂ' (3.9)
But this is just the equation for cosmological dust in
isometric motion, as given by Eq. (2.29) of Ehlers., As
examples of such solutions, we mention those of
Wright, ®

When A=0, (3.9) is the static vacuum equation.
Hence we obtain the following.

Covollary: If — e™X(g, ,dx® dx®) + eXdf® is locally static
vacuum metric, then — ¢ (g, zdx® dx®) + c¥(a, dx® +di)? is
the local metric of a charged dust in isometric motion,
with x and B as above and p =0.

Another way to find solutions of (3.6) is to put a=1,
giving

Roys=2C"% pgos- (3.6")

This is just the equation® for a space of constant curva-
ture — ¢ p. Thus solutions can be obtained as follows.
Choose any nonnegative constant value for p. The as-
sociated Vj is the space of constant curvature — c~% p.
Now Eq. (3.2) is not an automatic consequence of
(3.6") because it has become uncoupled. However,
there is no difficulty in finding solutions of (3.2).

The metric of the V; can be written

ds® =k dr? + sinh®»(d6? + sin?6 d¢?)], (3.10)

where k=c"k p, Equation (3.2) becomes
(sinh*yB,,), , + (sin6)(sind B ) 5 + (sin6)~B , , =0.
(3.11)

Using separation of variables, the following general
solution of (3,11) is found:

B(r,0,9)= 2, a,,f,(R)Y"(8, ) +c.c., (3.12)
1,m

where R =cothr, f,(R)=(R*-1) P}(R), P, is the Ith
Legendre polynomial, Y™(8, ¢)=P/" (cosd)e'™, the
spherical harmonics, and the @, are arbitrary complex
constants.

Note that B z, B 4, and B , all involve power series
in R, so there must be some radius R> 1 in which all
three converge. Thus these three functions remain

TABLE I. a and d are arbitrary real parameters and § is an
arbitrary complex parameter.

rotational electromagnetic
scale gauge gauge

T’ a'l T +id T —2k60 —2k16 |2
[0 ad i3 P+ 26%
?’ a’p » »

! alp p P
o’ a’lc o o
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finite in the limit (R —1*). But
B . B** =k(R - 1)[(R? - 1)(B, r)*

+(B,o)* + sin"26 (B, , )], (3.13)

s0 B B'* —0 as ¥ =<, Then Eq. (3.5’) shows that if
p is nonzero, p will become negative as y —«,

In conclusion, we mention that all of these solutions
may be subjected to the four-parameter group of trans-
formations® which preserve charged fluid solutions
having no monopole currents. These transformations
are generated by the basic transformations in Table I.
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The 3 V-particle Lee model is proposed. The N6 scattering amplitude, the V8 scattering amplitude and
the n 60 production amplitude are evaluated. The integral equation in the V8 sector is solved. The usual
deductive method cannot be applied here to solve the integral equation of the V6 sector. A nondeductive
method is applied to solve the integral equation. The solution obtained correctly reduces to the solution of
the V8 integral equation of the ordinary Lee model, whenever any two bare interaction constants in the
Hamiltonian are switched off. The two resonances that appear in the N@ sector, again appear in the V0

sector at the same energies.

INTRODUCTION

A Lee model with more V particles is more interest-
ing mathematically than the ordinary Lee model. Re-
cently the generalized Killén— Pauli (GKP) equation in
the V8 sector of the 2V-particle Lee model was solved.!
While generalizing the 2V-particle Lee model to any
nV- particle Lee model one comes across certain re-
strictions on the bare masses and the bare coupling
constants. These restrictions do not arise in the 2V-
particle Lee model. Moreover the restrictions and the
subtleties involved cannot be shown explicitly in the
case of any nV-particle Lee model.

The necessity of these restrictions and other related
matters can be better appreciated if we work out the
3V-particle Lee model in detail. In this model we can
explicitly derive these restrictions {see Eq. (39)] and
justify their necessity. Once we follow the 3V-particle
model closely, it is a simple matter to generalize the
results to any nV-particle Lee model.

In Sec. Ithe model is presented. In Secs. II and III
the physical | V) state and the properties of the related
functions are discussed, whereas in Sec. IV the N6
scattering amplitude is evaluated. The GKP equation
and its solution are presented in Secs. V, VI, and VII.
In the last two sections we evaluate the V0 scattering
amplitude and the N66 production amplitude.

I. THE MODEL

In this model there are three V particles and all of
them are subjected to the elementary interaction V;
=N8, V,~ N6, and V;=N6. The bare parameters are
adjusted in such a way that only one of the V particles
is stable, and the remaining two appear as resonances
in the N6 sector. The model is described by the
Hamiltonian, H, where.

3
H=72,m, ViV, + myN'N + [ w,aa,
i=1 4

+353 20 flw,)e;ViNa,

p i=l
+2 _Z;f(w,,)gi ViN'a. ¢y
p i

In Eq. (1), «j=u®+p% i being the mass of the 6 par-

ticle, and p is its linear momentum. Morevoer 1y, ¥,
and m, are the real bare masses of ¥y, V,, and V;. The
bare interaction strengths gy, £, and g5 are real. In
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the Hamiltonian the mass of the N particle my will be
set equal to zero. In Eq. (1), flw,) is given by

u{w,)

f(u)p):(z—w:é)‘n'g. (2)

The function «#(w,) is so chosen as to make all the rele-
vant integrals finite and so as not to allow any ghost
states. Moreover £ is the volume of quantization. The
equal time commutators obeyed by the field operators
are

la,, a5 ]=0(p-p"),

(V,, Vil=1, where i=1,...,3, 3
and

[N,N*]=1,

All other commutators between the field operators
vanish. In Eq. (3) the first commutator should be taken
as a Kronecker delta when the volume of quantization
is finite.

1l. THE PHYSICAL |V) STATE

The lowest sector is spanned by the physical |'V)
particle state and the N6 scattering states. We choose
the stable | V) to have a physical mass equal to zero
as in the 2V-particle model. The physical | V) state can
be written as a linear combination of the bare states of
the sector and we get

3
(V) =20 a; V3| 0) + 20 ¢y (w,)N*a}| 0. 4)
i=1 v
The Schrodinger equation,
H|V)=E|V), (5)
yvields,
(E-my)oy — g Ef(w,,)¢1 (w,} =0, (8)
b
(E = mp) ey - g, 22 f(w,) d1(w,) =0, )
»
(E - mg)ag - g3 Ef(“’p)‘Pl(“’p) =0, (8)
b
and
f(wg) (9)
d1{w,) = = (g1 + aagy + a8y) w,—E " 9

In the above equations we have taken the physical
mass of V) equal to E. Subsequently we will set E
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equal to zero. Inserting Eq. (9) into Eqs. (6)~(8) and
taking the determinant of the coefficients of &, @,, and
a, equal to zero, we obtain,

Hy(E) =0, (10)
where
Hy(E) = (E - my)(E = my)(E - my)
+ 0y (B (E). (11)
In Eq. (11) we have
04(E) = G§(E — m,)(E - my)
+ GBE - m)(E ~ my) + g2(E — my)(E —mp), (12)
and
©, 2
1(E) :4—7175 / ’;"_(‘g) dw. (13)

By setting E=0 in Eq. (10) we obtain the eigenvalue
condition corresponding to a | V) state of physical mass
zero. The eigenvalue condition is equivalent to the fol-
lowing requirement:

[§+—g—§+§]4:11(0). (14)

Wy My Mg

The normalization of the physical 1 V) state is equi-
valent to the following requirement:

% .8 A\ 4 g§+¢é)z

mzz m J\my my niy

(ay81 + Cpgy + 05gy) P = (

1 2
T 2“3(;2@ (15)

It should be noted that the right-hand side of Eq. (15) is
a positive real constant since £, g5, g3, "y, ¥, and g
are all real parameters.

We define a function Hi(w) where

Hi(w) =(w -

1 .e YN, ,
+a3(w)4—ﬂzf L) gy, (16)
I

We follow the convention that Hj(w) = Hy(w+i€). In Eq.
(16), g;(w) can be obtained from Eq. (12) by writing w
for E, The function Hj(w) =0 for w=0, as required by
the Schrddinger equation. We introduce another func-
tion G;(w), where

my) (w = mydw — mg)

Hy(w+i¢€)

Gi(w) =Gy(w +ie) = (@)
3

(17)

Since H4(0) =0, we require that
G4(0)=0. (18)

In order to insert the requirement of Eq. (18) into Eq.
(17), we first find G4(0) from Eq. (17) and then subtract
it from G3(w). This yields

Gi(w) = whz(w), (19)
where
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hy(w) = &y a,0? — w[(my + my + my)aya, + mymymy)

+ @y ay(my my + mymg + gy ) ~ (ay + ay)mymym

P (") ,
+Z177/ w'(w’ —w-ze)dw' (20)

In Eq. (20) the two constants @ and a, are given by
gz(ma+m3 ) + g2(mg +my) + Slmy +my) +Vgq (21)
2(5 + 25+ 85
and
“ :gf(mz+m3)+g§(m3+ml) + g0my +my) = Vg (22)
2 Ag+&+8) ’

with

q =g (my - my) B+ [g2(my = my) P+ [g2my = my) P
— 28388 (my — ) (g — my) — 28585 0my — my) sy — )
- 28282 (my — my)(my = my). (23)

It will be quite useful to note the following relations
which can be readily obtained from Egs. (21), (22),
and (23):

Si(my + my) + gE(my +my) + galmy + mz)
a, +a, = 24)
1= @B+ ) (
_ Gmgmg + mgmy + gzmlmz
aya, = (25)
172 (g1 +&5+25)
From Eq. (23) it is clear that ¢ is not a perfect

square. Hence the two constants ¢; and @, can have com-
plex values as well. This must be clear from Eqgs. (21)
and (22) where the square root of ¢ occurs. We can
always choose the real bare masses and the real bare
coupling constants in such a way that ¢; and a; are

real. Even if a;, and a, are complex, they are also
complex conjugates of each other [see Eqs. (21) and
(22)]. Hence the quantities aya; and (a, + a,) are always
real. That this is so is also evident from Eqs. (24) and
(25).

In Table I we give the values of &, @, (@ +a,), and
a;a, when one of the bare interaction constants is set
equal to zero with the remaining two interaction con-
stants being nonzero. The table is self explanatory.

TABLE I,

ay a, ay +a, aay

&t=0
&=0 wa3 my
g=0
-0
gi=0 my w3
g0
&=0
g=0 w9 my

gi=0

my + g mywa3

Mg+ Wy LG T

Mg+ Wiy m3wyy
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In Table I, we use the symbols w;;, where

Em; + g,

W= ——?ng-‘ (26)

It proves very useful to define a renormalized charge
through Eq. (20). To this end, we put w=0 in Eq. (20).
This yields

R4(0) = ayag(mgmiy + mymiy + mym,) ~ (ay + Qp) Wy 5001

2
+41 p~—2—“ o (27)
Tf 1
We take
1
ha(O):?, (28)

where “g” is known as the renormalized charge. Com-
paring Eqgs. (15), (27), and (28) one easily finds that

& =(onm + ag + ay8,)%. (29)

Whether a; and @, are real or complex, g° is always
real and positive. From Eq. (15) we know that the
right-hand side of Eq. (29) is a positive real constant.
Moreover in Eq. (27), a; and a, occur in the combina-
tions aya, and @, + a,. As mentioned earlier, when ¢
and @, are complex, they are also complex conjugates
of each other. So the expression given by Eq. (27) is
always a real quantity.

We now re-express #;(w) of Eq. (20) in such a way
that the requirement of Eq. (28) is automatically taken
care of. Thus we have

. + 1
hy(w) = ha(w) - 2(0) +? ) (30)
In Eq. (30) we use Eqgs. (20) and (27) for the first two

factors on the right-hand side and simplify it. We add
1/g% to the resulting expression. This yields

hg(w):é[l N

gz(szl + sz)

(w - ){w-a,)
Pw [ plt(wh) ,
+—‘GT—2— A '—T‘———‘—(w )d ] (31)

where
By =[(a10,)? = ayay(mymy + mgmy + migmy)

+ (ay + ap)mympmy |/ (gF + g% + g8 (e, )? (32)
and

B, =[ayay(ay + ap)(mymy + mgmy + mgmy) + ay@ymymigms
— (@)% (my + 1y +my) — (ag + az)2mymymy)

X[(g + 25+ B may)?Tt. (33)

It should again be noted that By and B, are always real
whether o, and @, are real or complex, since ¢ and a,
ocecur in the combinations aya, and (¢, + a,) in By and B,,

In Table II the values of By and B, are given when one
of the bare interaction constant out of the three is set
equal to zero, with the remaining two interaction con-
stants being nonzero. The table is self explanatory.
The symbols w;; are given by Eq. (26).

2196 J. Math, Phys., Vol. 18, No. 11, November 1977

111. THE PROPERTIES OF THE FUNCTION A% (w)

Henceforth whenever we refer to the function #;(w)
we mean Eq. (31) only. By G;(w) we mean whj(w). The
function h3(w) has simple poles at w =@, and w=4a,. The
function %;(w) is known as a twice subtracted function.
In fact, if we take g5 =0, the function #j(w) reduces to
the function #*(w) of Ref. 1. The function %" (w) of Ref.

1 is given in Appendix B here. With the help of Tables
T and II we can easily show that hj(w) reduces to the
following function whenever g% = 0:

hg(w)zg—'lz [1 fw:B g'z -/ww fzul»ﬂ(w ze)d“ﬂ ’
(34)
where
2 = (0, + 3)° (35)
and
Bl = (wag — 12p) (wpy — ”73) (36)

(& + Bk,

The function /;(w) is the twice subtracted function that
we would obtain in the 2V-particle Lee model with bare
interaction constants g, and g3, and with bare masses
my and 3. In an analogus manner, one can easily show
that the function #3(w) reduces to a function similar in
“content” to the function /;(w) of Eq. (34) whenever

g5 =0. So the function #;(w) reduces to the twice sub-
tracted function of the 2V-particle Lee model whenever
any one interaction constant, out of the three bare in-
teraction constants, is switched off.

In Ref. 1 we have shown that the twice subtracted
function of the 2V-particle Lee model reduces to the
twice subtracted function of the ordinary Lee model,
whenever one of the interaction constants, out of the
two is set equal to zero. From the foregoing discus-
sion, it follows that the function /3(w) reduces to the
following function of the ordinary Lee model, whenever
any two of the bare interaction constants, out of the
three, are switched off:

r 2 r
I
where
TABLE IIL.
B, -B,
gi=0
2i=0 {wa3 — m2) (wag — m3) my (w33~ my) (wys — my)
gj o (83 +ghwis (g +gDwl,
2=
g=0
B=0 (wy3 ~my) (wyg —ms) 1y (w13 — my) (wy3 — m3)
gz (g12+g%ﬁ>%3 (g +gDwi,
170
g=0
250 (wyg ~ m)wiy — M) m3lwig ~ my) Wwyg ~ m)
g & e, &+ 9,
3% 0
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B= (o). (38)

In Eq. (38) there is no summation on 7. If g2=0=2g2
theni=1 in Eq. (38). On the other hand, if g&=0=g7,
then i =2 in Eq. (38). Similarly, i=3, if g =0=g2%.
The constant g, is known as the renormalized charge.
The function G{(w) is the twice subtracted function of
the ordinary Lee model. In Refs. 2—5 the authors have
used once subtracted function.

We adjust the bare parameters of the 3V-particle
Lee model in such a way that ¢y < ¢ and a, < 4. This
would enable us to find the solution of the integral equa-
tion in the V8 sector. Since tis a real number we re-
quire that ¢; and @, must also be real. The constants
a, and a, can be real if and only if

q= 0. (39)

There are many free parameters in the theory, and
we can always satisfy the condition imposed by Eq. (39).
For example, Eq. (39) can be reduced to the following
requirement:

{ By = mg) — G2y — my) + gi(my — mp)}?
> 4@ gl mumy — Ml + mgnay, — mgmy |. (40)

In Eq. (40) if we take 1, negative, and 1y and #; posi-
tive, the right-hand side of Eq. (40) will be a negative
number whereas the left-hand side is a positive number
and hence Eq. (40) will always be true. In a similar
manner we can obtain several other conditions analo-
gous to Eq. (40) from Eq. (39), by a proper elimination
of the parameters involved. The point is that the basic
requirement of Eq. (39) can always be satisfied since
we have six free parameters at our disposal, and the
number of restrictions on them are less than six. Re-
strictions of the type of Eq. (39) are not at all neces-
sary in the 2V-particle Lee model. Such restrictions
must also be present in any #V-particle Lee model with
n>3. In general it will not be easy to derive conditions
of the type of Eq. (39) for any nV-particle model, with
n> 3.

Suppose ¢* /2 is not real. Then @, and @, will be com-
plex numbers. What is the significance of these com-
plex numbers ? Do they have anything to do with the
Lee—Wick®" suggestions ? These questions require a
closer study of the model. For the time being we ig-
nore these questions, and assume that q1 /2 is real.

The function #3(w) of Eq. (31) has a branch point at
w=H. We attach a cut from w=Uu to <.

The function #3(w) of Eq. (31) can be re-expressed

as
+ . (w?B; + wB,)
113((4)) :ga(w) +m"1)—(z)_—;2), (41)
where
2
i) = (1 +£8 f Ate) s a ) (42)

The function G3(w) of Eq. (42) is similar, in so far as
its analytical properties are concerned, to the function
Gi(w) of Eq. (37). The difference lies only in the con-
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stant factors g and gi. It will be useful later to define
a function K;(w), where

w) = wg;(w). (43)
From Eqs. (31) and (42) we easily find that

Imh;(w) =ImG3(w) ——pu (w)b(w - w). (44)

From Eqs. (19) and (43) we observe that,

ImG}(w) = ImK3 (w) = p“ (“’) 8(w (45)

Moreover from Egs. (31), (42), (19), and (43) we easily

find that

3(0) =G 4(0) Zglz (46)
and

G,4(0) =K4(0) =0. (47)

The integral representation for the inverse of the
function %;(w) can be easily found with the help of the
functions 7;(w) and Gj(w), where

hy(w) = (w = ) (w - a,)h3(w) (48)
and
Gj{w) = whi(w). (49)

It should be noted that the function #;(w) does not have
any poles. This will be clear if we insert 2;(w) from
Eq. (31) into Eq. (48). Moreover the function [G}(w)]
has a pole at @ =0, Hence we find that

1 & 1/“" 1 1 ,
G ame 1/, [Imc;(w')](w'_w_ie)d‘”’

-1

{(50)
since
d_G+(w)\ :alaz (51)
dw ¢ ?_

The relation in Eq. (50) can be verified by doing the
integral in Eq. (50) as a contour integral. The infinite
circle gives no contribution because of the form factor
u(w) of Eq. (2). Multiplying Eq. (50) by w, we obtain

1 2 - 1 1 ,
(@) aya, 7 fu (ImGZ(w')) @ w9
(52)

aa
one readily finds

With the help of Egs. (52) and (48),
that

=t we-a[L 2 [ (et

dw” ] (53)

(' = w—i€)

Following Ref. 3, we can easily find an integral rep-
resentation for the function {G3(w) . Thus,

1 w ° 1 1 ,
g_;(—w-)-:gz +? ’/‘: (Ing(w')) @ = w-—ie)dw . (54)
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Whenever any two bare interaction constants are switch-
ed off, /3(w) and §3(w) both reduce to {{(w). The in-
verse of hy{w), given by Eq. (53), also reduces to the
inverse of gf(w) whenever any two interaction constants
are switched off (see Appendix C). However, to solve
the integral equation in the V6 sector we find it more
convenient to use an algebraic representation for the
inverse of h;(w). By a mere rearrangement of Eq. (41)
we find that

(55)

(wW?By + wB,)
hy(w) ]

11 [1
lg(w) " Galw)
Whenever any two interaction constants are switched

off, B, and B, would go to zero and we would find from
(55) that

111
hi(w) Gi(w) Gi(w)”

(56)

The integral representation for [9 (w)]? is identical in
form to Eq. (54), only we have to interpret ¢% in Eq.
{(54) as ¢5, and Kj{w) as Kj{w), where we have

K3 (@) = w3 (). (57)

When @ — the functions k3{w) and §3(w) tend to two
related but different constants. Anyway, we do not use
these representations.

1V. N6 SCATTERING

Consider a state consisting of an incident wave
N'a; o} 0) plus additional terms which in the asymptotic
reglon reduce to outgoing waves only. This state is
designated by INB,:'(‘). The energy of this state is w;, the
incident energy of the 8 particle since #7y =0. The state
vector in question can be expanded,

in
N =

3 il
10 +Z_>1 Bilpo) Vii0)

+ f a(py, p)a, N 0) d®p’. (58)

From the Schrddinger equation,

H|Ng™ = wy| N6, (59)

one finds that

Bi(py) = 21 (wy = )y = 1m1g) flwg) [Halw) 17, (80)
Bg(po) :A"z(wo - “13)(0«'() - "71),f(wu)[H3(w()) ]-l, (61)
(pu) = (wt)— 7771)( ”Q)f(wu)[H;(wo):l_l, (62)

and
alp, po) = L) G 1, (63

(wg—w, +1€)

The N8 scattering amplitude is defined by
Syo=(NO [ NE™

=38(p — py) + 2mi 8w = wo} Ty (wy). (64)
The 7 matrix in the N8 sector is given by
1wy ) = - /% (wg) [ wo)] (65)

From Eq. (65) it is evident that Ty{(w,) will be zero
whenever the incident energy w, has a value near or
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around @; or a,. So in principle, from the N@ cross
section and from the values of ay, a,, B;, and B,, we can
determine the masses of the two resonances.

V. THE GKP EQUATION

For the scattering of a 8 particle on a V particle we
want an eigenstate of the total Hamiltonian of the form

Ve =a; [V) + X, (66)
with
HI VO = w,| VD, (67)

The state | V) denotes the stationary eigenstate of the
total Hamiltonian describing a physical V particle of
mass zero and

3
2 {i\ ', po)Via, | 0) aep’

+ [ 040", p", ) N8, 8pu) dp'd*p”, (68)
with only outgoing waves in ¢y, {5, ¥5, and i¥,.
(67) yields
g8 flwy) flw)

W

The Schrddinger Eq.

(wy=w = m;)di(p, py) = -

+ 2g~iff(w’)d»4(p’, P, p) &’ (69)

and

2(wy— w’ = W)y (p’, p, Py
3

= i [f(w) ;"'i(p', po + flw)(p, po)]- (70)
i1
In Eq. (69) taking { = 1—3 we in fact obtain three equa-
tions for ¥y, s, and #;. We readily find from Eq. (69)
that
g, (Wy— w=71y)
b b2 0—_._..__
‘1'2(p5 pU) _gl (wU o ) 1(p) pu (71)
and
Ga (Wy= w = 111q)
Ua(p, po) =22 (—Om*‘-% (p, Po)- (72)

g_l (wy— w=11g)
Inserting Egs. {71} and (72) into Eq. {70), we obtain
2wy — w’ = w+7€) P (p’, p, Po)
=flw)ay(wy— wiy (p’, po)
+f(w ) og(wy— @) (p, Po)- (73)

In Eq. (72) the symbol o is given by the defining Eq.

(12). Inserting Eq. (73) into Eq. (69) for 3, we easily
find that
H;(wo— Ll))
(wu“ W - mz)(wo_ - )wl(P,pg)
__safleg fAw)
B w

flw)oy(wq— @) (p'y Do) &°p’
(0 = wy+ W wy— w = m)(wy— w —my)

- flw)
(74)

Let
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gg1f(wo)f(w)(wo —w— M) (wy— W= my)
d)l(p P 0'3((1)[) w) ¢(p, p())o
(75)
Inserting Eq. (75) into Eq. (73), we obtain
G;(‘Uo - w)¢(p’ pl))
1 e , Sons
:-5-[m¢@,po)dp- (76)

As in the usual Lee model we assume that ¢(p, p,) is
a function of w only. Doing the angular integral in Eq.
(76), we find that

Gi(wy~ w)o™(w, wy)
1 1 [~ [ImG}{w))] o
=% 1), @-w o9 @) @
Let
M(w, (UO)
¢(w, w[)) = w(wo— (/J) . (78)

Inserting Eq. (78) into Eq. (77) yields the generalized
Killén—Pauli (GKP) equation in the 3V-particle Lee
model,

hy(wy— WM (w, wy)

© + 4 W- ’
e [T ) g
mJ, (0 -wy—i€) (v - w)+w-ie€)

VI. SOLUTION OF THE INTEGRAL EQUATION

Like the celebrated Killén—Pauli equation, the GKP
integral equation given by Eq. (79) is a singular inte-
gral equation. The function /1;{w,— w) has simple poles
at w=w,- ¢ and w=w, - a,. By dividing Eq. (79)
throughout by #;(w, - w), we find that

M- (w, wy)

B 1 (1+$ >/"=e Imig(w”)
T hy(wy - w) 7 Jo (0 =w,-i€)
B CICT I )

W — Wyt w—7€

X
(80)

Since the function [#3{w, - w)]* has zeroes at w =w - o
and w=w,—- a, [see Eq. (53)], we observe that

M(w, w) =0 for w=w;~a oOr w=w;— da,. (81)

Moreover, we know that, whenever any two pare
interaction constants are switched off the function
ha(w, - w) reduces to the function ;(w,~ w) of Eq. (37)
with w replaced by (w,~ w) there. That means the GKP
Eq. (79) reduces to the ordinary K#llén— Pauli (KP)
equation whenever any two bare interaction constants,
out of the three are switched off. In other words, the
solution of Eq. (79) must reduce to the solution of the
ordinary KP equation whenever any two bare interaction
constants are switched off. Under these conditions con-
dition (81) should simply disappear.

In a similar manner we note that the solution of Eq.
(79) must also reduce to the solution of the 2V-particle
KP equation (Ref. 1) whenever any one interaction con-
stant out of the three is set equal to zero.
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To solve the integral Eq. (79) we exactly follow the
procedure outlined in Ref. (1). To this end, we rewrite
Eq. (79) with the help of Eq. (41) as

G 3wy — )M (w, wy)

_ (wPBy + wB,)
_—_——_(w—al)(w—il)M-(wo’ (.L’o)

ImAi(w”) M (w’, w) ,
+1+_ / (w’ —iyo—ze) {w’ —wo-i-u())—zé)dw
(82)

Dividing throughout by §j(w, - w), we obtain
M (w, wy)
(B, + wB,) M (w, wy)
(w=-a)(w-a5) G3{wy- w)
o0 + !
e 1 [1+2 Imh;(w )
Gilwy—w) 1], (W=w,-i€)

M(w', wy) ,

We suppose that the first term on the right-hand side
is known to us. By following Refs. 1 and 2 closely, the
quantity inside the brackets divided by G 3(wy— w} can
at once be written down. Thus,

1 w [ Imhi(w’) M-(o, wy) ,
G 3wy - w) <1 T _/‘: (w' - :;0— i€) (W - wy+w- ie)dw>

_ (wy— w) /° 1 Xy(w', wy) ,
_C1(w°)+—-—_71 i ImK;(w,) o —w o iedw .

(84)

In arriving at Eq. (84) we have used Eq. (44). In Eq.
(84) Cy(w,) is a constant function of w,. The function
X,(w', wy) is still an unknown function. It has a left-hand
cut.? Inserting Eq. (84) into Eq. (83) and after a little
rearrangement, we find that

M (w, wy)
i ooy 4 )
x ”(wffi(z;,fg f;’e') me (lw,)) : (85)
From Appendix B, we note that
Xy(w’, wg) = Cylwy) h;_wol——_w-’i’ (86)

where C,(w;) is a constant function of w,. We hereafter
suppress the arguments of the constants C; and C,. In-
serting Eq. (86) into Eq. (85) we readily find the solu-
tion of Eq. (79),

M (w, wy)
9 (wo—
1 (@, — @) (C1— wy = W)Col(wy - w)), (87
where
I{wy— w)
1 /"" do’ 1 1
T, (W= wy+w-i€) hi(wg- ) mK;(w') )
(88)
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The solution will be complete if we can determine the
constants C; and C,. Once the solution is found the con-
stants @; and a, may be allowed to take values higher
than 1.

Vil. EVALUATION OF THE CONSTANTS

To evaluate the constants C; and C, we need two
equations connecting them. We evaluate M(0) from
Eqs. (79) and (87) and then equate. This yields

0190—021(«%:1, (89)
where
]10:/1;(000), 9!):9;(0‘)0)7 K():K;(‘-Uo), (90)
and
1 f7 1 1
A, == !
0 ﬂ[ G;(wo—w')ImK;(w')dw' (91)

Inserting the solution [Eq. (87)] into the original in-
tegral Eq. (78), we obtain

G 3wy = w)[C — (W~ W)Cpl(wy - w)]

wCy f Imi;(w’) dw’ G 3wy - w’)
=1+— 7 - - - + 7
T s (W =wi—i€) (w = wi+w-7€) I{wy—w’)
wC, / Im#;(w’) (wy— w') dw’
Ty s (W—wi-i€) (0 - wy+w-i€)
* 7
xtji(_‘id,ll(wo_ w’). (92)

I (wg—w’)

These integrals have been evaluated in Appendix A.
Using these results we can write (92) as

95(“‘0 - w)[cl - (wy= O.J)Czl(wo— w)]

—1+G [ho HOIHCOER) “’)]

Iy (w)
Ki(w)hg(wy — w) 1
C 3 +3 0 I{w) + T _ o2 .
z[ Iz (w) () hi(w) 7 (93)
In Eq. (93) we now take w = w; and this yields, after
some rearrangement,
G, 1 KA, 1
Cy | iy =5 - ] c[ dp— ]:.
1 + 1 [/IU hogz ? + 2 W + }ZO gz 0 (94)
It is a simple matter to solve for C; and C, from
Egs. (89) and (94). We find that
B K
C1:<KUAO90—7;'%%9'0+£290—%_0>/
08 0
- (K .
6o - Koy +G o -22) (95)
: 0
- _ G 1
Ca= (9”+]]° o’ ;fz)/
KA LG
<7’2—°_K[)tho - Jﬁ) . (96)

The solution (87) of Eq. (79) satisfies all the condi-
tions explained earlier. Whenever any two interaction
constants are switched off, the factor outside the pa-
renthesis in Eq. (87) simply cancels out and the solu-
tion reduces to the solution of the oridnary KP equation.
The solution found here, and the solution of the 2V-
particle KP equation have the same “form.” It is a
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simple matter to check that the solution presented here
reduces to the corresponding solution of the 2V-particle
model. Finally Eq. (87) also satisfies the requirements
of Eq. (81).

VIt THE V6 S MATRIX

For computing the V0 scattering matrix we use the
following definitions:

Sve=(VE | VO

=08(p - py) + 28w — wy) T{wy), (97)
where
T(wy) :f—————z(w())gi(“o’ wo) (98)
From Eqs. (98) and (87) we find that
T(wy) :fz(zz)q
:fz(wo)[KvoQo - KAy Go/hg +g29 0= G o/ R
Ko[Kvo/f—K0A0h0+g290—90/ho] )
(99)

In Eq. (99) flw,) is as defined in Eq. (2). From Eq. (99)
we note that T{(wy) =0 for w,=a, or wy=a,. This follows

from the fact that
Ci=0 for wy=@ Or Wy=d,. (100)

This means that in the V6 cross section also we find
the resonances, at the same energies at which they
appear in the N6 cross section.

IX. THE PRODUCTION AMPLITUDE

The production amplitude V8,—~ N6, 6, can be easily
computed from ¥, (w;, w,, wy) of Eq. (73). Inserting the
solution of ¢, into Eq. (73), we find that

Z.‘04((*)11 Wa, wO)

_ = gflwflwy)fwy) {M’(wl, wy)

T 2{wy - wy — wy+i€) { wy(wy - wy)

" M(w,, wo)] .
wa(wg — wy)

(101)
The production amplitude P defined by,
SPx‘od = <1\/791 93“ ‘ V96n>
=2mi6{wy + wy = W) P(wy, wy) (102)

is given by the term containing 6(w; + w, — wy) in
Da(wy, wy, wy) of Eq. (101). Substituting w, = w,— wy we
find that

:f{f(wx)f(wo = w)f(wy) (M-

P
wy (wy — wy)

(103)

(wy) + M (wy— ‘-'-’1)].

The quantity inside the brackets in Eq. (103) has been
evaluated in Appendix A. Inserting (A12) into Eq. (103),
we find that

Pwy, wg)
= A Wwo) S B
—gf(wlf Wy = wlf Wy [G;(wj,)cg(wo— wl)
+(1_+‘£+1@L__Cigz_)] i (104)
wyGylwg— wy)
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From Eq. (104) we note that the production amplitude
goes to zero whenever

(105)

On the other hand, the first term in Eq. (104) goes to
zero whenever

Wy—aq =W Or Wy—aAy=wq.

W =a Or W =dy. (106)

X. DISCUSSION

In the 3V-particle model, as in the 2V-particle mo-
del, the resonances that appear in the N6 sector, also
appear in the V6 sector. In the light of the present
solution, the Pierels® mechanism should be re-
examined. The solution of the GKP equation here has
the same form as the solution of the GKP equation of
the 2V-particle model. The ordinary deductive method
usually employed to solve the KP equation is not ap-
plicable here. Hence a more general deductive method
should be invented. It will be really a challenging task
to prove the unitarity in this model. An algebraic meth-
od due to Bolsterli® may be employed to solve the in-
tegral equation here. This might help in checking our
result, although we do not have any doubt about our
solution.

APPENDIX A

Inserting the solution [Eq. (87)] into the integral
Eq. (79), we obtain

ga(wo - w)[Cl = (wy = w)C,ol(wy— w) ]

1+ wCy /” Imizy(w”) dw’ Galwy—w)
- 7 J, (0 =wy-i€) 0 - wyt+w—1i€) Hlw,-w)

wC, -/-'° Im/iy(w') (wy— w’) dw’
T r J, (0 -wy-i9) (0 - wyt+w—i€)

-M——I(wo- n,

ha{w, = w')

(A1)

The integrals in Eq. (Al) can be performed easily by
contour integration. The contour is an infinite circle
with a cut from K to ©. Since the function k4(2) has
poles at Z=a and Z =a,, these poles should be deleted
from the contour of the integration by cross cuts from
the infinite circle. If this is not done, the constants C,;
and C, will attain an indeterminate form when w;=a
or wy=a,. We have found this by explicit calculation.

The first integral in (A1) can be written as

wCy hy(2) dz Gslwy—2)
21 Jo (2 = wp) (2 = wy+ W) Iy(wg—2)°

(A2)

which has simple poles at z=w; and 2 =w; - w. So by
the residue theorem, we have

wCy hy(2) dz Galwy—2)

2mi Jo (z2-wy) (2 - wy+ w) hy(w, - 2)
[h* wy) _ Gi(w) hywy - w ] (A3)

w hy(w) w :

Inserting the definition of /{w; - w') into the second
integral of (A1), interchanging the orders of integration,
and after cancelling the factor (w;— w’), we obtain the
following integral:
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wC, ["’I dw”
“Tr M w") hy(wy— @)

1 f” Im7(w’) dw’ Galwy— w')
X— 7 ) 7 7 T + .
7J, (W-wtw-i€) v —wy+w —i€ h(w;=-w)

(A4)

The very last integral can be performed by residue
method. So the residue method yields

l/” Imh;(w”) dw’ Galwy—w’)
1), (W —wy+w=i€) (0 - wy+w=1i€) hi(wy~w)

hy(wy = w) G3(w) 9 (0™

hy(wy~

T (W) (w” - @) 173(w")(w - w) (A5)
Inserting (A5) into (A4), we obtain
Cz%—zl(w)h;(% o)

1/ 1 dw’ G 3w

“"Czw/u I o - w70 m@)’ (48)

where
1 1 1 .

lw) T ,/u (w' = w=1i€) hy(w,— w’) ImK;(w')dw - a7

The integral in (A6) can again be computed by the re-
sidue method. It has poles at w’'=0 and at w’'=w, so
we have

1 [ 1 dw’ Gilw”)
wCzﬂ[ Im KW (0 = w=1i€) hi(w))
1 Gs(0, 1 ]
=C, |- &St . A
2 [ G300 7y(0) " (@) (a8)
Inserting (A8) for the integral into (A6), and inserting

the resulting expression of (A6) and (A3) into (A1), we
find that

G3(wo— @)[Cy = (wy = w)Cpl{wy— w)]

—14¢ [ho_ 3(‘*’0—(;0))9;(@)}

Ky (whs(wy - w) 1
+C, [ 3 h;s(w)o I(w) + @) gz]

(A9)

which is the desired result.

From the solution (87),
M (wy) + M (wy - wy)

T hy(wy - wy)ig(w)

L S

hy(wo = wy)3(wy)

we find that

[G3(wy— whg(wy) + G 3w hy(wy - wy) ]
[K;(wo - wy M {w, - wy hg(wy)

(A10)

On the other hand, from (A9) we find that (by putting
W= CUI)

Co+h3(w)[1 + Cylg - Cp?]

+ hy(wg — w ) {wy K5 (wy) ],

~C1[9 s(wo— Whg(wy) + 3wy - ©01)G 3(wy)]
- Cz[ha(% VK (wy = w)l{wy - wy)
+ K (w) Y hg(wy — w){w,)]. (A11)
Inserting (A11) into (A10), we find that
Cvavb. Chandra Raju 2201



M (wy) + M (wy ~ wy)

B C, (1+Cihg— Cog®
T hg(wy ~ w)hg(wy) hy(wy - wy)

(A12)

which is the desired result.

APPENDIX B

In this appendix we propose an ansatz which will en-
able us to determine the function X;(z, w,) of the text.

The solution of the ordinary Killén— Pauli equation
is given by

M (z, wg) =D Gy{wy~ 2)
1 X', wy
><(D1 + (wy - 2); (w'l— o +(;) KJ'( (lw >
(B1)
where
1
D:gl(wo—?)' (52

An expression for the constant D, is given in Ref. 1.
The function ¢ (w,~ z) is the twice subtracted function
of the ordinary Lee model. The function X;(z, w;) can
be found out by a deductive method.? We have

D,
Gilwy=2)’
where D, is a constant. The factor outside the parenthe-

sis in Eq. (B1) is unity. But by comparing Eq. (B2) and
Eq. (B3) we immediately find an interesting relation.

Xi(z, wg) = (B3)

That is,

D X,(z, wg). (B4)
This ansatz appears to be true even in the nV-particle
Lee model. So by a clear cut derivation, if we know

a factor similar to D, we can always infer a factor like
Xi(z, wy).

For example in the 2V-particle model we quite gen-
erally find that,!

M,(z) :M—-Z—) (Cl' + (wg = z)%

hwy - 2)

° Xy(w', wy)

<), e i), (55)
where

1 7223 ')’22 b ’MZ w ’
o —(1- 22 2 [TRE) i), e
o= (145 G ) e
and

Ky(2) =2(,(2). (B8)

Here C{ is a constant. Moreover the constants B and
w, are given in Ref. 1. The renormalized charge ¥ is
given by
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Y= (g + @,9,)%. (B9)

Here the a’s are the expansion coefficients of the phy-
sical V) state in the 2V-particle model.

From the ansatz proposed above we easily infer that

L4
(’2

X,(z ———
Z(Zy wﬂ) IZ((UO—Z) y

(B10)

where C; is a constant. From the factor outside the
large parentheses of Eq. (85) we readily conclude that

Cy

X3(2, wg) :hs(wu— 2)

(B11)

In general, for any nV-particle Lee model we can also
infer the function X,(z, w,) from the ansatz proposed
here.

APPENDIX C

In this appendix we show that whenever any two in-
teraction constants out of the three are switched off,
relation (53) is an identity. As previously explained,
the function 7;(2) becomes identical to {(z) of Eq. (37)
whenever any two interaction constants are switched off.

Let us assume that g5 =0=¢%. Under these conditions,
we have
=1, and = . (c1)

Moreover when any two interaction constants are zero,

from Eqgs. (48) and (49) we note that
Giw)) = (0" = my) (w' = my)Ki(w'), (c2)
where
w)=w' Gi(w" (C3)

So Eq. (53) now reads

9122) = (z = m,)(z = ) [ £

Mty

=
7\ -y K@) -2 b

(c4)

where we have written z for (w+i€) of Eq. (53). The
integral in (C4) should be treated as a contour integral,
the contour being an infinite circle with a cut from i
to . We have

:J( ; )
7J, Im(w'—mz)(w'—ms)KI(w') (0 - 2)

z 1 1 dw’
T Jo (0 = mp)(w —my) K(w") (@' - 2)"

(C5)

The integrand in (C5) has poles at w'=0, since K,(0)
=0, and at w’ =z. There are no poles at w’=m, and
at w’ =my;, since these are the real masses of the now
noninteracting V particles. Taking residues at these
poles we obtain
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z 1 1 dw’
2mi /; (0" = mMw' = my) Ki(w') (w'-2)

=& 1
*z(mzmaz * (2 = my)(z ~ ms)Kl(z)) ) (ce)

If we insert (C6) into (C4) we find that relation (C4)
is an identity. In Ref. 1, below Eq. (47), we stated that
although %(z, B) reduces to G (z) when B=0, the inverse
of h(z, B) [given by Eq. (47), Ref. 1] does not reduce to
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the inverse of § (z). The statement is unfounded in view
of the results of this appendix.

1Cvavb. Chandra Raju, J. Math. Phys. 17, 6 (1976).
2A, Pagnamenta, J. Math. Phys., 6, 955 (1965).

SA, Pagnamenta, J, Math, Phys, 7, 356 (1966),

‘E.M. Kazes, J. Math. Phys. 6, 1772 (1965).

5C. Sommerfield, J. Math, Phys, 6, 1170 (1965).

6T.D, Lee and G.C, Wick, Nucl. Phys, B 9, 209 (1969),
T.D, Lee and G.C, Wick, Nucl. Phys. B 10, 1 (1969).
®R.F. Peierls, Phys. Rev. Lett. 6, 641 (1961),

M, Bolsterli, Phys, Rev. 166, 1760 (1968),

Cvavb. Chandra Raju 2203



Fermi-Bose and internal symmetries with universal

Clifford algebras

Geoffrey Dixon

Department of Physics, Brandeis University, Waltham, Massachusetts 02154

(Received 21 November 1976)

Supersymmetry in four-dimensional space-time is approached from the theory of universal Clifford
algebras. The representation produced results in a class of new algebras characterized by an index n which
indicates the natural appearance of su(2n)Xu(l) as a subalgebra interacting only with the spinor (or odd)
parts of the surrounding Fermi-Bose algebra. Finally, a reformulation of the Dirac equation in this
formalism is presented which is not plagued with the empirically untenable problem of a continuous range

of cigenvalues.

A Clifford algebra for an n-dimensional real orthogo-
nal space X (n finite), as defined by Porteous,® is a real
associjative algebra A with unity I containing isomorphic
copies of R and X as linear subspaces such that for all
x in X the algebra product x*= - (x, x)/, where (, }is
the scalar product of the space X. Furthermore, A is
generated as a real algebra by / and X. The universal
Clifford algebra of X is that Clifford algebra which
satisfies a certain universal mapping property, but it
can also be characterized as the unique Clifford algebra
of X with dimension 2",

Let R be the (p +q)-dimensional real linear space
with scalar product (@, b)==F ,c,a;b;+3 _ a,.;b,.;, and
let R, , be the universal Clifford algebra of R*. If
n=p +q is even, then R, , can be shown to be isomor-
phic to either R(2"/?) or H(2"/?7), where R(m) and H{m)
are the real algebras of » Xm real and quaternion
matrices, respectively. [Since the basic quaternions,
denote them /, 7, and 2, can be represented as 2 X2
complex matrices, i.e., as elements of C(2), an R, ,
isomorphic to H(2"/2) could also be represented by
elements of C(2"/%), but since this algebra is 2"*!-
dimensional it is not isomorphic to R, .. The author has
found the restriction to the canonical representations
enlightening and these will be used throughout. |

R, 5, the universal Clifford algebra of the Minkowski
space R'?, is isomorphic to H(2). One set of four basis
matrices for R"® in R, ,is vo=[5 1|, ».=iC, v,=JC,

y,=kC, where C =[? }]. (Basis matrices must anticom -
mute.) The general element x in R''3 takes the form

x:[io _j‘] )

where X=x;i +x,j +x5k. (Note that Xy =XXx-x-y.)

Finally define y; =¥, v, ¥s¥o= - ¢). In any representation
2

Vi -1,

The Clifford algebra of primary interest here is R, ,
=H(4). A set of six basis matrices for R**in R, , is
Cu=[¥l, 1=0,1,2,3, A =[} 5], & =[5 ¢35, where
the y’s are the H(2) matrices given above. Finally, let
A=TT 08, = [(;5 -35]-

The fifteen matrices T',T', (p#v), T, A,, and 4, 4,,
together with A generate the Lie algebra so(2,4) xu(1)
=gu(2,2) xu(l). This constitutes the even parts of a
graded Lie algebra (GLA) first introduced by Wess and
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Zumino.? Denote the nontrivial components of this
algebra by L ,, L, Ly, L,, and L,.

Let x be as in (1) and define a four-dimensional sub-
set of R*'* consisting of elements of the form

X:[,\‘ xz'}’s]a (2)
-}/5 X

A basis for L, consists of the six ' T", which generate
Lorentz transformations on the Minkowski vector x in
X, A4, which generates a dilation, and A which acts
as a kind of phase transformation. A basis for L, is the
four 5(I', A, - T, 4,) which generate translations on x in
X, and for L, the four 3(I', A, +I,A,) which generate
space—time dependent dilations. It should be noted that
elements of the form (2) constitute a subset of the null
cone about the origin in R*'*, and that whereas all the
above conformal transformations map X into this null
cone, only the Lorentz transformations and translations
maintain the form of X given in (2).

To complete the GLA, W=L _,&L_PL, b L, & L,, we
must incorporate the odd elements. By maintaining the
condition that R, , be a real algebra a variation of the
usual complex representation® results. In fact the alge-
bra is radically altered and will be presented without
the details of its development.

To incorporate the odd elements, the size of the
matrices must be increased to H(6) resulting in the even
elements taking the forms

0 00 A0 O 0 0 y.x
0 00jfinL, |0 D O0|inL,| 00 in L,,
¥sy 00 0 0 —A* 00

(3)

where x and y are of the form (1), A* is the quaternion
conjugate of the matrix A which has the form ul + vy,
u and » in H, and the form of D is yet to be determined.

The four basis matrices for L, are

0 5, 0
S,=2Y%0 0 Cy,|, a=0,1,2,3. (4)
00 0

The parameters of these super transformations are
elements of a Grassmann algebra G, but it is necessary
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that these parameters be taken over the complex field
with y, representing the basis for the imaginary part.
That is, if 7, and s, are elements of G of odd degree,
then the general element of L, takes the form

N 0 r+y.s 0
R= (v, +v,5.)5,=2'%[0 0 C(r-y,s)
0 0 0

(5)

n

o o

0
0
0

oo

where ¥ and s have the form (1).

Let R’ be the same as R with primed components.
Then

o 00T
[R,R']=[0 0 0],
000
where

T—RR' —R'R=(r,x’ +10))y, - (rori+r-1)C
- (rxs’)y, +(similar terms),

which has the form of an element of L, as required of
such a commutator.

The four basis matrices of L_; are

o 0 O
. 0
Q,=2"1/2 ga_gc ol @=0,1,2,3.

The general element in this case must be defined
through multiplication on the right by the parameters.
That is,

0 0 0
B=Q b= vscad =27V2]b +y,c 0 0
0 —-(b-y,c)CO
0 0O
=B 0 0.
0 BO

The commutator [R, B] must take the form of an ele-
ment of L,. From this it is possible to determine the
form of the matrix D defined in (3),

_ RB___ O 0
[R, B]=|0 RB-BR 0
0 0 -BR

It is not difficult to show EE: (BR)*. The central term
is

RB - BR = - (r xb)1 +(rcy =r,e)l +(roco =T+ C)ys
+(similar terms).

This has the form of an element of su(2) xu(l) (compli-
cated by Grassmann parameters). In fact, if we allow
D in (3) to be an arbitrary matrix of the form [.§ ],
where the g, are real or even elements of G, then the
algebra remains closed and is now endowed with an
extra, internal subalgebra su(2)xu(l) which interacts
only with the odd components L, and L _,.

This algebra is quite easily generalized. Instead of
enlarging the representation of the even components
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from H(4) to H(6), as was done, enlarge it to H(2n +4)
in a similar fashion and define the general element of L,
to have the form

[0 R, R,...R, O
_Jooo...0 R
R,=]0 0 0 ---0 R,|,

000 ..--0 R,

00 0 ...0 0

where R; and R; have the forms of R and E in (5). Define
an element B, of the new L_; by a similar generalization,
Then

M n n
2JR,B;, 0 0 0
i=1
- . 0 0
(B, Bl=| o [R5, - B.R,| ,
0 0 0--- ~-2,B,R,
i=1 -

where [R, Ej - B,R,] is an element of H(2n) whose H(2)
components are R, B, —B,R,, This central matrix has
the form of an element of su(2»)xu(1) and again the
algebra is closed if we allow this central matrix to vary
independently in L,. If this is the mathematical origin
of internal symmetries it could have far reaching
consequences.

To produce a Dirac equation we must adjust the
formalism to accomodate the Clifford algebra formalism
used here. We should expect phases to be generated by
v5 and the lowest order spinors to be elements of H(2),

Define p=y,p* =[F %)and M=p| =my,=[7 2],
where E, p, and m represent the energy, momentum,
and rest mass of the particle to be described by the

spinor. The variation on Dirac’s equation is then

Pyfx) =y 1o d{x) = My(x), (6)
where 2 =[% 7 |. A plane wave solution takes the form

¥(x) =explys p ") U, (7)
where U is in H(2), Substituting this into (6) gives

Piplx) = pp(x) = My(x). (8)

To obtain the momentum equation we must cancel the
exponential in (x) [which could not be done were we to
replace M with m in (8)] obtaining

pPU=MU, )

It is not difficult to show that U=p is a solution of (9)
unique up to multiplication on the right by an arbitrary
element of H(2) and that m =0, Furthermore, the heli-
city of the solution points along the momentum vector.
Therefore, the only solution of (6) is a neutrino solu-
tion. Were it to have been demanded of the original
Dirac equation that it play a more fundamental role in
physics than that of a technical tool, then the continuous
range of eigenvalues for m allowed by that equation
should have been deemed unsatisfactory in light of the
fact that nature has supplied us with no more than
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countably many particle rest masses. Further, since
massive spin-3 particles invariably attribute their rest
masses to self fields, we should not expect to obtain
massive solutions for a spin-3 equation if that equation
incorporates none of these extra fields. The original
Dirac equation differs from the above primarily in that
it treated the Dirac matrices as generators of a complex
rather than real Clifford algebra. It is seen here that if
the theory is approached from the mathematical end,
maintaining the mathematical consistency throughout,
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then complex analysis arises naturally and the theory
takes on the semblance of fundamentality and provides
a fresh starting point for the theory of fermions.

11, A. Porteous, Topological Geometry (Van Nostrand,
London, 1969).

2J, Wess and B. Zumino, Nucl, Phys, B 70, 39 (1974).
31, Corwin, Y. Ne’eman, and S. Sternberg, Rev. Mod.
Phys. 47, 573 (1975),
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A general Lie group theoretic framework for the study of a class of nonlinear partial differential equations
is presented. In two space-time dimensions this class includes soliton equations. The approach is
applicable in N> 2 space-time dimensions. Eigenvalue problems and isospectral flows associated with
equations have a natural group theoretic interpretation in this framework. A sequence of nonlocal exact 1-,

2-,...,(N —1)-forms are derived in N -dimensional space-time.

1. INTRODUCTION

This paper presents a general Lie group theoretical
framework for a class of nonlinear partial differential
equations, Members of this class are the integrability
conditions for a certain system of first order differen-
tial equations in N-dimensional space-time, The solu-
tion of this system gives the parameters of a bilocal
Lie group, that is, a Lie group described in terms of
bilocal functions of space—time, A consequence of the
existence of the bilocal Lie group is the existence of
N-local conservation laws in N-dimensional space—time.

In two space—time dimensions the class of partial
differential equations treated contains equations that
have recently received considerable attention equations
with soliton solutions, ! These equations are known to
have associated eigenvalue problems and isospectral
flows and an infinite number of conservation laws, In
the present approach the differential form of the linear
action of the bilocal group on a linear representation
space expresses the associated eigenvalue problem and
isospectral flow, ! Other equations of physical interest
that have not yet been shown to have soliton properties
are also contained in the general scheme, The main
geometric feature of the present framework is that the
bilocal group action on a linear representation space
naturally defines a flat connection, The vanishing of the
corresponding curvature tensor is a re-expression of
the original nonlinear partial differential equation.

This work was motivated by the study of pseudopoten-
tials. This idea was introduced in Ref. 2 and later
studied for example in Refs, 3—8. The geometric
picture associated with the vanishing of the curvature
tensor extends previous work in Refs. 8 and 9 on
particular soliton equations into a coherent group
theoretic framework,

In the next section some standard results from Lie
group theory are presented for future reference and to
fix the notation, Section 3 introduces the central defini-
tions, those of a bilocal Lie group and bilocal group
parameters, and the connection with partial differential
equations, particularly soliton equations, is made,
This is followed in Sec. 4 by the introduction of local

2 Gupported in part by the National Science foundation,
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group parameters and the expression of bilocal param-
eters in terms of them. Group actions are then dis-
cussed in Sec, 5. It is shown how a representation
space for the group is a set of pseudopotentials asso-
ciated with the equation, and that the differential form
of a linear group action is the associated eigenvalue
problem and isospectral flow used to solve soliton
equations by the inverse scattering method. A flat con-
nection is defined by the linear group action. The final
section gives the derivation of N-local conserved cur-
rents as well as a sequence of exact (j +1)-local j-
forms, j=1,...,N-1, in N-dimensional space—time,
The forms are exact on the equations of motion, that
is, on the integrability conditions for the bilocal group
action,

2. LIE GROUPS

In this section some basic results from the theory of
Lie groups are recounted, The reader is referred to
any of the standard classical treatments of Lie theory
for their derivation, see Refs, 10 and 11 for example,
In the remainder of the work, group parameters of
particular types are introduced and discussed, bilocal
and local group parameters, The addition of space—
time dependence to the group parameters produces a
richer structure though all the basic results of Lie
theory remain and indeed are often called upon to derive
consequences of the space—time dependence, 1t is useful
then to gather together the relevant results from the
standard theory in order to delineate the boundary be-
tween them and those results that are due to the types
of parametrization used and also to fix notation.

Let G be an f-parameter Lie group with parameters
given by #, k=1,...,f. The notation g={#*} is used
when g€ G and the #* are the corresponding parameters
of g, If g={t*} and g! is the element inverse to g, the
notation g~ ={7*} is used. Let ¢ denote the unit element
of G, In the sequel, unless otherwise stated, sets of
parameters are used that have the properties e:{lﬁ:O},
k=1,...,f; if g={t*}, then

gl={tr=- 1}, @.1)

I g1,8:€ G, g1=1{#}, &2={f4}, and g,,=g;, then the
parameters of g3 are given by

th=R*(ty, ty). (2.2)
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The functions R* are called the group composition law
for G,

The group composition law has the following
properties:

R*(t, £)=R*(,1)=0, (2. 3a)
R*(t,0)=RF(0,1)=t, (2.3b)
R*(t1, R(ty, t3)) = R*(R(1y, ty), 1,). (2. 3¢)

The R® are analytic functions of 2f arguments. The
values of various derivatives of the R* play a fundamen-
tal role in Lie theory; it is useful to introduce special
notation for them, Thus define

AR*(ty, ¢t
O

2 (2. 4a)

3
t9=0

40 (2. 4b)

It follows in the general theory of Lie groups that if
_ AR QAT

[Ak,Al-‘m: ofm A;“ oM A:’ (2. 5)
then

[Ak’Al]m: CuAr, (2. 6a)

(By, By "= - C,BY, (2. 6b)

where the constants Cj; are the structure constants of
the group G. In (2.5) and throughout the text the summa-
tion convention is used. The A% and B} give two realiza-~
tions of the Lie algebra of G. These realizations are
clearly equivalent,

The sets of functions A%(t), B%(¢) have the following
properties:

AR(0) = B%(0) = &%, (2.7a)

Aj(y=Bj(- 1), (2,7b)
It can also be shown that

[Ak,B,]’":O, (2‘,8)

Let A(f) and B(f) denote the matrices with matrix
elements A%(f) and B%(?), respectively, The matrices A
and B are invertible. Let V and W denote the matrices
inverse to A and B, respectively, Thus

ABQVH=VA@R) =1, (2.9a)
BOW(E)=Wt)B¢) =1, (2.9b)

where I ig the f~dimensional unit matrix, It follows from
(2.7) and (2, 9) that

Vi) =W(-1). {2.10)
Using (2.6), (2.9), and (2.10) it is easily shown that
avi avk
Py e AR (2.11a)
dWE Wk
i~ o = Ch WL (2.11b)

If (2.3c) is differentiated with respect to # and the
result evaluated at {3=0, it is found that

OR*(ly, 2)

= AN = ARR(, b)),
ol

(2,12a)
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The derivative of (2. 3c) with respect to /; at #,=0 is

ﬁﬁ%(%@fg:.(m =EBi(R(ly, t)). (2.12b)
Using (2. 9) it readily follows that
ViR 1) L) v, (2.13a)
WHR @ ) = ). (2. 13n)
If (2.13) are evaluated at /,=# =— f;, one obtains
1(19) = é%%—fz—) .:f?z, (2. 14a)
Wiy = (2. 14b)
cHq to=tys

when (2,7) and (2. 10) are used,

This ends the brief recital of standard results from
Lie theory, In subsequent sections the structure is en-
riched by considering group parameters depending on
two space—time points.

3. BILOCAL LIE GROUPS

Recent studies®=>"? have suggested that there is a

close connection between Lie algebras, and therefore,
between Lie groups and equations that have soliton solu-
tions. These results consist of a series of computations
and/or observations based on pseudopotentials. ® Thus
far no coherent basis for the existence of the Lie alge-
bra structure has been developed, This section contains
the principal definition needed for the construction of a
Lie group framework for soliton equations; bilocal Lie
groups, Following the definition the basic properties of
bilocal group parameters are derived and the connection
with soliton equations is established.

A bilocal Lie group G is given by a map

rR¥xRY— G, (3.1)

i,e., if (x,y) < RYXR", then the image of {x,y) under ¥
is an element of ¢ « G with parameters 7*(x,v), #
=1,,..,/ (for some fixed parametrization of G). The
expression “bilocal Lie group” is used to indicate that
a Lie group G described in terms of bilecal group pa-
rameters is being considered.

We ask the following property for the map (3.1),

RFr(e,x), v (c/, ) =1*x, y), #,y,% <RY, (3.2)

i. e., the product of two group elements having one com-
mon point x’ does not depend on that point, It follows
from (3. 2) evaluated at x =x’ and from (2, 3b) that
¥*(x,x)=0. I (3,2) is evaluated at x=v, (2.3a) and
(2.1) can be used to show that »*(x,v) == »*(y, x).

It is necessary to derive numerous expressions in-
volving derivatives of (3.2). The notation becomes
cumbersome unless some conventions are used, For
the purposes of differentiation let 2%, k=1, ,..,f,
denote the first f arguments of R* and «* the second f
arguments of R®, The components of ¥ « RY are denoted
by x*, A=0,...,N¥-1, In applications x° denotes the
time variable,
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Consider (3. 2). Since the right-hand side is indepen-
dent of x’,

AR (r(x,x’), 7(x’,y)) 8 (x,x) + aRMr(x,x'), 7(x’, )

o’ ax* '
x &LV (3.3)
ox
Setting x =x’,
ORMu, 7(c,p)) | ArG,xT) | AR, v(x, )
aul u=0 ox’ x=x’ v u=0
it
x L) | g, (3. 4a)
ox x'=x
while setting x’ =y yields
BRMr(x,v),0) | ) |, ARG, v),v)
out vep  Ox' ey av! =0
1 )
«ELY) g, (3. 4b)
ox x'=y

These equations are a direct consequence of the bilo-
cal composition law (3. 2) and have a fundamental role in
the present framework, They can be written in a more
convenient form by introducing the notation

] k
RO (3. 52)
Frn= 20 @.5b)

Since 7*(x,y)= - #*(y,x) it follows from the definition
that f¥(x) =~ f#(x). Using this fact together with the
definitions of A and B given by (2. 4), the pair (3. 4)
becomes

TG4 Barte, y ) =0, (. 6)
R
) a3t () =0, (3.7)

For a given set of functions f;(x) and B¥(») [A}(?)],
satisfying (2.6), the system (3.6) [(3.7)] can be treated
as a set of equations for the #*(x,y). In this situation it
is of interest to derive conditions for the existence of
solutions of the equations; the integrability conditions.
For (3.6), (3.7) these are

Ot y) _ 8, w)

% ox” " ax 3. 8a)
) o), 3. 80
= T 8.3

The first two sets of conditions give
A, v)) { LK 5}=0, (3. 92)
B’:(v(x,y)){gﬁé- et ﬁ}: 0, (3. 9b)

where (2. 6) has been used. Since 4 and B are invertible
it follows that

oft  af!
—E—A—Cirpfxn 5.

axr” axe T 8.10)
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The final condition (3. 8c) implies

fﬁfx’[Aan]m: 0.

The equality is satisfied due to (2. 8). Thus all the re-
strictions put on ¥ so that (3.6), (3.7) is integrable are
contained in (3.10). For a given set of ff, if (3.10) is
satisfied the bilocal group parameters 7*(x,y) exist, We
note here that if £? satisfy (3.10) the functions /¥(y)

= E%fJ(y) have the same property if

EYER Chy=CTE s

(8.11)

(3.12)

i.e., if the constants E% form a matrix belonging to the
adjoint representation of G. Therefore, linear transfor-
mations of £ through the adjoint representation do not
yield an essentially new solution of Eq. (3.10). We shall
say that two solutions of (3.10) differing by transforma-
tion from the adjoint representation of G belong to the
same class,

It is interesting to see how f* transform under change
of parametrization of G, Suppose the new parameters
7*(x,y), are expressed through the old by the formula

P, y) =T (x,v))

with nonvanishing Jacobian jja¥*/3+*|| . Following the
definition (3. 5) we obtain in the new parametrization

~ 7% (x v ~
=2 ),
y X3y
where
~ oWk (r)
Rk __ L
Ej o r=g

Let the new parameters be chosen so that the structure
constants C!, remain unchanged, Then rederivation of
Egs. (3.6) and (3.7) shows that 7% have to satisfy (3. 10)
again and that the constants Ef obey (3.12), From here
we conclude that transformations to new parameters
which do not affect the structure constants change the
functions ff in a trivial way—the latter are only linearly
transformed according to the adjoint representation of
G, and, therefore remain in the same class of solutions
of (3.10),

This observation shows that in fact the functions are
not tied to a particular choice of parameters (once C%,
are fixed), The independence of the f is important in
view of the applications to nonlinear partial differential
equations, where they will be regarded as primary
objects,

If we have a bilocal parameterization in two space—
time dimensions, for some fixed group G, then with a
suitable choice of £* which has the form f=f*

@, uy, My, u,°v°) (u is some function of x* and x1),
Egs. (3.10) become known partial differential equations
for u which possess the soliton solution. For example,
in Ref. 5 (in a more restricted and rather ad hoc
fashion) it was pointed out that all differential equations
solvable by the inverse scattering method via the gen-
eralized Zakharov—Shabat eigenvalue problem can be
cast into the form (3.12). As a particular case consider
the identifications

JHe) =it +hur); fE0) =36 - k),
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e)=x;  fiHx) = si{20l + u*) +i(u, - kud)},
FE06) =320 - u*) +iu, + kud)}
fiy=2x2+k|ul?,

(3.13)

C;'m:2€nlm; n,l,m=1,2,3.

Here u is a complex valued function of x%=¢, x!=x; u*
is the complex conjugate of u, u, denotes the derivative
of u with respect to x!, k and A are constants. Further-
more the group G is taken to be SU(2) with structure
constants 2¢,,, (€., iS the completely antisymmetric
tensor ejp3=1). With this choice of £¥, (3,10) yields

g+t — 2k |u|u=0, (3.14a)

¥ — wk +2k|u|u* =0, (3. 14b)

Thus with the selection (3, 14), (3, 10) reduces in two
space—time dimensions to the nonlinear Schrodinger
equation,

Another example of physical interest is a two-dimen-
sional ¢ model introduced in Ref, 13 and recently
studied in Refs, 14 and 15. In Ref, 15 results are
derived, in a very different context from the present
one, that can easily be used to show that the model
treated can be put in the form (3, 10), with the C?,, the
structure constants of O{4), This model has not yet
been fully investigated.

An alternative interpretation of (3,10) is given by de-
fining the “Yang— Mills” tensor

1 =_aili__aﬁ_cl

AT axd T gxu npf)zfﬁ’ (3° 15)
through the “vector potentials” fi. The integrability
conditions for the bilocal group action are then seen to
be the conditions for the vanishing of the Yang—Mills
tensor %L, constructed for the gauge group G. 1218 Thig
interpretation will be commented on further below,

4. LOCAL LIE GROUPS AND FACTORIZATION

In this section a factorized form of the path indepen-
dent map (3.1), (3.2) is introduced and its basic prop-
erties established.

Let s be the map

s:RY—G, (4.1)

such that if x € R” then the image of x under s is an
element g € G with parameters s*(x), We are consider-
ing the same parametrization of G as in Sec, 3, i.e.,
with the same set of functions R* as those in (2.2) for
the group composition law,

With a given map s, we can explicitly construct a
bilocal map 7: RY XRY — G satisfying (3.2). Indeed, de-
fining the functions »%(x,v) by

rk(x’y):Rk(s(x),g(y))y

we obtain the desired bilocal parametrization. In other
words, we are considering pairs of maps (¥, s) such that
such that if g;={s*(x)}, go=1{s*(9)} the parameters of the
product g, g;! are

R¥s(x),S(y)) =7*(x,¥).

(4.2)
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If (4.2) is differentiated with respect to y and evaluat-
ed at x =y, it follows that

<l
S =+ V) asay(*y) == W’i(S(y))‘as;;f L,

where (3.5), (2.14), and (2, 10) have been used,

(4. 3)

As was shown in the previous section, in two-dimen-
sional space—time it is possible to choose f} in the form
fF=fE@,u,, iy, -+ ) so that the integrability conditions
(3.10) become soliton equations for the function u(x, f).
From this point of view the equations (4, 3) are a differ-
ential system for the s*(x) with the f} given and it is
convenient to write (4. 3) as

35 _ _ pr(s () FL ).

P (4. 4)

This system for the s*(x) has a solution if (3.10) and
(2. 6) are satisfied,

There is a natural superposition principle for the in-
tegrability conditions (3, 10) that is inherited from the
group composition realized in local parameters. The
logic of the superposition principle is as follows: Let
SR and £ be two fixed solutions of (3,10) and s%(x),
sg(x) are the corresponding solutions of (4, 4). The func-
tions s’flz(x) realize one and the same parametrization
of G but with different space—time dependence, there-
fore the expression

s3(0) = RA(s4(x), 55 (x))

is well defined and can be used to find the corresponding
Fire

The details of the calculation are the following., Let

asi(x)

(4. 5)

== Bils k), i=1,2 (4.6)
and suppose (4. 5) is satisfied. Then one obtains
?
o)== Wity 25
BR’(si,Ez) B_ST' aR’(sl,EQ @
=T Wi’z(s:’(x)){ ou™ ax* * ov™ ax*
3¢ —  osf
= Wf(sz)gB:,(Ss)mn(sﬂ% +AL(33)V:',1(32)%}
=l () — Wilsg)AL(s5)fa (), 4.7

when (2, 10) is used, This equation indicates the possi-
bility of finding new solutions of (3,10) in terms of two
known solutions. This will be commented on further in
the next section.

5. GROUP ACTION

In the present application of Lie groups to partial dif-
ferential equations the properties of bilocal Lie groups
viewed as continuous groups of transformations are of
considerable importance, Considering the action of a
group on a linear space defined over two-dimensional
space—time establishes the connection of the new form-
ulation presented here with the pseudopotential approach
to nonlinear partial differential equations. Indeed it
could be argued that the bilocal Lie group framework is
the natural setting for the study of pseudopotentials,
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More importantly study of the group action provides a
group theoretic interpretation of the linear eigenvalue
problem and isospectral flow used to solve soliton equa-
tions,.® The basic properties of bilocal Lie groups of
transformations are, of course, independent of the di-
mension of the underlying space—time. In this section
the definitions of a global group action (written in bilo-
cal parameters) is given and its consequences developed.
In the bilocal case the general definition of group action,
in arbitrary parameters, can be written in complete
analogy with the usual case, '

Let @ be a d-dimensional space and let ¢ be a map

g:R"—~Q, (5.1)
The coordinates of @(x) e @ are given by ¢°(x), a=1,...,
d. A global action of G on @ is defined by

g ()= F(r(x,v);a(y) (5.2)

This action is in general nonlinear in the sense that the
F® are not necessarily linear functions of ¢*. For a set

of functions F° to realize a bilocal group action two con-
ditions must be satisfied:

(1) If g ={*(x,»)} and
qa(x)=F“(7’(X,y);f1(y)),
then
()= F{r(x,7);q ().

@)U g1g=g3 s1=1*0,2"0, &=
g3=1{*(v,x)}, then

F(r(y,x’) g&))=F(r(y,x);qx).  (5.4)

The generaloy functions of the group action {4.1) are
defined by

(5. 3a)

(5. 3b)
Ir*(x’,x)}, and

); Fr(x’, x)

8F°%(rq)
81’ ?‘k=0'

It follows from the general theory of Lie groups!®!! that
if

Xy@)=~ (5. 5)

aX% 0X%
X [Xerz]a aq ’;Xb ka_qllJ, (5. 6)
then
[X » X, ]":C”‘X‘,’m (5.7)

where, again, the CJj are the structure constants of G.

Consider the derivative of (5.2) with respect to x,

3q°lx) _ 2F(rx,v);9(y)) 37*(x,y) 5. 8)

axt v oxt * :
If (5.8) is evaluated at y =x and (5,2), (3.5), and (3. 6)
are used, it follows that

)

D rree)x3(a). (5.9)

If (5.9) is treated as a system of equations for the ¢%(x)
with given X2 and f¥, then the integrability conditions for
(5. 9) are satisfied if X¢ and £ obey (5.7) and (3. 10),
respectively, with the same structure constants CJ;,

Equations of the form (5. 9) when d=1 have been
derived in connection with the study of simply pseudo-
potentials associated with the sine~Gordon, KdV,
Hirota and other equations. ¢ These results can now be
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properly interpreted. They are the differential form of
the nonlinear action of a three-parameter bilocal Lie
group on a one~dimensional representation space,
Let the F° realize a linear action
F(r;q)=T(r)g", (5.10)

where T3(r) are the elements of a (d Xd)-dimensional
matrix function T(7). In this case the generator func-

tions of F* are linear in ¢° and are given by
Xiq)=1%", (5.11)

where the ,§ are constants, Let /, be the matrix with

matrix elements 1,5. The set of I,, k=1,...,/, satisiy
the matrix commutation relations
LI = LI, =Cy3I, (5.12)

and form a d-dimensional matrix representation of the
Lie algebra of G,

The linear form of (5, 9) is

SO - 01,30 ). (5.13)
Equations of this form have been derived in connection
with the study of linear pseudopotentials. *>7 It has been
shown®7 that, e.g., for G=SU(2) with a suitable choice
of the f¥ (for example that already made in Sec. 3 for
the nonlinear Schrddinger equation) (5.13) reduces to
the linear eigenvalue problem and associated isospec-
tral flow used to solve the soliton equation given by the

AR

In fact for the case of the nonlinear Schrédinger equa-
tion using (3.13) and setting I,§ =i(0,)} (0, are the 2X2
Pauli matrices) one obtains

2 q' _f=ix u g

axt\g? ) \ku* XJ\G)

2 (e —(‘”27\2”4”[2) 2+, \[ ¢
o\g? )"\ k@ ~up) i@+ k[u|D\ g )

It follows for a linear group action and from (4, 3) that

T(r(x,y)=TREE), (M) =TEE)THs(v). (5.14)
If ¢(x) denotes the vector with components ¢'(x),. ..,
g%(x), and (5.14) is used in (5. 2), then

T (s ())g &) =T (s (9))a(y) =4, (5.15)

where ¢, is some fixed constant vector in the space @.
Thus

q(x) = T(s(x))qq. (5.16)
Differentiating with respect to x yields

3qkx) _ 3T(sx)) .

axh avk T 1( x))q (5- 17)
This is another form of (5, 13) so that we have the
equality
oT
D)=~ =5 T=—fil,. (5.18)

The quantities I',(x) can be used to define a covariant
derivative

aq()+r(

Vg (x)= o x)q (x). (5.19)
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From (5. 13) it follows that the covariant derivative of
g(x) is zero.

The T',(x) give a natural linear connection of  in-
duced by the bilocal linear group action, This linear
connection has the curvature tensor

a aru% arlg
WuT ok T Toxu

+ szrug - Fugrg- (5- 20)
The definition (5, 18) together with (5.12) and the in-
tegrability conditions for ¥, (3.10) imply that

RS, =0. (5. 21)

When N=2, as has been discussed in Sec. 4, the
/¥ can be chosen so that (3. 10) reduces to the soliton
equation, The vanishing of the curvature tensor (5. 20)
associated with the connection (5. 18) is a restatement
of this fact, The vanishing of a curvature tensor has
previously been observed in connection with solitons in
Refs, 8 and 9.

The fact that nonlinear equations possessing soliton
solutions may be associated with a flat connection in the
@-space defined over two-dimensional space—time is,
in the present general framework, of particular im-
portance, The flatness of the connection is the principal
geometric manifestation of the path independence of the
bilocal group action, i.e., of the main property of the
map (3.1) expressed by the composition law (3,2), A
path dependent action leads to a nonzero curvature as
is shown in Yang’s integral formulation of gauge
fields. ' A discussion of nonvacuum gauge fields from
the present point of view will be presented elsewhere.

Equation (5. 18) shows that any set of functions that
satisfies the integrability conditions (3.10) is a pure
gauge term. Thus any two solutions can be connected by
a gauge transformation. Alternatively put, consider

T,l0) = Tis,(x)), i=1,2, (5.22)

for two families of local group parameters s;{x}, i=1,2
possessing the same composition law R*, (See the end of
Sec. 4.) If we construct

shix) = R¥ (s, (x), so(x)), (5.23)
then
L) = T (x) + Ty () Top () T1' (). (5.24)

This is the linear version of (4.7). Of course (5.23) [or
{4.7)] may not produce a I, or f} that has the same
form as the two original constituents, this would be
necessary to obtain a third solution of a given nonlinear
partial differential equation. However such superposi-
tion principles are contained in (5.23) and (4.7). The
problem of the form invariance of the I', or f is cur-
rently under investigation since its solution is closely
related to finding the Backlund transformation for the
original equation,

6. CONSERVATION LAWS

In this section, conservation laws for the equations of
motion (3, 10) are derived if the group under considera-
tion is semisimple, All computations are performed in
canonical parameters. In this case A and V have a sim-
ple closed form representation. To give this represen-
tation first define a matrix ¢ with matrix elements
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o} =1"Cpy. (6.1)

With this notation!® 1!

V(#)=I1+30+350%+... (6.2)
As a formal series
V()= (e° - Do, (6.3)
Using (2. 4) it follows from (6. 3) that
2\ By;6%
A=c(e®—1)1=1-to+ ) 2X 6.4
) 2 j;l1 2] ! ) ( )

where By; are Bernoulli numbers.
It is useful to introduce the Killing tensor defined by

Cuy=Cnce (6. 5)

kR ml

This tensor can be used to define objects with lowered
indices, so that for example

ty=Gut’, (6.6a)

Catm = GrpCh . (6. 6b)
It can be shown that in canonical parameters!® !

Vi =t AS =1, 6.7

In order to investigate the existence of conserved
quantities consider the difference

By = __8__{ r*(x, y)GlzlfL:(y)) - a;iu ("’k(xd’)szfo(y))-

“ —ay
(6.8)
Clearly
art(x, ar*(x,y
s = (5 60 - 2 6,01400))
3 y
f My of X
Fr, 6, (LelL 2600, (6.9)
and using (3.7) and (3. 10)
By = (A?x(”)f;fcszi *AﬁfZszf{)
+7*Gy Crpfafi
={AXG,, = ALG,, +7*C,CL L T2, (6.10)

It is not difficult to show that A, , vanishes if the group
G is semisimple. If G is semisimple, then G, is in-
vertible, so that a matrix G*' exists with the property
that

G*G,,,=G,,G* =5k, 6.11)
To show that A,, vanishes it is sufficient to show that
Gng(Uz)Pz = (02)k1 = (02)1k' (6.12)

This follows immediately from the complete antisym-

metry of Cy,,,, and the symmetry of G,; and G*'. Thus
a,, =0, {6.13)

In two-dimensional space—time (6.13) can be cast into
the form

. 8jolx 971{x
Veilr,y) = 7"a(y5y) + 718(y,’y) =0, (6. 14a)
where
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jo(x,y)=rk(x,y)Gk,f1’(y), (6. 14b)

310, 3) == 78, 9)Grr £ (¥). (6. 14c)
If

Cl;ye)= [ 76, 9)Gu fH(y) dy! (6.15)
exists and 7,(x,v) vanishes at Iy!{ =, then

3C(x,vq) _o. (6. 16)

ay

In fact the integral (6.15) can be explicitly calculated.
Using (6.7) and (3. 7),

1 97%(x,9)G, ' (x, ¥)

2 > =76, 9)Gu fi (9). (6.17)
Thus
yl=o
Cl) =270, 2)Cur ", 3) | 1 _ o (6.18)

To facilitate the derivation of conservation laws in
more than two space—time dimensions certain differen-
tial 1-forms will be introduced. Define

(V) =) Ayt (k=1,...,/. (6.19)

In this notation (3.10) becomes
1{ork af’*)
k =LA AN i
dw*(y) 2(ay“ —-%ay dy*ndy

(6.20)

The fact that A,, vanishes is the coordinate statement
that the 1-form

1
==3C} w'Aw™

Qx,y) =7x,9)Guw'(y), (6.21)
is closed, Due to (6.17), Q{x,y) is exact, with respect
toy, in any space—time dimension,

In N space—time dimensions a conservation law of
the form

0

A
@;] =0, (6.22)

is expressed by giving an (N - 1) = form x*¥(y) such
that

dx‘"Y(y) =0. (6.23)
It is easily seen that the N-local (N —1)-form
X (9) = Qe 1) AR, W) Ave e Qxyey,y),  (6.24)

satisfies (6. 23). Furthermore the (j+1)-local form
() =y, ) AQxg, y) A v s AQ(x;, ),

j=1,...,N=1 (6. 25)
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has the property that

&'(y)=0, j=1,...,N-1, (6. 26)

If appropriate convergence conditions are satisfies, the
%/(v) can be used to define quantities conserved on sub-
manifolds of the N-dimensional space~time. A full
discussion of the sequence of exact nonlocal forms as-
sociated with (3.10) will be presented elsewhere,
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It is shown that the solutions of linear homogeneous recursion relations, with arbitrarily specified
boundary conditions, are related, by a mapping, to the totality of discrete paths joining the two ends of
an interval and made up of a predetermined set of directed segments. We study the dependence of
these solutions on the way the boundary conditions are specified. When the boundary conditions are given
as initial conditions, the present approach reduces to the formalism already developed for that specific
case, and which is based on the partitions of an interval into classes.

1. INTRODUCTION

The original motivation for the study of multiterm
linear recursion relations! with variable coefficients,
was to obtain an explicit solution of the Schrddinger
equation with a linear central potential.2 This quark
confining potential has recently acquired the same im-
portance in particle physics® as the Coulomb potential
in atomic physics.

As is well known, explicit solutions of the Schrédinger
equation with central potentials of the form 7" only
existed for n =-1, 0, and 2, the Coulomb, constant,
and harmonic potentials, respectively. This is related
to the fact that, only in these three cases are the ex-
pansion coefficients, of the series solution, given by a
two-term recursion relation. This type of recursion
relation has two important characteristics: (i) it admits
an explicit solution (thus giving explicit wave functions),
and (ii) it can be cut off by a proper choice of param-
eters (thus providing an energy eigenvalue equations). 4

For other values of n, one obtains a three-term re-
cursion relation for the expansion coefficients. These
cannot be cut off and their explicit solutions were, un-
til recently, not known. However solutions of this type
of recursion relation were recently developed,® in terms
of so called “combinatorics functions, ” and the corre-
sponding energy eigenvalue problem resolved without
the need of a cutoff.? This provided an exact analytic
solution of the linear potential problem,?

The scope of the method developed in Refs. 1 and 2,
goes beyond the problem of the linear potential, and
actually has a bearing on the whole subject of ordinary
differential equations. As a second application of the
method, an exact analytic solution of the combined
Coulomb and linear potentials has been obtained.® This
latter type of quark confining potential is indicated by
the requirements of asymptotic freedom and infrared
slavery.?® Previously, this problem could only be
handled in the framework of perturbation theory.

The solutions of two-term recursion relations are
given essentially in terms of Pochhammer symbols, or
equivalently in terms of gamma functions. More pre-

cisely, they are given in terms of factorial expressions, ®

a)Work supported in part by the National Research Council of
Canada.
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It is thus not surprising that the solutions of multiterm
linear recursion relations should be given by a sort of
highly generalized factorial expressions, which is what
the combinatorics functions are. As for the energy
eigenvalue equation it is given in terms of so called
conjugate combinatoric functions. These are solutions
of the inverted recursion relation with the boundary con-
ditions imposed at infinity. %°

Thus at present the solution of multiterm linear homo-
geneous recursion relations with variable coefficients
is known for the two most commonly occurring types of
boundary conditions; initial conditions, ! and final condi-
tions. ? The solution in both cases is basically a finite
sum of terms, each of which is a certain product of the
coefficients of the recursion relation, These are the
only two types of boundary conditions for which the solu-
tion is given in terms of a finite number of terms. As
will be seen, in all other cases the number of terms is
infinite,

In this paper we would like to modify the formalism
used in Refs. 1 and 2 in order to make it suitable for
handling the case of arbitrarily specified boundary con-
ditions. The modified formalism, in addition to per-
mitting more flexibility in handling recursion relations,
provides a unified treatment of the two previously
studied cases of initial and final conditions, and gives a
solution for the important case of mixed boundary con-
ditions; partly initial and partly final.

The solutions given previously? are related by a
specific mapping to the totally of partitions of an inter-
val (m,j) into parts ay, ay,...,ay all of which are posi-
tive. In the modified formalism, these are replaced by
the totality of discrete paths, starting at s and termi-
nating at j, and made up of the directed segments
@y, Q15 Azreee ,ay. When all the segments have the
samd'sign, the discrete paths from m to j become par-
titions of the interval (m,j).

The discrete paths that have been introduced here are
essentially a generalization of one-dimensional random
walks. ? In a conventional random walk, the steps could
be forward or backward, but are all equal in magnitude.
For discrete paths, on the other hand, the steps are
variable. Moreover the general approach presented here
for the solution of recursion relations is essentially a
flow graph topological approach. "In a traditional flow
graph approach linear recursion relations would be
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Specification Of Boundary Conditions

Arbitrary
m
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(b) QOQO...OOOOO00000000000000...0000
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m<j —m> g
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FIG, 1, The three basic ways of specifying the elements of the
set $=1{j1,425 .., jnf. The boundary conditions are the values
of bjtx’ a=1,2,..., k.

treated as an infinite set of simultaneous linear rela-
tions, and the problem is too difficult to handle. Our
contribution consists of having utilized the functional
dependence of the coefficients, to relate the flow graph
topology of the problem to a much simpler underlying
topology, that of discrete paths. The latter is relatively
easy to handle.

To set up the problem we write the general multiterm
homogeneous linear recursion relation with variable
coefficients as

N

g 8ay(M)bpea, =0, (1.1)
where the coefficients g, () are arbitrary functions of
the level w1, and the numbers a, are integers assumed
to be ordered according to

ag<a;<cor <apy <dp <@,y <+ <ay, (1.2a)

with

a,:O. (1.2b)

Depending on how Eq. (1.1) is written » can take on any
value between O and N. The order 7 of the equation is
given by

(1.3)

The boundary conditions we will be concerned with
specify i different values of the solution b, for certain
values of the index m, given by the elements of the set

h=ay—a,.

g ={jl;j2:---7jh}’ (1-4)
according to
by, =%y, a=1,2,...,h (1.5)

The points on the real axis whose coordinates are given
by j, will be referred to as “terminal points, > It is
convenient to separate the study of boundary conditions
into the three cases shown in Fig. 1. These are:

(i) The terminal points are distributed in an arbitrary
fashion.

(ii) The terminal points form two separate sets of
consecutive integers, If the sets are j; to j; and j,,, to
Ja, then for jo<m <j,,, the boundary conditions are
mixed, partly initial and partly final,
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(iii) The terminal points are k consecutive integers.
In this case, for m >j, the boundary conditions are ini-
tial conditions, while for m <j, they are final
conditions.

In Sec. II we will introduce the terminology of dis-
crete paths, how to operate on them, and their mapping
into combinatorics functions. In Sec. III we develop the
solution of linear recursion relations, and in Sec. IV
we will analyze a special class of paths, those which
are closed loops. A concrete example is worked our in
the Appendix.

(l. DISCRETE PATH APPROACH
A. Discrete paths and terminal points

Consider a one-dimensional real space, which we take
to be the x axis, a set of directed segments

72]—:'{“0,(117---,ar-1> ar’ani)---’ah’}; (2-1)
and a set of terminal points
g:{jhjb---’jh}- (2-2)

The elements of 4 are ordered by Eq. (1.2) and % is
given by Eq. (1.3). From the elements of 4/, we con-
struct a new set 4, which contains all the elements of
A except the element @, =0. That is,

/4:{(10,(11,... ,aN}- (2-3)

A point m on the real axis is said to be joined to a
terminal point j, provided there exists a set of seg-
ments (54, 69, ..., 0;) satisfying the following conditions,

s Aroys Qrags oo

1

20 8, =j—m, (2. 4a)

i=t
and

s,eA, i=1,2,...,L (2. 4b)
The different points on the paths are given by

i
Sy =, sM:E Ops Sp=1. (2. 4c)

1. Zero length segments

It is evident that, from a given path, we can derive an
infinite number of essentially identical paths, all pass-
ing through exactly the same points on the real axis, by
adding segments a, of zero length to the original path,
The need to keep the element a, =0 in the set of seg-
ments is in order to be able to join a terminal point to
itself. As will be seen later on, this plays an important
role in determining the boundary conditions associated
with a given solution. When paths are eventually mapped
into functions, all paths that only differ by the number of
zero segments they contain must map into the same
function. This restriction normalizes the solution and
uniquely determines the boundary conditions associated
with a given solution. If we artificially eliminate a, from
the set of segments, rather than keeping it and render-
ing it ineffective, and use the set 4 instead of 4 from
the beginning, we lose this vital information, on the
normalization of the solutions. Having said this we will
from here on only deal with paths which do not contain
any zero segments, and justify this a posteriori by
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Fundamental Paths Pag(m, ja) For A={-2,+1}
L ] L]

j3§ . . O
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FIG. 2. An example of fundamental paths p3,(m,j,) for A
={-2,+1} and mixed boundary conditions. m is the initial
point, j, the terminal point, » the number of parts, and ¢
labels the paths with the same value of m, j,, and n,

choosing our mapping to be independent of the number
of zero segments in a path, Thus except for the bath
(Ja»rdq), the segments of a path will belong to A rather
than 4, That is, Eq. (2. 4b) will be replaced by

5, €A, i=1,2,...,1L (2. 4d)

2. Initial, intermediate, and terminal points

A path starting at m terminates whenever it reaches
one of the terminal points j,. Thus none of the inter-
mediate points of a path can be a terminal point,

si€g, 1=2,3,...,1,

where [ is the number of segments in the path, As for
the initial point the situation is a little more subtle.
Consider a path from m to j, with the intermediate
points obeying Eq. (2.4e). If m is a terminal point jg,
then the path terminates at its starting point j; and can-
not join to j,. The one exception to this, is when =,
for by terminating at j, the path would have reached j,.
Thus for a path from m to j, we have the condition

(2. 4f)

(2. 4¢)

m+*jg unless B=a.

It is important to note that the path (j,,j,) cannot have
any closed loops, for then j, becomes an intermediate
point as well, in violation of condition (2. 4e).

3. Fundamental paths and closed loops

The discrete paths joining m to j fall into two main
categories according to whether or not they have closed
loops. The paths without closed loops will be referred
to as “fundamental paths” and labeled by two indexes n
and ¢. 7 is the number of segments in the fundamental
path, and ¢ labels the different fundamental paths with
the same number of segments. Paths with loops will
have an additional index @, which will be used to classi-
fy the loops that are superimposed on the fundamental
path. In Fig. 2 we give an example of a set of funda-
mental paths built up from the two segments of the set
74 :{_ 2, + 1)-

Corresponding to a given path p%,(m,7), joining m to

4, we introduce the vectors A% and S§, by
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Basic Differences Between Discrete Paths,
*

o
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=
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o 7 v
Original Addition Exchanging Reordering
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o initial point ointermediate point
o terminal point

FIG. 3. From a given path we can generate other paths by
three methods: adding segments, exchanging the positions {in
space) of unequal segments, or reordering segments without
exchanging their positions.

A:a(j_nl):(ﬁiy 627 . “)62), (2- Sa)

and

(2. 6a)

The components of A%, are the segments of the path,
and those of 8, are the coordinates of the successive
points on the path. For a fundamental path ¢ =0, and
l=n, thus

AL (G =m)=1{by, &, .

qu(m,j):(sl,sz, e )sl,sl+1)-

{2.5b)
(2.6b)

ey D)y

0 .
an(n‘l,]): (31152) LI 9smsn+1)-

4. Topology of paths

The totality of discrete paths joining 2 to j, can be
separated into subsets according to their topology. The
paths in each subset have the same topology but differ
in the ordering of their segments.

Distinct fundamental paths necessarily differ in their
topology. On the other hand, paths with loops may have
the same topology and still differ by the ordering of
their segments., From a given path, there are three
basic ways of generating other paths, distinct from it,
as shown in Fig. 3. These are:

(i) adding segments,

(ii) exchanging the positions of segments of different
length,

(iii) changing the ordering of segments having the
same length but positioned differently.

On the other hand, exchanging the ordering of two
segments having the same length and position (two seg-
ments joining ¢ to ¢ + 3 for example) does not generate
a distinct path., The addition of segments of zero length
does not generate distinct paths either, as has already
been mentioned. Methods (i) and (ii) above alter the
topology of the path, while (iii) leaves in intact.

B. The fusion and union of partial paths

For the purpose of constructing and analyzing paths,
it is convenient to introduce the symbol ® to indicate
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The Fusion Operation
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FIG, 4. The noncommutative fusion operation ® on partial
paths,

the operation of “fusion” of two partial paths as shown
in Fig. 4. A partial path does not need to end at a ter-
minal point. The fusion operation is noncommutative
but will be assumed to be distributive with respect to
the union operation, If the partial path p,, is obtained by
taking the partial path p, and prolongating it by the par-
tial path p,, then

Par=DsOP ¢pb®pa‘

Furthermore if p;, ¢=1,2,...,n is a set of partial
paths, then
n

n
Pe®U p;=U pBpi.
i=1 i=1

(2.7a)

(2. o)

Using the fusion operation we can write a given path
as the product of its segments. Thus for a fundamental
path, for example, we have

p?m(nlij) = (771’ 32)®(32’ SS)®' . ®(Sn-lysn)®(smj)y
(2. 8a)

where (s;,S;,1) is the segment of the path between the
points s; and $;,(. For a nonfundamental path with / seg-
ments we have

Pf.‘q(m,j)=(m,32)®(32,33)®' se Qe ®(sl’j)- (2- 8b)

We will designate by (m,j) the set of all distinct
discrete paths joining m to j subject to conditions (2. 4a),
(2.4d), (2.4e), and (2. 4f),

P, i) ={pgm,j); neNG=m), g=1,...,qnx®),
@=0,1, 2,3, ++¢} (2.9)
where
NG =m)=1ng,ny,« + o}, (2.10)

and »; is a possible number of segments for a funda-
mental path joining » to j. When no paths joining m to
j exist, P(m,j) is empty. In particular, if j, and j; are
two different terminal points, then

Plia,is) =0, (2.11)

The subset of P(m,j) consisting of all paths having
a as their first segment, will be denoted by /2, (m, ).
That is,

a+f,

pga(m!j) Epak(m,j)®{qu(m,].)€/g(m,]‘) and 61:ak}.

(2.12)

2217 J. Math. Phys., Vol. 18, No. 11, November 1977

Since the segments a, are all different, then
pai(m,j) N pak(nlyj)-':Q)-

Furthermore since the first segment of every path
joining m to j must be, like all the other segments,
an element of 4, then the set of all paths from m to j
subdivides into N disjoint subsets, each containing the
paths that start with the same segment. That is,

Plm, j)= Pam, ).

(2.13)

akgﬂ (2.14)

Since the subsets Pak(m,j) are exhaustive and mutually
exclusive, there is a one to one correspondence between
the elements of the right- and left-hand sides of Eq.
(2.14).

Using the fusion operation, the definition of Pak(m,j),
and the representation of a segment, we have

pak(m,j):(m,m +a,)®Plm +ay,, j). (2.15)

Since P(m +ay, j) is the union of all its elements, then
the segment (m, m +a,) fuses at the beginning of each
element of the set P(m +a,,j) to produce the set 7, (m, f).
Combining the above equation with Eq. (2,14), we finally
obtain the basic result

Plm, 7)= UA(”U”””‘ZJ@MV” +ay, j). (2.16)

ak =
C. The mapping of paths

We can transform Eq. (2.16) into the recursion rela-
tion (1.1) by a mapping of paths into functions in the
following way (see Fig. 5),

(i) A segment (s,,smh) is mapped into the function
Ja, (%) evaluated at s

(sirsnak) _’fak(si)- (2. 173)

(ii) The fusion operation ® is mapped into the function
multiplication operation

®—-X, (2. 17b}

Mapping of Paths

}o) si+uk
a f\g = qu(5| }
‘o s
oz o 5
1 o
8
8ij+02 g /Z
Q ]
si-ag o U 92| o =g (s1-a) +fo fsi)
8 9“' \g
8 3
6 1%2
3
4 ;‘ =5 F(6,0)=4,6) (7 f,,(5}£.5(6)
(2) S X Lg(q') f_z(z)

FIG. 5. The mapping that relates paths to combinatorics func~
tions and the solutions of recursion relations.
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(iii) The union operation is mapped into the operation
of summation

u--2J.
(iv) A segment of zero length is mapped into unity,
fo(8:)=fols)=1. (2.17d)

Condition (iv) is necessary to guarantee that the map-
ping is independent of the number of segments of zero
length that the path contains, and consequently justifies
our neglecting these segments when discussing paths.

(2.17¢)

D. Combinatorics functions

We define the functions Fg, (i, j) and C(m,j) by

ng(m’j):tnl fbi(s,) (2.18)
and
q
Con,i)= 2o E Fimsj), (2.19)
C/V =1 a

where 6; and s;, ¢=1,2,3,...,/, are the components of
A (j-m) and 8%,(m,j), respectively, Due to the com-
binatorial way in which the s, are evaluated, we refer

to C(m,j) as a combinatorics function, Using Eqgs. (2.8),
(2.9), and the fact that a set is the union of all its ele-
ments, we obtain the mappings of the path pg (»,7) and
the set /P(u1,4) as

.bffq(m,j) - ng("”»j)a
and
PG, §)—=CGn,j).

Due to the commutativity of the multiplication of the
functions f, (s;), all paths having the same topology map
into the same function F,(m,7).

(2. 20a)

(2. 20b)

If there are no paths joining 2 to j, then, on the one
hand (1, j) is empty, and on the other hand, Eq. (2.19)
gives C(m,j)=0. Hence

¢—0. (2.20c)
Combining Eqgs. (2.11) and (2. 20c) we have
C(jy,js) =0 for a#8. (2.21a)

On the other hand, for o =f, the path joining j, to jg

exists, has one segment of length zero, and no loops.
Thus the set /(j,,j,) contains one element p{(j,,j,)
and according to Eqs. (2.17a) and (2, 17d), this maps
into unity. Hence

c(ja;ja):1°

This will actually determine the normalization of the
solution, Combining the above two equations, we have

(2.22)
(2.17) and (2. 20) we find

(2. 21b)

C(jayjﬁ) = 6&8'

Finally by making use of Egs.
that Eq. (2.16) maps into

Clm,j)= 274 fa (m)C{m + ay, 7).

ap &
lil. LINEAR RECURSION RELATIONS

The preceding analysis provides a general solution for
linear homogeneous recursion relations with nonconstant

(2.23)
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coefficients and arbitrarily specified boundary
conditions,

A. General solution

Theorem: The general solution of the recursion
relation
b =

m

E fak(777)bm+ak’ (3.1)

akL

subject to the initial conditions

bja_—_)\ja, a:l,Z,...,h, (3-2)
is given by
R
b,=22x; Clim,j,). (3.3)
a=1 o

Proof: Substituting Eq.

bmzzk,- 2 fa(m) (m +ag,jq).

a=1 ﬂkC

(2.23) in Eq. (3.3) we obtain
(3. 4a)

Since the summation over @, and o are independent of
each other, we can exchange them to obtain
h
b= 20 f.m)2 A, C
K ak(:ﬂ' % a=1 j‘x

m +ay,ja), (3. 4b)

and making use of Eq. (3.3) one more time we obtain
Eq. (3.1). As for the boundary conditions, Eq. (3. 3)
gives
h
= 2 X0 Clig, To- (3.5)
=
Substituting Eq. (2.22) in Eq. (3.5) gives back Eq.
(3.2). This comples the proof of the theorem.

B. Boundary conditions

We will discuss the three types of boundary condi-
tions separately.

1. Avbitrary specification: In this case the boundary
conditions b,-a are specified at 7 arbitrarily distributed
points j, as shown in Fig. 1(a). The main characteristic
of the resulting solutions is that for every value of m
there are in general, an infinite number of loops, and
the loops can be infinite in length. The usefulness of the
method in this case depends on the speed of conver-
gence of the infinite series giving the combinatorics
functions. Each term in the series corresponds to one
path.

2. Mixed specification: In this case the values of j,
separate into two sets of consecutive integers,
(71y++.,7s) and (Jgu1, ... ,Js) as shown in Fig. 1(b). For
m <j; and m > j, the situation is not very different than
the case of arbitrary specification discussed above.

But the region j, <m <jg,q, is interesting, and of practi-
cal importance. The boundary conditions, when » is in
this region, become partly initial and partly final, and
we refer to them as mixed.

Since the recursion relation is of order & one needs
all the .2 boundary values bj , a=1,2, ...,k to obtain
a unique solution, Thus there must be paths terminating
on every one of the j,’s. But since no path can have a
terminal point as one of its intermediate points, then
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to reach the terminal points j, and j, we need segments
having the values a_=7; - (js +1) and @, =j,— (jss1 = 1),

respectively. Since jy=jy=(s-1) and (jy~Jjeu)=b— (s
+1), then

a.==~$8, a,=h~s, (3.6a)

and

a,—~a_=h, (3.6b)

The above equations guarantee that, in general, every
terminal point can be reached by a path starting at m,
and consequently that there are % arbitrary constants in
Eq. (3.3). To find out whether the specification of the
boundary conditions is compatible with the recursion
relation for a specific problem, we need to determine
whether Eq. (1.1) can be rewritten in the form (3,1)
with the set 4 containing the elements a_ and a,. Equiva-
lengtly we need to determine whether Eq. (1.1) can be
rewritten in such a way as to include elements a,, a_,
and @, =0 in the set;?. As will be seen shortly this is
not always possible.

Comparing Eqgs. (1.2) and (1. 3) with Eqs. (3.6) we
find that the only way to include both @, and a_ in 4 is
to set

3.7

Once the value of a; is determined, then the values of
all the other segments are also determined through Eq.
(1.1). Due to Egs. (1.3) and (8. 6b) this automatically
sets ay =a,. On the other hand, there is no guarantee
that among the remaining segments there is one of
length zero. Thus this is the crucial test of compati-
bility of the boundary conditions with the recursion
relation,

ay=a. and ay=a,.

When there is compatibility, the main characteristic
of the solutions is that all paths are bounded, from below
by j; and from above by j,. No path can bypass the lower
set of terminal points since the most negative segment
is ay=~s, and thus cannot make the (s +1) downward
jump which would have been necessary to bypass. Sim-
ilarly the largest positive segment is ay=»%s~s and can-
not make the (4 -s +1) jump necessary to bypass the
upper set of terminal points, A direct consequence of
this is that the number of fundamental paths in this
case is finite. On the other hand, the closed loops,
even though they are limited to the region [js +1, .4
- 1] can have an infinite number of segments. An il-
lustrative example is solved in the Appendix.

3. Initial and final specification: In this case the co-
ordinates j, of the terminal points are k consecutive in-
tegers as shown in Fig. 1(c). Thus the boundary condi-
tions are initial for m >j, and final for m <j.

(a) Initial conditions: In order to have paths starting
at m >j, reach all the terminal points; we need a seg-
ment a.=j;~ (j,+1)=- k. In addition we need a seg-
ment of length zero. From Eq. (1.3) it is seen that both
these requirements can be satisfied by choosing ay=a.
=-1, leading to ay =0. Hence the boundary conditions
are compatible with the recursion relation. Since all the
elements of A are negative in this case, then the coordi-
nates s, of the successive points on the path are de-
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creasing functions of i. Consequencely no closed loops
are possible, and each path from m to j, determines a
partition of the interval (j,, ) with the first part great-~
er than j,~ j,. Hence this formalism reduces to that de-
veloped, in Ref. 1, for the case of initially specified
boundary conditions.

(b) Final conditions: To reach all terminal points from
m <j,, we now need a segment @, =j,— (j;—1)=+h.
This and the requirement of having a segment a,=0 can
both be satisfied by choosing ¢y =a, =0 which leads via
Eq. (1.3) to ay=a, =+h. The compatibility of the
boundary conditions with the recursion relation is thus
guaranteed. Since the elements of 4/ are now all posi-
tive, s; is an increasing function of ¢, Thus again no
closed loops are possible, and each path from m to j,
determines a partition of the internal (j,, m) with the
first part greater than j - j, as in the formalism of
Ref, 2.

IV. ANALYSIS OF CLOSED LOOPS

As an illustration of the technique of evaluating dis-
crete paths with loops, we consider the very simple,
but typical, problem of a three-term recursion relation

by =Fu )by + ()b, 4.1)
subject to the boundary conditions
by =n; and by =X, . (4.2)

The set A contains two elements, 4 ={-1, +1}. Thus
corresponding to every point », included between j;

and j,, there are only two fundamental paths; one joining
it to j; and the other to j,.

To these fundamental paths we can adjoin closed loops.
The basic building block of these closed loops, in the
special case considered here, is a circle passing
through two successive points. We will designate by
A(i,i+1) a closed loop having n circles passing through
the points ¢ and ¢ +1,

AMi,i+1)=3,i+1)®@E+1,i), (4. 3a)

AE+1,8) =(+1,)@@E,i+1), (4. 3b)

A, i +1) =2, i+ 1)ox"1(E, i +1), (4. 3c)
Using Eqs. (2.17) we find that A" maps as follows:

N'(E,i+1)

NG+ 1, i £"(,1+1), (4. 4a)
where

£, 1 +1) =140 f.4(E +1). (4. 4b)

The set of all closed loops which are made up of cir-
cles passing through the points ¢ and ¢ +1 and having i
as initial point will be denoted by A(i,7+1),

AG,i+1) =, i +1); n=1,2,. .., =}, (4.52)
or equivalently
AG,i+1)= U X", i+1). (4. 5b)

n=1
The set A is graphically represented by a dark circle,

as shown in Fig. 6, and maps as follows:
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A ’ f\\\\ m AN
SEROT TR 0

x U Xu Xu U= 1
@O
€+ &8 & gt =08

FIG. 6. The graphic representation of the set A, its elements
N, and its mapping.

- R R )
A(z,z+1)_>n(1,z+1)~"=21 £ (z,z+1)_1————_ (G ir1)’

(4.6)

where in performing the sum we have assumed that
Ve, i +1)1 <1,

The set of closed loops which is next in complexity,
is the one formed by adjoining circles passing through
i-1 and i to circles passing through ¢ and i +1, We
denote the set of all loops thus formed by T'*(i - 1,14,1
+1), where a ==, 0, or +, depending on whether the
loop is entered from the fundamental path at the point
i—1, i, or i +1, respectively. T'* can be divided into
subsets each of which contains the loops which have the
same topology. The loops in each subset differ by the
ordering of their segments. The subset I'y, (z—l i,
+1) contains all loops which are made up of n circles
A(E~1,4) and m circles A(i,i +1). The graphic repre-
sentation of the set I'* and its subsets Iy, is shown in
Fig. 7.

The elements of the subset I'j,, will be denoted by
Yam1s and they all map into the same function,

Yl =1,4,1+1) = £"(i = 1,9) g™, i+ 1), (4.7a)
Thus the subset Ty, maps into
I’,,‘f,,(i—l,i,i-kl)—-df,‘méj"(i—1,i)£”‘(i,i+1), (4- 7b)

where d%, is the number of elements in the subset T'y .
Since the subsets I'y, are exhaustive and mutually ex-
clusive, then I'* maps according to

Te(i—1,4,i+1)=0,(@) =20 22 d® £"(i—1,9)Em(, i +1).
(4.8)

For a =0, the loop is entered through its central point
. In this case 4, is the number of ways in which we

QQ@” “O@@“
U UL U RU I

0 O
UTo U I3U

3

Q
ﬁu@uﬂuru
o point of entry to closed loop

FIG. 7. The graphic representation of the set I'’ and its topo-
logical subset T),.

2220 J. Math. Phys., Vol. 18, No. 11, November 1977

= U
@ ez ’\7
0 o

G = U 7, U Y223
5@6 3 r( 4

U U U
8(s 37 slsl Jsi7
u Yoea U Yoes U Y226

o point of entry to closed loop

FIG. 8, The graphic representation of the topological subset
TY, and its six elements ¥, 1+ 1,2, ..., 6.

can order n +m circles, n of which are of one kind and
8

m of another kind (see Fig. 8). Hence
o m+m)!
meoptm! (4.9a)

and the summation over # and m in Eq. (4.8) is from 0
to «© subject to the conditionu +m =1, For a =-1, the
point of entry to the loop is i -1, and hence the 2 upper
circles A(i,Z +1) can only be reached from the » lower
circles A(i - 1, 7). Hence d,,, is the number of ways we
can adjoin w circles ton ordered circles (see Fig. 9).
This is the number of »n-combinations with repetitions
of elements of n types, and is given by®?

. (mn-1)!

m= Tl -1)1" (4. 9b)

Furthermore in the summation of Eq. (4.8) m varies
from 1 to infinity and »2 from 0 to infinity. Similarly
for « = +1, the point of entry is ¢ +1, m varies from 1
to infinity, » varies from 0 to infinity, and

. mrm-1)1
m gl m - 1)

Using Egs. (4.9), and the above results on the limits
of the summation of #n and m for the different values of
a, we have,

(4.9¢)

MﬁHZ)Z b tm)l gn_1,0)EmG,i+1), (4. 10a)

n=0 m=0
nem=1

o (m+n=1)!

o (i):i > W—)Tg"(z—l ,DE™Mi, i +1), {4.10b)

n=1 m=0

AR

42| j3)s &2 Bj7

s{1{ 34\;8
‘:\\ /«'
e = Yoo U Yezz U Ya23

@ point of entry to closed loop

FIG. 9. The graphic representation of the topological subset
I'5, and its three elements vy, 7=1,2, 3.
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i+l
CAG cony Sl

O A i+) => (i i) £+

H
i+
X - +._ . e e(i,H’l)
i 8—F(| 1,i,i+)=> o (i) _———I-f(i-l,i)-f(i.iﬂ)
i-!
i+l

EG-1,i € G, i+1)

'l I =I‘°(i—|,i,i+|)=:»¢5(u)= et L) ECLi
i-
i+
&Gi-1,1)
=€ (i-1,i)- &L, iH)
Eli-l,i} = fy (i1 (D)
Eli i) = £ (i) E- (i41)

i Jol=TTi-1,i,i+))=>oz(i)=

o point of entry to closed loop

FIG. 10, Summary of the graphic representations, symbols,
and mappings of, up to second order, loop sets arising in the
study of the recursion relation b,,=fy (1)bpg +7 1)y,

LoaE w1
06 =2 2 o

m=1

E"i—1,4)£m(,i+1). (4.10c)

Making the change of variable m —¢q =m +#n in Eq.
(4. 10a) we obtain
9

i-1,9)E™(,i+1)
n=0 n

8

=27 [&i- 1,9+ G, i+ )]

Q=

Assuming that 1£(i=1,7) + £(,7+1)] <1, the above sum
adds up to

-

Ed=1,4) + &4, i +1)

=G =1, 0= 86, 4D (4. 11a)
Similarly we find that

-0 = T TEE 1,9 EG A (4. 11)
and

. £(,i+1)

A P W B R (4. 11c)
1t is interesting to note that

0y () =0.() +0,(0). (4.12)

3

2

|

o . » .
P(1,0) P(2,0) P{(3,0) P(1,4) P(2,4) PB3,4)

oinitial point Ointermadiate point o terminal point

a,apoint of entry to closed loop

FIG, 11, The six sets of paths arising in the solution of the re-
cursion relation by, = f,y (3) by, +f.1 (m)b,,_; subject to the mixed
boundary conditions specification j; =0, j, -4.

A summary of the notation used, and results obtained,
in this section is given in Fig. 10.

For loops of higher order, the analysis becomes
correspondingly more complicated, and we will not go
into it here. Instead, in the Appendix, we will apply
the results already developed, for up to second order
loops, to obtain an exact solution for the case j; =0,
f=4.

V. CONCLUSION

The solution of linear recursion relations has been
shown to be related by a mapping to the problem of
joining two points by a discrete path made up of a pre~
determined set of directed segments.

We have found that the way in which the recursion
relation should be written depends on the way in which
the boundary conditions are specified. For initially
specified conditions, each term should be given in terms
of lower level terms, while, for finally specified condi-
tions, each term is written in terms of higher level
terms. In both these cases we found that the specifica-
tion of the boundary conditions is compatible with the
recursion relation, that the paths have no closed loops,
and thatthe present approach using paths reduces to
the formalism using partitions. 12

For mixed boundary conditions, part of the conditions
are specified initially and part finally., We have found
that not all ways of effecting the separation into initial
and final conditions is compatible with the recursion
relation, When there is compatibility, the paths are
bounded by the initial conditions from below and the

TABLE 1. The sets of discrete paths p(m,j,,) and related combinatorics functions C(m,j,) involved in the evatuation of b,, for 1
=m = 3. “I” is the identity element with respect to the operation of adjoining ®.

m e Pm,jy) Clm,jy)

1 0 [ty I°1,2,31® (1,0 [1+a @1, Q)

2 0 Turla,z,9)s 2,1 @1,0 (140,21 @)f40Q)

3 4] (3,2)®@ [1U 1°(1,2,3)I® €,1)® 1,0} A G o @ 21, )
1 4 1,2)®[1u 1@, 2,3)]® 2,3)® (3,4) S O+ 0@ £, 2) f,,3)
2 4 U rQ,2,31® 2,3 ® (3,4) (1 +0,@)1 /.1 2) 11 (3)

3 4 ftu r@,2,3)1® (3,4) {1+0, @)1 3

2221 J. Math. Phys., Vol. 18, No. 11, November 1977

Adel F. Antippa 2221



final conditions from above. None the less they may
have an infinite number of loops, and these loops may
be infinite in length.

Finally we have worked out a specific example of
mixed boundary conditions to show how, in practice,
discrete paths can be handled, classified, and summed.
In more complicated cases one may decide to sum
paths up to a given order, that, is develop a perturbation
theory approach., From the point of view of insight into
a given problem, this remains far superior to a purely
numerical approach.

APPENDIX
Given the recursion relation
by =fr1 (1)bey +f10n)b, 4, (A1)
subject to the boundary conditions
by=X, and b,=2,, (A2)

we want to find an explicit expression for b, in the
range 1 <m <3. The relevant paths are shown in Fig.
11, and are given with their corresponding combinator-
ics functions in Table 1.

To obtain numerical values for the combinatorics
functions we have to make a specific choice for the
coefficients f,;(m) and f_ (m). We choose

, 1 .
‘f’1<l):i_-}-1 and f_l(l):1. (A3)
Then, according, to Eq. (4.4b),
Ei—1,i) =~ and E(i,i+1)=— (A4)
- LY=7 and g, =i+lc
When substituted in Eqs. (4.11) these lead to:
Oo(i):;f—;—li_—l, 0’0(2)=2, (A5a)
. 2i+1
00<l):zz—i—z—;—i, 00(2).:5, (A5b)
o) =t G (2)=3 (A5c)
e T
The resulting values of C(m,j,) are:
C(1,0)=4, C(2,0)=6, C(3,0)=8,
(A6)

c(1,4) =1, C@,4)=%, C3,4)=%.
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Combining Egs. (3.3) and (A6) we obtain the required
solution in the form

by =4r, + 12, (A7a)
by =6 +31,, (ATb)
by =6y + IAg. (ATe)

As a check on this result we note that if the specific
form of the coefficients f,; and f_,, as given by Eq. (A3),
is used, Eq. (Al) can be rewritten in the form

by=m(b, =0, ,). (A8)

If in addition we use as boundary conditions, by=2; and
by =47, + 31\, Eq. (A8) reproduces the values of b,, b,
and b, as given in Eqs. (ATb), (ATc), and (A2),
respectively.

Finally, by way of a numerical example, if 3j=1
and A4 =- 12, then Egs. (A7) give by =1, b, =0, and b,
=-3,
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The translation kernel in the n-dimensional scattering
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Radial wavefunctions are defined for the n-dimensional scattering problem (n> 1) with spherical
symmetry by conditions of regularity at the origin or by conditions of behavior at infinity. The existence
of translation kernels can therefore be discussed in both instances. The problem of representing regular
solutions appears to be essentially different from that of representing irregular solutions. The essential
difference originates from the type of domain used in the representation: It is bounded in the first case
and unbounded in the second. If one can stil compare the ranges of validity of the two types of
representation when one is dealing with a scalar situation, upon proceeding to a matrix situation, a

comparison is no longer possible.

1. INTRODUCTION

Our first intention was {o bring new elements into the
discussion of the role of the translation kernel in the
potential scattering discussion begun in Refs. 1—3. The
first motivation for seeking new elements was noted in
Ref. 3: it was the existence of a connection between the
partial wave translation kernel and the partial wave
Green function. This connection appears when the
equations

Pr0) =, 0} + [ Kl x,9)p,(v) v,
)= x) + [ G k;2,9)V,(9)i(v)dy

containing ¢,, the radial solution for the “reference”
Schrddinger equation, and ¢;, the radial solution for the
complete equation, are considered simultaneously, A
second motivation was the technique due to Blazéch.?
From the partial operator K; one can construct a global
transformation operator « using any of the two equations

k06,330, 0,) =Zl3 (21 + 1)K ,(x,9)P [cos(n; - ny)] (3a)

1
@)

or

k(x,y) =25 (21 + 1)K, (x,9)P [cosx - y)]. {3b)
Along these lines in Ref. 2(a) we investigated the con-
ditions for the existence of X, for the three-dimensional
potential scattering problem when the potential possess-
es spherical symmetry. A first extension of the study
was obtained in Ref. 2(b) where the many (finite)-
channel scattering problem was solved. A second possi-
ble extension may be investigated. It is realized when
one wants to consider the n~-dimensional problem (n > 0),
In the study the separation of the # =1 case from the
n>1 cases becomes necessary, While foru>1, a
radiation condition emerges as a prerequisite, 5 in the
n =1 case, such a condition cannot be verified. The
n=1 case was therefore separated and studied in Ref.
3. However, in Refs. 2 and 3, we kept the restrictive
condition that the number of channels remain finite, The

¥Chercheur SN,
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original purpose of the present paper was therefore to
subject the #» > 1 dimensional scattering problem to
discussion and to present indications on how the restric-
tion upon the finite number of channels could be re-
moved. However, during the work it became more and
more evident that the representation of regular solu-
tions (Gel’fand—Levitan representation} and of irregular
solutions defined by an asymptotic condition (Marchenko
representation) were not two parallel problems, Con-
sequently while considering possible extensions to the
cases considered in Refs. 2(a) and 2(b) the interest
shifted to the differences between the two types of
representations. Reasons for the differences were
brought to light, They were two in number. The first:
the Marchenko contour is not closed whereas the
Gel’fand~—Levitan is closed, This latter is built up of
four segments and it is one of these segments which is
troublesome. The second: the essential element for the
discussion, the Riemann solution itself, has different
analytical properties in the two cases. As a by-product
of our study, appears the necessity of choosing a com-
plete system of functions which may lead either to a
finite set of differential equations or to an infinite set

of equations which can be truncated. In Ref. 6 this
problem of truncating an infinite number of channels
has received some consideration. In the results pre-
sented here the condition for the existence of a transla-
tion kernel are expressed in terms of requirements
imposed on the matrix elements of the potential between
two channels.

To avoid any misunderstanding we want to emphasize
that we have made no attempt in this paper to apply
hyperspherical systems to the many-body problem.
(The poor convergence of hyperspherical systems’ and
the lack of “compactness” of the Lippman—Schwinger
equation forbid the use of translation operators in the
many-body problem.

The present paper is divided into four sections: The
Introduction is in Sec. 1, the study of the radial equa-~
tion for the n~dimensional Schrddinger equation is found
in Sec. 2 where the condition for the existence of the
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solutions is stated. In Sec., 3, translation operators
are applied to the n-dimensional Schrddinger eqguation,
while in Sec. 4 the existence of translation operators
for the matrix n-dimensional radial equations are
discussed.

To fix the notations throughout this work the number
n denotes the dimension of the space.

As usual with any function of one or many variables,
one associates its absolute value by f— 1 ft. To each
matrix 4, one will associate the matrix of its absolute
value [A]| defined by

laly =14,
and its Marchenko’s norm

[l 5w 2 1, .

2. THE RADIAL EQUATION

One considers the time independent n-dimensional
Schrddinger equation

8,9(x) + [k - V(x)Ju(x) =0. (4)
In Eq. (4) one has
n aZ

and $(x) denotes the n-dimensional scattering wave.
Suppose the interaction potential V(x) possesses spheri-
cal symmetry and satisfies the following conditions®?:
At the origin and at infinity

fors[V(s)lds<°° and frm |V(s)|ds <o,

Then with a sufficiently large » = lx |, one can find a
solution of Eq. (4) of the form, !’

P(x) = explitk-x)] +7(k, 9)% +OW)y /2 (5)

Aun alternate way of posing the problem is to seek a
solution #(x) = ¥(X) ~ exp(ik - X) which satisfies a
finiteness condition:

[r=1 /2, (x) | < const, {6a)
and verifies uniformly in all directions the Sommerfeld

radiation condition!!?

lim =172 =0, {6b)

yeeo

-L%; u(x) ~ tku(x)

This condition is not satisfied by the one-dimensional
Schrédinger equation solution.?® The Sommerfeld con-
dition means, in physical terms, that no energy can be
radiated in from infinity. 1 A more satisfying version
of conditions 3(a), 3(b) was given by Rellich, 2

2

lim as =0, (6c)

R-w J Ix1=2R

Condition {[(6a) and 6(b)]=6(c)} expresses simply
the characterization of the wave function y(x) as a
vehicle for the energy. It does not tell whether $(x) is
a solution of a Schrddinger equation for an energy
operator H, or whether it is not. The conditions for the
existence of H are not hard to satisfy (see Ref. 13); but
even if H does not exist, condition (6) may be valid.

) .
3 b (x) — ikP(x)
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In what follows, we use Eq. (5) without assuming the
existence of H. Let us set

k-x=kvcos?,

The n-dimensional plane wave expansion follows:

9 (n=2) /2
exp(ikr cosf) = (ﬁ) 56 - 2)]

<, n—2
X2 i”<p+ 5 )JM,,_”/z(kT)
p=0

X Cym 2 2 (cos8), (7N

with the Gegenbauer polynomial C;"* /*(cos9), see Ref.
14, defined by the generating function

23 v?C" P ¥ (cos) = (1 ~ 27 cos + 72D /2,
#=0
Gegenbauer polynomials are related to Jacaobi poly-
nomials by (A +§)pc;(x):(2x)ppg“(x). 5 Therefore, ex-
pansions may be found in the literature which employ
the Jacobi polynomials, 417

Obviously C/?=P,, see Ref. 14.

Since
1 2 1/2 ) N
J il ~\/~—_1T~ (7;'_) (sm kv~ (v~ 2)5)(18))
one has

1 [2\'2 n~3\w
J -~ 3 —_ —_—
rf;(,.-zug —mﬂ (k?) sm[kv (p + 5 > 2].

One introduces hyperspherical Bessel functions by
s N (n~2)/2
i, (er) =TS G0 - 2)]<k7) yatnesy 12 7). (8)

They behave asymptotically as

Jplkr)~3T{ztn - 2”(73;) et /2(?17_2_) (%)1/2

xsin[kr— (p+ﬁé—§)—g]

Using Eq. (8) the plane wave expansion of Eq. (7) reads
as

explikr cos) = 2, (2p +n = 2)i2%,(Fr)CEP/(cosb). (9)
»

To obtain the scattering amplitude, the asymptotic
form for Eq. (9) is used,

1/2 {n=2)/2
(471:w)~ ;Tln' ? (2p +n— 2)1"(-’%—,) (Zz;’>
xI{ - 212 eXp{— i[kr - (p IS 3)12.’]}

- exp{+i[kr- (p + ”—27-§)’—27]} CimB /L cos6).  (10)

In Eq. (10) we have used the subscripts PW to denote
the words plane wave. From Eq. (10) we get $scarrereD
defined by the equation

toc = SR 1te, 0);

by identification the transition amplitude f(k, 8) is
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obtained,

.2("'5)/2 r[(n_z) 2
fle, 8) =i 177 kﬁ-ﬂm/]

X explin — 3)n/4](S, - 1)C{™P /2 (cosH).

Equation (11) can be assumed therefore from the scat-
tering radiation condition without the adjunction of the
assumption that some Hamiltonian exists.

22 @ +n=2)
»

11)

In our work, a Hamiltonian is assumed and Eq. (11)
comes from the partial wave decomposition of the scat-
tering solution in a way similar to that followed for the
n =3 dimensional case.

A time dependent Schrddinger equation is considered,
2

i o, )= 2 8,805, 1) + U (R)D(x, 1.

We write ¢(x,¢) =¥(X)g({) to obtain the stationary
equation,
2

¥
- 55 A (x) + Ulx) = Ep(x),

from which the reduced equation results,
A, P(x) + E2P(x) - V(R)p(x) =0.

Let us assume a special form for the interaction V(x),
Vix)=v(|x]|).

We indicate now the behaviors of the radial functions
used in the scattering descriptions when » goes to zero.

(12)

For the Bessel and Newman functions, as 7 goes to
Zero

p+1/2

~ ~ anl
Jout 12~ 7 or J,~#,

Npso~v?1% or N~

When n is even, v=p + (n—2)/2 is an integer and the
Newman function N, is defined by lim,., (1/¢)
X[Juoe_ (_ l)uJ ]'

~y=€

For hyperspherical Bessel functions the behavior at
the origin is

1\ /2 (=2} /2,.0,n/ 21
127 \5 patnegy jg =7 oyt 2yt b
1\ (ne2) /2 )
nP ~ (; Np+(n-2) /2 ~p n=2} /2,’,-p1,-n/2,y¢l ~ T-(pm-Z)’

while for the Riccati—Bessel’s it is

~ i oA n=e1) /2 pt(nel) /2
up ]pT ¥ s

(13)
vy =D 2 ypnnd) 2
We had introduced previously the hyperspherical
Bessel functions. This is their equation!®!?;
&  m-1)d ., P(p+n_2)] 7
R L n, =% (14)

To arrive at the analogous one for the Riccati—
Bessel’s we use the reducing factor f() =»"*1/2 and
we get the reduced equation

d? s plp+n-=2) 1 ]u
RadirIy A —m—-1)n-3 0. 15
[d’r2 e 4yt )¢ ) N (15)
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It is obvious that the product of the behaviors of u,, v,
at the origin, namely the product [p + (= 1)/2]

X[~ p— 1~ 3)/2] should equal the coefficient of 2 in
Eq. (15).

Together with the Riccati—Bessel functions we should
introduce the Riccati—Hankel functions which behave
like imaginary exponentials when 7 goes to infinity.

After these preliminaries we can concern ourselves
with the solutions for the radial equation

2 2_ 1
[gp - 30 V(v)] Wp,k,7) =0 (16)

with v=p + (n = 2)/2. In the discussion of Eq. (16) the
authoritative treatment of Newton in Ref. 20 is followed.
Regular and irregular solutions ¥(p,&,7), f(p,xk,7)
are respectively defined by conditions at the origin and
conditions as # goes to infinity. We write the integral
equations which define these solutions,

o(p,k,7)
=u(p,k,7)+ [, g(p, k;7,5)V(s)d(p, k,s)ds, amn
fp,xk,7)

=w(p,xk, )= [ g(p,k;7,8)V(S)f(p, £k, s)ds,

where g is the Green function for Eq. (15).

(18)

Equation (16) including the factor (v?- %) allows the

use of Levinson—Newton upper bounds?! which read,
with the notation

k=x+%y and v=a-+ib, a>0,

a+l /2
lu(p, k,7)| Sc[’f’_{m‘] exp(|y[7),

a=1/2
lo(p, &,7)| SC[H;@H} exp(y |7),

g(p,k;r,s)={u(p,k,vYv(p,k,s)
- V(P,k;s)v(f),k;r)}/wr(,b; k),

where W,(p, k) is the Wronskian of # and v,

lg(p, k;7,s)| <C

1 ¥ a+l /2
Wb, %) [1+ lklr]

1+ [kls]et/?
X[T—] exp( ]y l'r).

With these bounds we can obtain the existence for the
regular and irregular solutions provided that

£ Vis)|ds <.

3. THE TRANSLATION KERNEL (UNCOUPLED
EQUATIONS)

Having established the existence of regular and ir-
regular solutions for the reduced radial equation, we
turn to the existence of translation kernels.

While the existence of the solutions depends on prop-
erties of the Bessel solutions which do not discriminate
between values of p, the problem of the existence of the
translation kernel is dependent upon the properties of
the Legendre functions, with an order p which can be
either an integer or half an integer.
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The translation kernels are used as in Refs, 1-3
either for the representation of the irregular solutions

f(f’ :t]e,1’),
fp, 2k, r)~

or for the representation of the regular solution
(solution which behaves at the origin as a Riccati—
Bessel).

exp{x (thr)} expil (2 - 3)u/4] expipn/2,

We introduce first the operator

Ly @ _lptn=2)  (-1)0n-3)

~ dx? P 4x°
& a(+1)
AT T 19

where we have defined A=v -3 =p +(n - 3)/2.

The translation kernel K(x,y) is the solution of the
Darboux equation!

L(x)K(x,v) =LKk +v)+V(x)K(x,y)

with appropriate boundary conditions which depend upon
whether the regular solution or an irregular solution

is represented. These conditions are:
Arvegular case Regular case

(Marchenko) (Gel’fand— Levitan)

limKy(x,v) limKg(x,y)=0
yeo y=0
=lim — g Kylx,y)=0
yoso O
x) =3 fx V(s)ds KG(x,x):é'fox Vis)ds (20)
V=X x=y

The kernels K(x,y) are the solutions of integral equa-
tions which incorporate their boundary conditions.

To find these integral equations one uses Riemann’s
method. Let R(x,y;s,u) be the solution of the equation

L(s)R(x,v;s,u)=Lm)R(x,v;s,u)
with the conditions

R(x,v;x,9)=1,

oR OR

s ou

oR R
3 =T when

when x+y=u+s,

X—=y=uU-S5.

Uz y+Xx-$
Usy+S-Xx

O,(x+y)/2) [======>3
u>s

y > x
(O)x) P——Ff=———~—==7

(y,0) {x+y,0) (u)

FIG. 1. Marchenko domain.
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(s)
U=y-x+s5
(O,x) |___
u=s
(0,x~y)
(0,(x+y)/2) p————~~N-~——--3
(0,(x-y)/2) p-—~—————- U=-S+x+y
s>u
U ==S+Xx~y X<y
(0,y) f—~Hfrmmmmm g
0 (x~y,0) (x+y,0) (u)

FIG. 2. Gel’fand—Levitan domain,

Let /) be any of the two domains /)y, Jg specified in
Figs. 1 and 2 and let C, be the boundary of the domain.
By Green’s theorem one obtains

ﬂ R[L(s)-
= <iRds +-a—Rdu>K
c, Ju s

R Py de+ Kdu . (21)

u)|K duds

C*

The left-hand side is replaced by ffo RVKduds and

the integrations are performed on the right-hand side.
By so doing, one obtains the integral equations.

Irregulay case:
KM(x,y):éf(:y)/z ds R(x,y;s,s)V(s)ds
foﬂ Rx,y;s,u)V(s)K(s,u)duds; (22a)

[ is the Marchenko domam shown in Fig. 1 where we
have

sEx; U—-8§Sy—-x; uts=y-+x; y>x;, u=s.

Regular case:

(x+y) /2
1
KG(x,y):Ef dsR(x,y;s,s)V(s)ds
(x=-v) /2
(xmy) d
+f T [R5, -5 +x-y)]
(x=¥) /2 $

ﬂ (x,v;s,u)V(s)K(s,u)duds. (22b)
Da

The domain /)¢ in Eq. (22b) is the Gel’fand—Levitan
domain of Fig. 2 where we have
u+ssx+y; SFU;

S€x; U—SFY—X;

s+uzx-y; x=y.
At this point a word on Egs. (22a) and (22b) is
necessary.

Equation (22a) was obtained under the assumption
that the contribution of the contour C, is negligible when
vy goes to infinity. Remembering that the kernel Kyulx,y)
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is such that

2
limKy(s,u) =1lim a_uKM(S ,u)=0,

Yoo U~

the conditions upon R(x,y;s,u) so that

f (R(x,y;s,u)%K(s,u)— diuR(x,y;s,u)K(s,u)du)zo

Cyluss—oo)

are not particularly stringent.

The contour C, of Eq. (22b) is closed at finite
distance. It is built up of four segments. Two of these
segments are characteristic segments. A third one
carries the boundary condition
L Ker, ) =470,

We are therefore left with a fourth segment whose
contribution will in general be different from zero.
However in the case of uncoupled equations considered
in this section in the presence of the centripetal poten-
tial only, the Riemann function is

R:H( )\,))
X1, X2

:Pl(l - Zx,)- 2x2/
0

1
=D, (1 = 2xy) = 2%, f P,(1 = 2x,1)P;(1 = 2x4 + 2x,t) dit
0

1
P, (1 = 2xy + 2x,2)P5(1 = 2x,1) dt

:P)‘(l—le—'sz +2.X1x2). (23)

In Eq. (23), P, is the Legendre function of order A
[A=p + (- 3)/2], which is an integer or half an integer
number according to whether the dimension of the space
is odd or even. The Chaundy variables x,x, are de-
fined? as follows:

(U+s—x~y)x=-9y—5+u)
4xs

1=

ki

(x+y-u—-s)x—-y+u-s)
duy

X9 = s (24)

Z =1-2x;= 2%y +2x;xy.

Along the curve (x -y =u +s) the value of Z is =1,
Consequently when A is an integer (space with odd
dimension)

Rx(x,y;s;‘s “"x—y):Px(— 1)=("1)X-

The derivative of R, with respect to s vanishes and the
integral equation has the known reduction

Ko(t,3)=3 [ [, dsRy(x,9;5,5)V(s)
+% ffoGdudsRl(xay;.s)u)V(S)KG(s,u). (220)

If A is half an integer, P, is not defined for the argu-
ment Z=- 1. The representation of regular solutions
for spaces with even dimension will not be discussed
here. More trivially, one can verify that applying

L{x)- L(y) - Vix)
to both sides of Eq. (22c) gives zero only if
(2-2)rwvism=0 ¢
35" X,Y;S,U) = or ut+s=x-y,

2 EE}
(5;+a—y—>R(x,y;s,u)=O for x-y=s-+u.
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Such a circumstance happens when R is the Legendre
function P,(Z) and X is an integer. One can see it by
using characteristic variables

n=x+y, nNy=s+u, Et=x-¥, §=s-u,

and
(82— 8)(n* = )
= —r——L 3
2=t £2)(nf - £3)
one gets

aR, 3R, 0R, 0P,

dx ay ~ an T oan
Since

3Z  (&£-1¢)) 2nlnt- &
on - (88~ (-’

By o gor {5:»50 or x=y=s-u,

on m=E&orstu=x-y.

The result of Ref. 2(a) concerning the extension of the
representation from the s-wave to the higher 7-waves
was dependent upon this circumstance. This important
fact was not pointed out at the time. We can consider
now the two types of representation.

A. Marchenko representation

In the representation of the irregular solutions the
argument Z of the Legendre function is greater than
one. Since

Z=1- 2x1— 2x2 +2X1XZ

u+s—x-y)s—u+y-x)lu+y+s+x){u+y—-s-x)
Busxy

:1+ ]

(25)

and since the four factors in the numerator of Eq. (25)
are all positive, we have Z =1,

On the other hand, in the Marchenko domain we have

(U+s=~x=y)(yv=—x+s—u)

O<-x1:
4xs
s2(s—x)2(s-x)s§
4xs x
and
Osxzz(u+s—x—y)(y—x+s—u) < 2uy sé,

4duy duy
We can write

Z=1-2x;-2x,(1-x,)s1-2x;<1+2s/x <3s/x.
Since Z > 1, one can use the Laplace integral
representation??

PX(Z):lf (Z+Z = 1) 2cosoPde (26)
0

m
for all values of A.

According for all values of n, the upper bound
6s\ *
P <(&)
x

holds and can be used in the study of the representation
of the irregular solutions.
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From the study of Ref. 2(a), the existence of transla-
tion kernels results.

Theovem 1: The translation kernel K(x,y) used in the
representation of irregular solutions is uniformly
bounded, if the two integrals

ol(x):f:s |V(s)|ds and ok(x):f:s‘il_/(s)‘ds
27
coverge.

In the theorem we have defined V =(6)*1V{(s)!. To be
precise one obtains the bound

|K(x, )| <3(1/%) 0, (x ;v) expo; (x). (28)

The existence of K is proved for any x. Therefore,
K exists for any n-dimensional space with 1 <n <o,

B. Gel’fand-Levitan representation

In the representation of the regular solution, con-
sidering Z defined by

Z=1-[(x+y-—u-s)lu~s+x—v)u+v+s+x)

X (s +x = u - v)(Busxy)™],

with four positive factors in the numerator, we find
Z <1,

On the other hand, since, in the Gel’fand— Levitan
domain we have

(xt+y—u—s)x—y +u=-s) _2x{x-y)

0s—x,=
* dxs dxs
s2%-2usl (29)
4xs
and
.. xty-u-s)x—y+u-s) _2y-2u _
0 <= duy Ty U (30)
we also can write
z2=1=2xy-2x(1-5y)21=2x,7 -1, (31)

The argument Z of the Legendre function being between
+1 and — 1, one must set apart the cases where X is an
integer from the cases where X is half an integer; the
latters will not be considered.

Using the method of Ref. 2(b), when XA is an integer
we state the theorem,

Theovem 2: If X is an integer (n odd) and if the
moments o, and 0, exist, the kernel K(x,v) used for the
representation of the regular solution is bounded. One
has

K, ) | séoo(’( 32) expo) (32)
with
limK(x,y) =0

y=0

if V is continuous.

The existence of K is proved when the dimension of the
space is odd. In addition the integral

ST 1K, v) | dy (33)

exists when x goes to infinity.
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The present Sec. 3 on uncoupled equations has sep-
arated even dimensional from odd dimensional spaces
when the potential possesses spherical symmetry. The
study already made can be extended without difficulty
to the generalized axially symmetric Hamiltonian of
Gilbert, *® For the extension one has simply to consider
the Hamiltonian equation

n n

[An + = ‘a% + k- V(r)] P(x) =0, (34)

where s is a fixed parameter. The asymptotic behavior
of the solution ¥(x) of Eq. (34) is this time
f(k, 8) exp(ikr)
T ATy
¥

n+S=’

lim ¥(x) = exp(ik - x) +

frlse

+O[7-1/2(ms+1)]. (35)
Equations (34) and (35) together with the method of Sec.

2 lead to the construction of a reduced radial equation,

d +n-2+ 1
(W+k2_£_(p_%2__i)_m(n—l+s)(n—3+s)

- V(V)) Y(p,k,7)=0. (36)

Translation operators can be applied for representing
irregular solutions. The Legendre functions to be used
in the representation are never polynomials (their order
is no longer an integer). The result expressed in The-
orem 1 continues to hold provided an appropriate value
is given to A. Needless to say the representation of the
regular solutions for this generalized axially symmetric
equation is excluded.

4. TRANSLATION KERNEL (MATRIX EQUATIONS)

In Sec. 4, the resulis of Sec. 3 are extended to
matrix differential equations. Solutions, as are custom-
mary in the case, are matrices which are built up using
vector solutions, After a discussion of an important
Riemann solution in Sec. 4 A, the extension to the
n-dimensional problem is attacked in Sec. 4 B. Exis-
tence theorems are formulated when a many-channel
approach is menaingful.

Before proceeding further, we feel it is useful to dis-
cuss the introduction of hyperspherical systems in
m-body problems. %3¢ Although the n-dimensional space
shares with the m-body (3m == +3) the same number
degrees of freedom, the hyperspherical scattering solu~-
tions do not possess the exact asymptotic form.
Furthermore, the kernel of the Lippman—Schwinger
equation associated with the »m-body problem is not
compact,’! Faddeev equations (or any equivalent) are
needed to reach compactness. > Whether the method of
Zachariev®® and Raynal®* removes the “dangerous
contributions” is not the point here. The fact is that
Refs. 33 and 34 construct nonhomogeneous differential
systems, unfitted by nature to linear translation
operators. Consequently the m-body problem is not
discussed here except when it reduces trivially to a
many-channel problem. ¥ We will allow, however the
number of channels to become infinite.

A. The Riemann solution C{/, m)

The solution C({l,m) is constructed because of its use
in the following subsection.
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We consider the two operators

2
AE[% +k2—l2]— V(Z,WI,X),
X (37

d2
AOE[E;C—Q+IEZ_ ZZ] N

where I may be a continuous or simply a discrete
threshold energy. The partial differential equations for

the continuous “matrix” K(I,m;x,y) are
82
EFK(Z’ m;x,y) = BPK(, m;x,v) +m* K, m;x,y)

82
= WK(Z’ m;x,y) +/V(l,n,x)K(n, m;x,y)dn. (38)
In the case of a discrete index the integration is re-
placed by an ordinary summaftion.

To Eq. (38) boundary conditions are to be added.
We are led to consider the Riemann solutions for the

i 2 2 . 92 .
’[B*xz_ (14 =m JC(l,m,x,})_ ayZC(l,m,x,}). (39)

These Riemann solutions which we briefly denote
C(l,m) are given in Ref. 2(b) where we followed Ref.
36. In characteristic variables they are

C(l, m)=dy- (4v)'/?] (40)
with
v=(=m*) (= &)n-ny)
== m)x-s) - (y —u)L

Since the inequality (x —s)?> (v — #)? holds for both the
Marchenko and the Gel’fand—Levitan representation,
one has

C(l,m) =1,(2V?)
and therefore

[C(l,m)l <1 for

|C(l, m) ] <exp2¥v  for

fm| = 1], (41)
[m| =< |t]. (42)

From Egs. (41) we can obtain the bounds to be used
later:

Mavchenko representation: Since s > x, we have
[C,m)| <exp2|i]s, W m. (43)

Gel’ fand— Levitan vepreseniation: One can use u +y
Z2x-5>0,

v < (u +v)2(° - m?),

lcw,m)] <exp2|l|uexp2l|l|y, ¥ m. (44)

B. The n-dimensional space

One expands the wavefunction in hyperspherical
variables,

1
YX) = 23 Poo (DR, (r) vy - (45)
va
In Eq. (45) we included in the hyperspherical defini-
tion the “order” v and the set o of all the “quantum

numbers” necessary for their definition. See Ref.
30(d).
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Noting (v, @)=17 and (¢, B)=j, we define the elements
of the matrix potential between the 7 and j “channels”
by the integrals

Vi) = [ Po(@V(x)P, (2)d. (46)
Recalling the definition
No=p; +n-3)/2, (47)

we introduce a priori the system of coupled equations,

Li(x)u‘(x) + V“(x)ui(x)

:[C;i;?+k%_ M;.;‘_l) +V,.,-(x):‘u,-(x)

:E V“(x)uj(x). (48)
i#j
In Eq. (48) one has
;Zz

In Eq. (49), E is the incident energy and E; is the
threshold energy of the ith “channel.” The case where
all the E; are set equal to zero (all the k% are equal to
k%) is discussed first. The extension to the general case
which makes use of Sec. 4 A follows.

In the physical applications the system of equations
(48) may be infinite. Concerning infinite systems, the
question of the existence of translation kernels may be
raised. In the following the conditions for the existence
of translation kernels are stated first when the order
of the system is finite. We indicate hereafter how the
conditions should be supplemented when infinite sys-
tems are considered.

To obtain our results we use the Riemann solutions
R;{x,v;s,u). They satisfy the equations:

Lix)R;(x,v;8,u) =L {v)R;;(x,v;s,u), (50)

Rii(x,y;s)u)
:H(Ai’xf)
X1,%2

:Pli(l - 2X1)— 23(2.

1
Py (1= 2%, +2x,t)

=~

XP,(j(l ~ 2x,t)dt
1
:Pl},(l - 2xy) - 2x1/ Py (1= 2x,t)
0

;
X Py (1 = 22, +2x,t) dt, (51)
where x{, x, have already been defined in Eqs. (24).

Again we separate the representation of solutions
defined by a condition at infinity (Marchenko represen-
tation) from the representation of solutions defined by a
condition at the origin (Gel’fand—Levitan representa-
tion). When the latter representation is considered,
along the segment u +s =x -9, x, equals 1. In the last
equation, (51), P,, is defined only if A; is an integer,
that is if % is odd; the representation of regular solu-
tions for even n is again therefore excluded.

(a) Marchenko representation: The representation of
irregular matrix solutions is discussed for even and
odd dimensional spaces. Since we have 0< —x, <s/x
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and 0 = x, <3, all the arguments of the Legendre func-
tions which appear in the last of the Egs. (51), are
positive. Consequently, we can use the bounds derived
from the Laplace integral. This can be done whether
the dimension of the space is odd or even., Following
the methods used in Ref. 2(b), we obtain

s\
{Rii[ S<‘;‘> . (52)
We introduce now the notation

V,i(s) =(Is)iV, (s),

1
(S))Lj ’

n(";y) :/(Mm 1V(s)|l ds, (53)

g(x):f:s | W(s)| dx,

Dy;(x) =x"5,,

W) = {Ts MV ,(s)

1

and we can state the existence theorem when the system
{48) is finite and all the k! are set equal.

Theovem 3: If the system considered is finite and if
all £} are equal, and if in addition the two integrals

ol and o{!’ converge as follows:

o Py = [T M|V, | dt <,

17

o) = [TV [t ar <,

ij

(54)
a translation kernel for the n-dimensional irregular
matrix solutions exists. To be precise one has

D"(x)HK(x,y)US%n(x;y) expé(x). (55)

By Theorem 3, a restriction has been set on the non-
diagonal elements of the matrix potential V,;(x). In addi-
tion to this restriction, the theorem requires the exis-
tence of absolute moments for the matrix V;,;(x). When
the order of the matrices introduced in the proof is
finite, these matrices have a finite norm but this is not
necessarily so when their order is infinite. Then one
needs additional requirements. First one must assume

\|V1|=59p§ Vi) <, (56)

so that V possesses a finite norm. Afterwards one
should require the existence of the following limits:

lim prmasie |V“~(t) ‘ dt <o, (57)
i,i- =) x
}i;nJ v, @) | de <, (58)
L% d x

The exponents (X;, ;) of Egs. (57) and (58) represent
the angular momenta of the 7 and j channels. They may
remain finite even if the number of channels become
infinite,

In the same way as the norm for V was defined in Eq.
(55), norms for the infinite matrices V and W, Eq. (53),
have to be introduced and should be assumed to exist.
Writing

s = [ s |[Wis) | ds <=, (59)
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10)= [ V(o) | ds <o, (60)

and assuming inequalities (57), (58), (59), and (60) are
satisfied one takes into account the possibility for ¢ and
j to assume infinite values. In this way the upper bound
expressed by Eq. (55) remains finite. Now according
to Eqs. (48) and (49) threshold energies are included.
Assuming the existence of an upper bound K on the set
of positive numbers K? defined by

Ki=-Ft, (61)

1

and using the Riemann solutions C(K;,K;) of Eq. (43),
the existence of a translation kernel can be proved in the
extended case where the k% are different. The extension
is obtained at the price of requiring an additional expo-
nential decrease of the matrix potential; the measure of
which is expressed by

4sup (|k2 - KE))1/2, (62)

iyi

As one realizes, the system of operators introduced in
Eq. (37) is a discrete system.

(b) Gel’fand— Levitan representation: We recall a
first restriction. No consideration is given to even
dimensional spaces. The Riemann solutions introduced
in the possible integral represeuntation are defined in
Eqs. (44) and (51). When x, =1 these R;;{x,v;s,u) are no
longer constant. The contribution of the segment u +s
=x -9 to the integral representation has to be included.
We are therefore obliged to consider the full integral
equations, namely

ey /2
f R;;(x,v;s,8)V;;(s)

(x=¥) /2

+%fﬁGR..j<x,y;s,u>§ Viuls)

XK, ;(s,u)duds

|

Kij(x;y):

[\

(x=y) d
+f gg[Ru(x,y;s,—s +x~9)]
(x=v) /2

X K;;(s,—s +x—y)ds. (63)

In this form Eq. (63) does not seem suitable for the
method of successive approximations. A variant is
given which is obtained by integrating the last term of
Eq. (63) by parts. Denoting this last term by I, one
gets

X = x -
I::Rij(x’y;x_y’O)Kij(x—yyo)"Rij<xay;—2l: 2y>
' — - {xmy)
XKij(xzy’ x2y> '/ Rij(xisxz)
(x=y) /2
XiK‘A(s —s+x—-y)ds. (64)
ds 1

Using the boundary conditions K, ;{x,v) has to satisfy,
Eq. (64) reduces to

- K- (x=9) /2
I:—%RiJ'(x,y;x—z‘l: —2“1)/; Vii(s)ds

[£259 d
_/ R”(x"xz)c_ig K;i(s,—s+tx—y)ds. (65)
(x=y) /2
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Equations (64) and (65) suggest that under proper condi-
tions of convergence the kernel K”(x,y) may exist in
very general circumstances. When all the “channels”
are coupled at the same angular momentum A; and all
have a zero threshold energy the value of the term I is
exactly zero and the contribution of the segment  +s
+x -y, to Eq. (63) disappears. Then under the simple
conditions that the matrix potential possesses finite
moments of order zero and order one, a translation
kernel exists. Due to the difficulty of providing the
existence of K(x,y) for the most general form of Eq.
(63), no more consideration is given to the Gel’fand—
Levitan representation. From now on we will consider
only the Marchenko method. 37

(c) Physical application: A physical application con-
cerning the many-channel case for the n-dimensional
scattering problem is now discussed. The basic idea is
to solve the A-body Hamiltonian

HAd)n(g) :end)n(g),

before considering the (A +1) Hamiltonian H,,,. Its
solutions ¢,(¢) are separated in radial and angular co-
ordinates using hyperspherical variables

(pn(g) - Z'; Pm' (Q’)um' n(g)-

Channels can be defined by coupling target-general-
ized angular momenta ' to the incident projectile ones
m” to a total angular momentum m,

[P (2) X P () thpe (D) ],

It is assumed, as is the case in three-dimensional
nuclear problems that the target momenta m’ are finite.
The projectile angular momenta " which can be
coupled to some m‘ to construct m (Clebsch—Gordon
generalizations) are finite. The set of A;’s present in
Eq. {(48) possesses therefore an upper bound. The left-
hand side of expressions Eqs. (57), (58}, {59}, and (60)
can be finite even under the assumption of an infinite
number of channels.

If we assume, in addition, that closed channels can be
safely neglected if their respective threshold energies
are large®® and the constants I and m which appear in
the bounds of Sec. 4A for the Riemann solution C{l,m)
are themselves bounded.

Theorem 3 can be used to assert the existence of a
Marchenko kernel provided the matrix potential has, in
addition to the conditions it expresses, adequate expo-
nential decrease. See Eq. (62).
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We reconsider first the representation of solutions defined by a condition at the origin and recognize the
difficulty of extending the representation outside simple cases. By eliminating the study of solutions
defined at the origin in further studies the translation kernels for velocity dependent interactions are
constructed only for solutions defined by their behavior at infinity. Two methods are proposed. Their

domains of extension are compared and shown to be different.

1. INTRODUCTION

The translation kernels were brought to consideration
in the early 1950’s within the framework of the inverse
scattering problem.! Their use by Gel’fand—Levitan®
and Marchenko® was decisive in the mathematical solu-
tion of the inverse problem for systems without singu-
larities; Ref. 3 contains, in addition to this mathemati-
cal solution, an indirect attempt to solve a particular
case of a system with singularity, the particular case
which appears in the deuteron problem with a tensor for
force. Almost at the same time, within his theory of
perturbations, Friedrichs! introduces the idea of simi-
litude between operators.

Let A; and A, be two operators with the same domain.
If there exists an operator U with a bounded inverse
U™ such that the equation

UAy =AU (1)
holds, the operators A; and A, will be called similar
and U a similitude transformation. The existence of
U1 leads to the equation

UA U = A4,. (2)
If Ay and A, operate on a Hilbert space and are both
self-adjoint, Eq. (2) leads to the equation

UUTA U U = A, 3)

from which it follows that U is a unitary transformation.
The point is important when the spectra of A; and 4,
are compared.

The translation operators satisfy Eq. (1); in addition
we require they be integral transformations and belong
to the category of Volterra operators.

Recently the Clarkson school® while developing an
idea of Lax® constructed a class of nonlinear equations
whose solution is connected to that of an inverse scat-
tering problem. By so doing they renewed interest in
the inverse problem and it becomes more compelling
to specify the class of equations for which a transla-
tion kernel exists.

a)Chercheur de ’Institut Interuniversitaire des Sciences
Nucléaires.
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In a first work on the inverse problem, ’ the theory
of translation operators was re-examined so as to use
them in the inverse problem at fixed energy. Recently,
we moved to problems at fixed angular momentum with
singularities but we restricted our investigation to
differential operators and to systems of coupled dif-
ferential operators of the form

d2
+ =X
s I+ V(x) , 4)
where I is the unit matrix and X is a constant diagonal
matrix, 81" The matrix V(x) called potential was
separated into

Vix) = Volx) + Vy(x) (5)
with a reference potential Vy(x) and a nuclear potential
Vy(x). In most of the cases we took the reference po-
tential to be

ala+1)

—2—+ﬂ. (6)

Volx) = x x

When V, is defined by Eq. (6), it contains a centripetal
and a Coulomb part, the usual singularities of the
nuclear problem.

In each case we examined, the task was to specify
the conditions the nuclear potential Vy(x) has to satisfy
for a bounded translation kernel to exist. The conditions
were, of course, sufficient conditions. However, the
method of proof used for their specification was a con-
structive method. The translation kernel was, in prin-
ciple, constructed. It is a general remark that sufficient
conditions obtained by a constructive method are hard
to improve. The construction was obtained by trans-
forming partial differential equations of hyperbolic
type into Volterra integral equations which incorporate
their boundary equations. This latter transformation
has, in our opinion, its own importance; therefore
another distinct example which uses different boundary
conditions is included in this present paper. Extensions
of the transformations may be obtained by using the
appropriate elementary solutions which are here the
Riemann solutions.

To specify the notations and the object of this present
paper, we give the following definitions. Let A, and A,
be two (systems of) differential operators together with
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boundary conditions necessary to specify the solutions
their respective equations may possess.

The two types of boundary conditions we studied were
conditions of regularity at the origin or conditions of
behavior at infinity. The new case discussed in the
present paper incorporates conditions at the origin
which do not involve regularity. The two first types of
conditions are the usual conditions considered in scat-
tering problems. A translation operator X is defined
as a bounded operator with an inverse X,

X=1+K, X'=1+K.

The operator K of the definition is always an integral
operator. As a consequence of the definition, X trans-
forms the solutions of the differential operator A, into
the solutions of the operator A;. The operator A; was
written as A+ Vy; A, contains the reference potential
which may be zero. If the solutions thus transformed
are the regular solutions, we call the kernel K a
Gel’fand—Levitan kernel: The notation of the Gel’fand—
Levitan representation is retained here, but it is ex-
tended here to any representation of solutions specified
by a condition at the origin. In the case of solutions
defined by their behavior at infinity, we will have a
Marchenko kernel and a Marchenko representation,

In all the cases we investigated, the conditions were
expressed in terms of conditions the nuclear potential
Vy should satisfy; whether it was attractive or repulsive
was unimportant. Its strength also was irrelevant. The
conditions were dependent upon the absolute moments of
the potential V as are the usual conditions for the
existence of solutions of the Schrodinger equation. It
is important to note that they were, in addition, depen-
dent upon the choice of the reference potential.

Systems of coupled differential operators defined by
Eq. (4) belong to a restricted class of operators. How-
ever when, for the first time, Levitan!! defined the
concept of translation operation, he stated its use for
differential operators of the more general form:

2
a(x) (%7 +b(x) d_{i - V{x) + X, (7)

The extension was obtained, he said through a straight-
forward extension of the Liouville transformation. ?

As we will see later, he was a little optimistic; the
Liouville transformation cannot be used directly except
for the b =0 cases, but the idea of Levitan can be
pursued and a transformation shown to exist. Already
a desire for such an extension appeared in Ref. 7. At
that time it was simply recognized that the conditions
for existence depend upon the solution of a Cauchy
problem but this quest was not pursued. Now many
years have passed, progress has been made; not only
do we possess, in the Riemann method, a tool for
specifying the conditions a nuclear potential has to
satisfy, but also we possess the inotivation for pursuing
the physical application of the extension which once
seemed far away and has now become real. While

the forms of operators discussed in Ref, 5 are related
to the problem of the string amplitude, 1% a subject
dear to dual theorists,!® the Sturm—Liouville operators
for Eq. (7) contain the differential operators with
velocity dependent interactions. 1® The latter have been
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shown to be equivalent to static interactions with a hard
core. !’ After additional work on the inverse problem
by Marchenko!® and Faddeev,!® Zachariev? had just
formulated the inverse problem for potentials which
depend on the velocity. He has, in addition, proposed

a solution for the approximation which involves the re-
placement of the differential operator by a difference
operator.

Attention cannot be restricted however to differential
operators; systems of coupled differential operators
described by Eq. (8) have to be treated. The extension
to such systems is actually realized in the present
paper.

The reader is warned that the advice of Levitan of
using a Liouville transformation is not followed all the
time; we found it more convenient to use a simpler
transformation, precisely the one advocated for the
construction of equivalent local potentials in Ref. 21,

In Sec. 2 the Riemann solutions method is reviewed and
a new representation for a solution which is not regular
but is defined by a condition at the origin is given for the
{ =0 case.

In Sec. 3, systems of coupled equations with velocity
dependent interactions are discussed. The systems are
transformed into simpler ones prior to being subjected
to the translation operators techniques. The use of a
more direct method is discussed in the conclusion.

2. INTRODUCTION OF THE RIEMANN’S SOLUTION

Before proceeding to this introduction, we consider
the construction of an irregular solution for a local
Schrodinger equation defined by a condition at the origin.
For this construction we consider the Volterra equation

Lk, ) =0, ) + [ g (s, ) V(3 £yl )y (8)
with
gt(k;x, y) = [ux(k, x) Ul(ky y) - ul(k: y)
X v (ky %)/ Wty 0,). (9)

In the Green function g; of Eq. (9) the Riccati—Bessel
v, and v; are inserted together with their Wronskian.
One has

. 1

1 ks X) = o T T )
i v, ( ,X) @I (Ex) ?
. ()™
limuik, x) = o 311

Obviously, Eq. (8) is meaningless for 7+ 0 except for
special classes of interactions.

We will limit ourselves to the I =0 (s-wave) case.
Then Eq. (8) reads

Eo(k, x) =coskx+f sink(x - y)
0

A V() Eg(k, ) dy.
(10)

Together with Eq. (10), we consider the possibility of
representing £q(k, x) by an integral

Eolk, x) = coskx + fox K, (x,y) coskydy. (11)
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In order to exist, the kernel K, (x, y) has to satisfy the
partial differential equation

2 2
(g;, - %7) K,(x,9) - V&) K,(x,y) =0, (12)
K, (x,x)=% fo V(s)ds, (13)

0
oK, (%, 9) |y = 0. (14a)

3y
In order to prove the existence of K, (x,y) one has to
transform Egs. (12), (13), and (14a) into a Volterra
equation.
This can be done by using the identity

Usx=S

sinke(y=s) ooy 1 coskt dt. (15)

k 2

utSex

After trivial interchanges of variables valid if y = x/3
and which are justified by the Tonelli—Fubini’s theo-
rems, one obtains

K.(x,y)Z%[fo(’“y)/2 V(s)ds + fo("‘y’” V(s)ds]

* %[f(zm/z V(s)ds [ K, (s, u) dul
(x= X g

+ %[f(:y:’)/z V(s)ds j; YK, (s, u)du

+ [ V(s)ds [° K.(s,u) du

+f0(x-y)/2 V(S)ds fosK,(s,u)du

X S
- f(”y)/z V(s)dsfo K, (s,u)du

+ fxi;"’”z V(s)ds fys

+S=X

K,(s,u)du]. {16)
As we said in the introduction we decide to call this
representation a Gel’fand—Levitan representation,
denoting K,(x,y) the kernels of the two Gel’fand—Levitan

representations. Equation (16) of this paper and Eq. (16)
of Ref. 8 can be summarized as follows:

K, (x,y) _—_é[fo(’m’)/2 V(s)ds+ fo("'”” V(s)ds]
l x X=S+y
+ z[j;x+y)/2 V(s)ds fo K (s,u)du
xay X=5=y
£ f(x-y)/z V(s)ds fo K, (s,u)du

+ fox'y V(s)ds fosK*(s,u) du+ fo(”'y)/z V(s)ds

2234 J. Math. Phys., Vol. 18, No. 11, November 1977

e S _ x s
fo K, (s,u)du f(m)/z V(s)dsf0 K, (s,u)du

Ceayd /2
+ [/ y(6) dg fyfs_xK*(s, u) du),

(x=y)

(17)

K_ must satisfy the same equations (12) and (13) as K,
but the condition (14a) is replaced by

K_(x,9)],.0=0. (14b)

At this point it is interesting to visualize the two
domains. Let Dy and D, be the two domains described
in Fig. 1,

D,=D;+D,,
so Eq. (17) reads

(x+3)/2

K (x,y) =3/ Vis)ds = fo"“y’” V(s)ds]

+%[ffDiV(S)K(S,u)duds1 fszV(s)K(s,u)duds]o

(18)

Retaining the same segments (u=0,u=s,u+s=x+y,
u-s=y-x), w=0,u=s, s+y=x-y) as boundary, D,
and D, can be defined for 0 <y <y, With this extension,
one can prove that Eq. (18) is quite general and valid
for 0sysux.

Using the method of successive approximations, the
reader can verify that the two kernels K, and K_ exist
under the conditions that the local potential V possesses
absolute moments of order zero and of order one. Inter-
est in the two kernels K, and K_ has been displayed by
Mehta®? and more recently by Dyson*® but until now no
integral representation has been given for both these
kernels. Before proceeding further a discussion of the
Gel’fand—Levitan domainsg is in order. Both are bound-
ed at finite distance and are built up with more than
three segments. When one desires to extend the repre-
sentation to a reference potential p(x)#0, the Riemann
solution R for the operator

32 2

T2 =5 TP = p(9)

enters into the picture. Then the Riemann—Green
formula for the domain D and its contour C, is used,

0 2 2 0
/ [R(E de+£Kdu)]—[5&Rds+—5;du] K

c

:// RVK(s,u)duds.
D

Two segments C, are characteristics, a third u=s
carries the boundary condition K(x, x). Consequently,
except in special circumstances, the reduction
K,(x,9) :%[fo"“””RVdSi S5 RV as]
+ %[ffD‘RVKdudSi fszRVKduds]

will not result. Such a special circumstance occurs
when the reference potential is the scalar centripetal
barrier
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FIG. 2. Marchenko domain,

pE)=-I{I+1)/x*
and when the K_ kernel is considered.

Because of this fundamental deficiency of the two
Gel’fand~—Levitan representations only the Marchenko
representation is considered in the rest of the present
paper.

Although Riemann’s method can be introduced, as
it has been done by Riemann himself, a simpler heuris-
tic presentation is given here. In the following, D
denotes Marchenko’s domain (Fig. 2).

Let L denote the scalar partial differential operator,

EL a*
L=7g- 27 —{ptx) - p()} (19)

and finally let R(x, y;s,#) be Riemann’s solution for
Eqg. (20a), which follows:

LR=0,
0
<——a~+—) R=0 ify-x=u~s,
dx oy (20)
3 d .
(5;_8—3;> R=0 ify+x=u+s,

R(s,u;s,u)=1.
From the last three Eqs. (20) it follows that
R(x,y;s,u)=1 if y-x=u-s,

One can now prove the two following equalities using
Eqgs. (19) and (20):

LffDR(x,y;s,u) Wy(s, u) duds =2Wy(x, y), (21)
L f(m)/zR(x,y;s, s) Wy(s)ds =0. (22)

The conditions for Eqs. (21) or (22) to be valid are
simply the usual conditions for the differentiation under
the integral sign.

In addition to Eqs. (21) and (22), provided that the
convergence of the integrals is uniform, the following
limits exist and have a common value which is zero:

zi_rg ffo R(x,v;s,u) Wi(s, w) duds, (23)

lim f(:w)/z R(x, y;s, s) Wy(s)ds, (24)

1yim ffo R{x, y;s,u) Wy(s,u)duds. (25)
~x

In addition to these zero-value limits one has
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lim f(:w)/zR(x,y;s,S) Wg(S)dS:fx Wy(s)ds. (26)

¥~ x

The Marchenko integral representation for the transla-
tion kernel is obtained as a consequence of these equa-
tions. Let us consider the partial differential equation
the kernel has to satisfy:

LK(X, y) = V(x)K(x, y)’

lim K(x,y)=0=1lim 2 Klx, ), (27)
y=w y+© 0y

Klx,x)=1% f: V(s)ds.

In view of Egs. (21)—(26), Eq. (27) is equivalent to the
Volterra integral equation

K(x,31)=%f° R(x,v;s,s) V(s)ds

(x+3)/ 2
+3 ffﬁ R(x,y;u,s) V(s)K(s,u)duds. (28)
Since we emphasized the dependence of the conditions

on the nuclear potential on the choice of the reference
potential, we report the following statement,

If the two potentials Vy and V; belong to the class
of acceptable potentials for the Marchenko representa-
tion, the reference potential V, being chosen, then the
potentials V,+ V, are members of the same class. We
write Vi, Voe C(V) to denote this property. Further-
more the potential V,e C(V}), resp. Vye C(V;), belongs
to the class of acceptable potentials, the reference
potential being Vy, resp. V,. The result can be obtained
by estimates on the Riemann’s solutions involved; it
also results from a simpler argument, %

If V; and Ve C(V), then
b4(x) = Polx) + f: Kol ») ¢o(y) dy, (29)
Bolx) =a0) + [ Ky, 3) do() dy. (30)

Equation (30) follows the fact that the existence of K,
implies that of the inverse kernel K.

We consider now the integral operator
A(x: y) =K10(x; y) +K02(x, y)
+ [7 Kyolx, 2) Ko (2, 9) dz. (31)

From Eq. (31) one gets
ST AG, ) ¢a(p)dy

= [ Kyolx,9) $o(3)dy + [ Kipx, ) $a(3) dy
+ [T [ Kyolx, 2) K (2, 9) () dz dv. (32)
Using Eq. (30) and a permutation of variables, one gets
rhs= [T Kyo(x, 3) $a(3) dy + o) = ¢y (x)
+ [Tdz [T Kyglx, 2) Kip(z, 9) () dy
= [7 Ko, 9) 6y(9) dy + bolx) — ¢y (x)

+ [7 Kqolx, 2) dol2) = dy(2)]dz = ¢y (x) = ¢y (x).
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The law of composition of Marchenko’s kernel is thus
established and the statement proved.

The kernel A(x, y) is identical to the kernel Kj,(x,y)
we wanted to construct.

An interesting feature of Eq. (31) follows. Let us
assume Vy=1V,, then

0=Kyolx,y) + Ky lx, y) + fxy Kyolx, 2) Koyz, y) dz. (33)

Equation (33) is an integral equation for the inverse
kernel Ky (x,y) of Kyo(x, ).

3. THE TRANSLATION KERNEL FOR VELOCITY
DEPENDENT INTERACTIONS

In this section the use of the transformation for
Schrédinger equations with velocity dependent interac-
tion (effective mass dependence) is discussed. Two
types of methods are used. The first one transforms
the velocity dependent potential into an energy dependent
operator. The second one transforms the same poten-
tial into an angular momentum dependent operator. Ad-
vantages of both methods are compared and an exten-
sion is proposed for systems of coupled differential
equations.

In the n-dimensional space, the Schrddinger equation
reads
h—?

- ﬁ{v[1 +p(N]V - U@) + E}dlxg, 25, -« -, %) =0, (34)

In Eq. (34) the following notation was used,

v:<_8 i 784) ,,2:%;;\,2. (35)
axy? Axy ' 7 Ax, ) i

As in the three-dimensional case, a partial wave
decomposition can be used followed by the construction
of the reduced radial equation (u,(»)/7) in the three-
dimensional case. For the reduced radial function #,,(7)
one has the equation valid for all values of n,

d d viv+1) _
('5’ [1 +p(’}’)) E’ — [1 +[)(7’)] —*72— - W+ k2]1lm(1’) =0.
(36)
In Eq. (36) we have denoted by W(») the potential
W) =U(r) + ___(n; D -p;, ,

and by the index v, the number obtained from the integer
m by

v=m+(n-3)/2.

In the physical situations the form factor p(r) propor-
tional to the density p(7) of the medium, is

p(n)~p(r).
This proportionality leads to these two consequences:
p'(0)=0 (37)
and
lim »p(v) =0. (38)

In addition to this assumption, we impose a positivity
condition
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1+p(r)>0 V7, (39)

If this positivity condition is assumed, no singularity
is brought into the operator through the effective mass.
Also if Eq. (36) is a matrix equation and p(») denotes
the diagonal matrix

i)i(’i’) 6” = (P("’))ij s (40)
one can define two diagonal matrices,
[1+pM]V? and [1+p()]V2, (41)

In what follows, solutions may be scalars or matrices.
When they will be scalars, the index m is used.

A. Method number one
Let us define (see Refs. 21 and 25)

u, () =[1+p)]V 20, (r). (42)

The factor 1 +p(»}] is the Wronskian of two linearly
independent solutions of Eq. (36). The transformation
defined by Eq. (42) is exactly the transformation from
a nonlocal potential to its local equivalent used in
Ref. 21.

The new radial equation for v, (r) follows,

(C%ZJ - V—(%;—l—) - W(r, k*) +k2) v,(r) =0.

We have therefore defined:

Wiy, k?) = Wy(r) + Wy (v) + B Wy(#),

W) == 1 pI (= 2pm e el pil - 58 2,

W, () =[1+pN)]V U@L +p()]H 2,
W,(r) =p )1 +p(r)].

When the equation for v,(r) has been obtained one is in
a situation to inquire about the existence of translation
operators, For this inquiry one infroduces the two
operators

& vv+1)
—_2__._ +

= _ 2
Ao_dx x k,

d* v(iv+1) — W

Ade -

x, B*) + B2,
and defines the solutions wg,(x), v,(x) specified by their
behavior at infinity, by
AOUOm(x) =0, Avm(x) =0.
The existence of the integral representation

V(%) = Vg (x) + f: KB x, v) vom(v) dy,

can be discussed. The kernel K(¥;x, y) satisfies the
partial differential equation

(22D @] K5,

92 v +1)
= [f - 2] e,

limK(E, x, y) =lim 2 K(F,x,y)=0, (43)
y® yao 0y
K, x,x) :%j: W(s, #*)ds.
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With the help of the Riemann solution R,
R,=P,(1 - 2x; — 2x; + 2x,7),

for the equation
9° - v(iv+1) R _[ o2 N V(V+1)] R
oat < v Loy P v

Eq. (43) with its boundary condition can be transformed
into a Volterra equation. Using Eq. (28), one has

KB x,y) =3 (:w)/zR“(x’ v;s,x) W(s, K)ds

+§ff0 R, (x,y;s,u) W(s, B*) K(K*;s,u)duds.

(44)
According to previous studies the existence of K follows
the possession of moments of order 1 and order v by
the energy-dependent potential W(x, k).

Since
Wix, k') = Wylx) + Wy{x) + B Wy (x),

and W, and W, contain the density related form factor
p(¥) and its derivatives, the condition reduces simply
to the possession by the original nuclear potential U(s)
of moments of order 1 and order v.

A natural question arises, that of the analytical
dependence of K with respect to the energy A =#%,

Let us define a new function
?
L\ x,y)= Py K(x, y;8%).

The integral equation for L is

LOGxy) =3 B35, ) p(s)1+p(s)] ds
+3J J, B, v;s, 1) p(s)1+p(s)
XK(\;s,u)dsdu + éf fo R, (x,v;s,u)

X W(s,\) L(A;s,u)ds du. (45)

Equation (45) can be solved by the method of successive
approximations. The upper bound

(x)¥ fK(X;x,y) ’ <30, <2C—2—+2) expdy(x)

can be used to obtain an estimate for the zero-order
term

LOO" X, y) = %f(xw)/?

+ éffa Rv(x, ¥;s, u)i’(s)[l +P(S)]4
XK, s,u)duds. (46)

By looking to Eqs. {45) and (46) it is obvious that the
analyticity of K follows its very existence.

dsR,(x, y;s, 8) p(s)[1 + p(s)]

The method just outlined extends itself to systems
of coupled differential equations of the form:

vi(v; +1) ()

2 120 L 1) - [14.p,0)]

- (ngl) Pyg'(?’) u.-(?’)-; Ui (7 uy(n) + By (7) = 0,

(4m
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where we have separated the diagonal operators from
the nondiagonal ones. Defining the matrix solution

v (x) =[1+p, () ]V 20y (),

and operating as we did, we obtain

4 00~ [ﬂ‘—’;fii’ A (2) + 12 wgﬂ(x)] ()

—; Wib(x) v;(x) + Ko; (x) = 0. 48)
Definitions used in Eq. (48) are
W (x) =1+ p; (x) ] (— p! i pfPll+p )t

(-1 piw)
2 x ’

WP (0) =1+ p; )]V 2 U (01 +p (]2,
WP (x) = p, (0)[1 + p, (x)] .
The matrices

WO (x) = W, 0 (x) P

W(“(x) — Wf})(x),

W(Z)(x) — W§2)(x) 5” ,

A=y (y;+1)5

B2 =E25.

ivij

ijs

are defined and the two operators

d A
Ao=ga tH -

2 A (49)
A= W +k2 _ ;2_ + W(O)(x)+k2W(2’(x) + W(“(x)

are introduced together with the matrix solutions
gp, Uy

The translation kernel K which is now a matrix
satisfies:

2
(58;; + R - % ~ WO )~ WD (x) - W“’(x)) K(x, )

= (53) Ko+t (kﬂ—f;{) .

31)1};_3 K(x,y)= O:E’i_n_g ai K(x,y),
3 Y (50)
K(x, x):éfx [W®(s)+ WD (s) + B WD (s)]ds.

For the discussion of the existence of K, the Riemann
solutions

Vi, 4]

X1y Xy
are used. *® Conclusions are identical to the ones we

reported in Ref. 9; they don’t need to be repeated in
the present paper.

When the matrix kernel K(k%;x, y) for the operators
defined in Eq. (50) has been obtained, one writes the
final representation for the matrix solution uy(x),

uy (2) =1+ p() ]V {vg, () + f: K(B %, v) vga(y) dyvh.  (51)
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B. Method number two (the Liouville transformation)

Although less extensive than the first method, this
second method has the advantage of not introducing an
energy dependence into the transformed interaction and
consequently into the transformation kernel. Its lack of
extension comes first from the requirement of the same
effective mass in all the channels. It comes also from
the appearance of potential decreasing like x~¥ infinity.
The second method has nonetheless enough interest to
be developed for itg own merits. The Liouville trans-
formation takes place in two steps, In the first step,
one defines a new radial variable x by

r

at
T p@F o2)

The definition implies again 1+ p{f)> 0. Then one has a
one to one mapping between » and x, With this definition
and the assumption that p(t) goes to zero when ¢ goes to
infinity,

dx 1

e A Ty

7= d’V

So instead of Eq. (52) we write definition (53) for x
which is its equivalent

x:r+fr {@+p))1/2 - 1}at. (53)
0

From Eq. (53) one sees that v goes to zero with x and x
with 7.

Using Eq. (52) one gets
d d &, 1 1 .« 4
o VP =gty Ty P (54)

In Eq. (54) p denotes (d/dx) p(#(x)) (not to be confused
with dp/drv which we denoted earlier p’).

With the help of Eq. (54), Eq. (86) becomes

& 1 p d vy +1) ~
(d? Ty Tipa O Ty - W(x)+k2) () =0
(55)
with
Wix) =U(x) + 9’_;_12 p7’ = Ulx) + (ﬁ_g_l_) '71; (L+p)H12,
(56)

Again the index m denotes scalar solutions.

The second step of the Liouville transformation is to
renormalize the radial wavefunction so as to eliminate
the velocity dependence from the equations.

For this purpose one defines
Up(x) = (14 )V 40, (%) (57)
and uses

L1 p)ire ;f; vt h(L+p) b, (58)

dx
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d’Z _ /4 d'Z 13 514 d
2 =V T v s h(14p)
+ LR+ p o -0 +p)r o, (59)

Inserting Eqs. (57)—(59) into Eq. (55) gives
vir+1)

3
(Edg—[lw(x)]-ﬁr)— V+k2) Up=0 (60)

with 5
V= U oyt B L g gy

- (3PP +p)t - 4pl(L+p). (61)
As x goes to infinity the centripetal barrier goes to
v(iv+1)
(x+c)?

where ¢ is the constant defined by
c—f {1~ 72 g,

In the same way, by a Taylor expansion, as x goes to
Zero

1+p

=x[1+p(0)Ji/2.

dr
7(x) x o i

The centripetal barrier at the origin is therefore

viv+1)  _ pv+1)
[1 +p(0)] 5\,’2[1 +p(0)’ = x? .

Equation (60) is first rewritten as

& vr+1) vv+1)
[W——Tc - (V+[1+p ]T—(x)
- -‘i”;‘g—l—)>+ k2] v(x) = 0. (62)

To shorten the notations, we define

Wy +1)

v ={1+p(x)] T

Notice that the potential V! does not possess any
singular point at the origin and decreases like x~° at
infinity.

V(V+ 1)

Back to Eq. (61) where V is defined, and still assum-
ing the relationship between p(r) and the density, we
have

H(0)=0.

The only singularities at the origin or at infinity of
vV + v are those possessed by the original potential
Ur).

According to the normal procedure the two differen-
tial operators

2

Asgy-% - (VO +y)+ 2,
& A

A= gz =z TR

where V may be a §Xj matrix. If present, nonzero
threshold energies would require an exponential de-
crease from VP and V. The x= decrease of V¥ obliges
& to be a scalar. Furthermore, 0, found in the bound
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x (2}

5B

FIG. 3,

for K, together with the x~° decrease, restrict the ex-
tension to systems with maximum v, =3. Matrix solu-
tions of the differential matrix equations

Avy(x) =0, Age ) =0,

are now related through an integral transformation. We
write this transformation as

val) = va () + [ Kx, y) va(y) dy. (63)

The equations for K(x, y) are similar to Eq. (27), within
the restricted class of operators specified earlier.
K(x,y) exists if the original potential U possesses the
appropriate absolute moments. % From Eq. (63) one
returns to the original variable x by

ur () =[1+p ]V o) + [ K(x, ) vgaly)dy] (64)

and
uy(r) =[1+p )V Hogule] + L7 Klx(), y(s)]

Xv[ y()1x[1+p(s)]V/ 2 ds}. (65)
From Eq. (53) one obtains the asymptotic relation
x=v-c+ frm {1-[1+p(s)I %} ds
:r-c+0[f: dsf(s)]. (66)

For illustration in Fig. 3, typical curves x(r) are con-
structed. Returning to the scalar case we have the fol-
lowing asymptotic behaviors:

u,(r)~ a, sin (!zr— mTﬂ + ém) ,

(67)
¢,(x)~ b, sin (kx - 1;1 +n,,,> .

Using Eq. (66), one sees that the limits (67) as x and »

go together to infinity imply the simple equation
kr—c) +n,=kr+3,

or (68)
N, = 0, +kc.

Equations (66) and (68) are the basis for Calogero choos-
ing a new variable x =7 — ¢ and identifying velocity de-
pendent with static hard core interactions.
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4. CONCLUSION

In the paper we assumed Schrodinger equations with
an effective mass and showed the existence of transla-
tion operators, in the sense of Marchenko, between the
free Schrodinger equation and the Schrodinger equation
with an effective mass in addition to the nuclear poten-
tial. Two methods were used to achieve this; they had
a common characteristic, the full Schrodinger equation
was subjected to some transformation prior to being
considered for translation kernel purposes. One may
wonder whether this preliminary transformation is
necessary: The answer is no, but it is convenient as the
following will show. The two operators

dt d
Ag=aylx) a2 +bx) I + cylx), (69)
d d
A=alx) EQ‘ + b(x) EJ—C +c(x), (70)

may be directly considered. When Eq. (1), XA,=AX,
is developed one obtains the partial differential equation
for the kernel

K(x,y).
They are

2
a%z[K(x, y) ay(y)] - a—i}[K(x, M b W]+ Kx,y) co( 9)

2
— a,(x) -aa? K(x, y) + by (x) a—i K(x,9) +c;(0) K(x, y),

(11)

with complicated boundary conditions. The restriction
for the translation operator to be of the Volterra type
leads to the following two constraints on the coefficients
of Egs. (69) and (70):

aqy(x) = ay(x) (72)

and

by(x) = bo(x) = = K(x, x) ay(x) + ay(x) K{x, x). (73)

Inspection of the system thus obtained, convinced us it
was not worth pursuing except when the two conditions

a=ay=scalar, b=>5b,=0

are realized.

At the termination of this paper we can assert the
validity of the Marchenko representation in a wide
variety of physical situations: many-channel scattering
in a »-dimensional space with centrifugal force or
Coulomb force or even both, with or without an effective
mass. Along our study we were led to abandon the
Gel’fand—Levitan representation. It is not such a dam-
ageable result, the connection of the regular physical
solution with the physical solution is not maintained
when the passage from a one-channel to a many-channel
problem is operated. In addition one should say the
Marchenko approach is the one which is appealing to the
creators of the solution of nonlinear problems via in-
verse scattering methods.’

We must emphasize that the determination of the con-
ditions the nuclear potential should satisfy for the
existence of the translation kernel, is only a first step
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into the inverse problem. When translation kernels for
a class of potentials have been proved to exist, one ob-
tains upper bounds for.these translation kernels. With-
in this class of potentials, it may be possible to con-
struct a fundamental equation between K(x, y) and some
spectral matrix F(x, y) as Marchenko or Gel’fand—
Levitan did. The upper bounds satisfied by K(x, y) in-
duce upper bounds that the spectral matrix F(x,y) it-
self verifies, Considering now the fundamental equation
as an equation for K(x,y), the necessary bound, which
the spectral matrix verifies, becomes the important
element in deciding whether or not the fundamental
equation possesses a unique solution., This discussion
is the essence of the inverse problem.
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